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Purpose: Recently, Lunghi et al. (2016) showed that amblyopic eye’s visual acuity per
se after 2 months of occlusion therapy could be predicted by a homeostatic plasticity,
that is, the temporary shift of perceptual eye dominance observed after a 2-h monocular
deprivation, in children with anisometropic amblyopia. In this study, we assess whether
the visual acuity improvement of the amblyopic eye measured after 2 months of
occlusion therapy could be predicted by this plasticity.

Methods: Seven children (6.86 ± 1.46 years old; SD) with anisometropic amblyopia
participated in this study. All patients were newly diagnosed and had no treatment
history before participating in our study. They finished 2 months of refractive adaptation
and then received a 4-h daily fellow eye patching therapy with an opaque patch for a 2-
month period. Best-corrected visual acuity of the amblyopic eye was measured before
and after the patching therapy. The homeostatic plasticity was assessed by measuring
the temporary shift of perceptual eye dominance from 2-h occlusion of the amblyopic
eye before treatment. A binocular phase combination paradigm was used for this study.

Results: We found that there was no significant correlation between the temporary
shift of perceptual eye dominance observed after 2-h occlusion of the amblyopic eye
and the improvement in visual acuity in the amblyopic eye from 2 months of classical
patching therapy. This result, although in disagreements with the conclusions of Lunghi
et al. involving the short-term patching of the amblyopic eye, is in fact consistent with a
reanalysis of Lunghi and colleagues’ data.

Conclusion: The short-term changes in perceptual eye dominance as a result of
short-term monocular deprivation do not provide an index of cortical plasticity in the
general sense such that they are able to predict acuity outcomes from longer-term
classical patching.
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INTRODUCTION

There is a considerable variability in the response to amblyopic
treatment, be it classical occlusion therapy (Stewart et al., 2005)
or binocular therapy (Hess and Thompson, 2015) across a
population of amblyopes of all ages. Unfortunately, there is no
way of knowing which patients are more likely to respond to a
particular treatment prior to therapy. Usually, it is not until the
end that the patients who respond to treatment can be separated
from those who do not. Not all of this variability can be attributed
to the difference in compliance (Stewart et al., 2005, 2007; Fronius
et al., 2014), leading us to the inescapable hypothesis that some
amblyopes have brains that are more capable of change, in other
words, more plastic, than others. If this is the case, we might be
able to assess some general measures of visual cortical plasticity
to better personalize the present treatment.

Recent studies suggest that short-term visual deprivation of
one eye temporally modulates the perceptual eye dominance of
normal adults (Lunghi et al., 2011). Comparable effects occur
in adults with amblyopia (Zhou et al., 2013c). This new form
of plasticity has been shown in both binocular rivalry and
binocular combination measures (Lunghi et al., 2011, 2013; Zhou
et al., 2013a,c, 2014, 2017a,b; Lunghi and Sale, 2015). There is
evidence that it involves a reciprocal change in the sensitivity
of each eye’s input; the previously patched eye becomes more
dominant, and the previously unpatched eye less dominant,
that is, a homeostatic form of plasticity (Zhou et al., 2013a;
Chadnova et al., 2017). It is therefore the opposite to what
occurs in early critical period plasticity as a result of long-term
monocular deprivation. The underlying mechanisms of short-
term patching-induced perceptual eye dominance plasticity (for
short, we use the term of “perceptual eye dominance plasticity”
in this article) is not fully understood. Electrophysiology (Lunghi
et al., 2015a; Zhou et al., 2015) and brain imaging (Lunghi
et al., 2015b; Chadnova et al., 2017; Binda et al., 2018) studies
suggest that the early visual cortex is involved. For example,
using steady-state visual evoked potential (SSVEP), Zhou et al.
(2015) found reciprocally shifted responses to the two eyes’
visual inputs in the primary visual cortex; similar results
were also found in an magnetoencephalogram (MEG) study
(Chadnova et al., 2017). Chadnova et al. (2017) postulated that
patching modulates the contralateral inhibition prior to binocular
combination. Using functional magnetic resonance spectroscopy
(fMRS), Lunghi et al. (2015b) showed that the short-term
monocular deprivation–induced perceptual eye dominance shifts
were linked to reduced levels of γ-aminobutyric acid in the
primary visual cortex. A recent functional magnetic resonance
imaging study (Binda et al., 2018) also suggests that it involves
the primary visual cortex in this form of plasticity.

Short-term monocular patching–induced perceptual eye
dominance shift represents a measure of visual cortical plasticity.
It could potentially be a general index to how modifiable the
visual areas of the brain are. Unlike training-induced visual
plasticity (Zhou et al., 2006; Huang et al., 2008), perceptual eye
dominance plasticity occurs after a short period (0.5–5 h) of
monocular patching (Min et al., 2018, 2019). It therefore might be
an efficient means to personalize treatment for amblyopia if there

was a strong correlation between the magnitude of perceptual eye
dominance plasticity and the benefits from long-term treatment.
By using a binocular rivalry paradigm, Lunghi et al. (2016)
observed that children who exhibit a higher degree of short-
term perceptual eye dominance plasticity (determined after a 2-h
period of patching session) exhibit a larger “recovery rate” of the
amblyopic eye after long-term (months) patching procedures; the
“recovery rate” is defined as the absolute final visual acuity after
the long-term patching. According to Amblyopia PPP (Wallace
et al., 2018), the success of patching therapy only makes sense
if it is measured incrementally, that is, the “improvement in
visual acuity.” Therefore, whether changes in perceptual eye
dominance plasticity are able to predict improvements (i.e.,
difference between initial acuity before occlusion therapy and
that found after occlusion therapy) in visual acuity (i.e., the effects
of patching therapy) as a result of long-term patching is unclear.

We directly tested this idea in this study. Initially, we measured
perceptual eye dominance plasticity by patching the amblyopic
eye for 2 h. Subsequently, classical occlusion therapy with an
opaque patch occluding the fellow eye (4 h/day for 2 months) was
undertaken in seven newly diagnosed patients. Any patient who
needed an update to the spectacle correction had been allowed a
2-month period before undertaking the experiment.

MATERIALS AND METHODS

Participants
Seven children (6.86 ± 1.46 years old; SD) who had
anisometropic or ametropic amblyopia and were able to
perform the binocular phase combination task after practice
participated in this study. All patients had been newly diagnosed
and had no treatment history before they participated in our
study. The clinical details of the patients and their visual acuity
before and after 2 months of treatment are provided in Table 1.
All participants were naive to the purpose of the study. Written
informed consent was obtained from their parents or guardians
before the start of the experiment. This study followed the
tenets of the Declaration of Helsinki and was approved by
the Ethics Committee of Wenzhou Medical University and
McGill University.

Apparatus
The stimuli for the short-term monocular deprivation
measurement were generated and controlled by a PC computer
running MATLAB (MathWorks, Natick, MA, United States)
with PsychToolBox 3.0.9 extension (Brainard, 1997; Pelli, 1997).
The stimuli were presented on a gamma-corrected LG D2342PY
3D LED screen (LG Life Sciences, Seoul, South Korea) with
a 1,920 × 1,080 resolution and a 60-Hz refresh rate. Subjects
viewed the display dichoptically with polarized glasses in a
dimly lit room at a viewing distance of 136 cm. The background
luminance was 46.2 cd/m2 on the screen and 18.8 cd/m2 through
the polarized glasses. Patients’ best-corrected visual acuity was
measured monocularly using the Logarithmic Tumbling E Chart
(Mou, 1966) at 5 m.
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TABLE 1 | Visual acuity before and after 2 months of treatment.

ID Age (years) Cycloplegic refractive
errors (OD/OS)

Visual acuity (logMAR) Balance point (FE/AE)
before treatment

Before treatment 2 Months of treatment

OD OS OD OS

S1 5 −1.00/−1.00 × 180 0.275 0.575 0.175 0.375 0.432

−6.00/−2.00 × 180

S2 6 +1.50 −0.025 0.575 −0.025 0.275 0.285

+5.00

S3 8 Plano −0.025 0.575 −0.025 0.475 0.192

+2.50/+1.75 × 80

S4 6 +3.50 0.175 0.675 0.175 0.275 0.158

+4.00/+0.75 × 95

S5 8 +4.50 0.475 −0.025 0.275 −0.025 0.329

Plano

S6 9 +4.00 0.575 −0.125 0.4 −0.125 0.135

Plano

S7 6 Plano −0.025 0.875 −0.025 0.775 0.234

+2.00/+1.75 × 85

Design
In this study, the treatment effect of 2 months’ patching
therapy (4-h daily fellow eye patching with an opaque patch)
was tested after 2 months of refractive adaptation. The short-
term monocular deprivation effect was quantified in an initial
experiment by the shift of perceptual eye dominance in binocular
phase combination after 2 h of amblyopic eye patching (Zhou
et al., 2013c). An illustration of the experimental design is
provided in Figure 1.

Procedure and Stimuli
Similar to our previous studies (Zhou et al., 2013a), the short-
term monocular deprivation effect was tested with a binocular

FIGURE 1 | An illustration of the experimental design. Seven newly diagnosed
child amblyopes (6.86 ± 1.46 years old; SD) participated, in which the
treatment effect of 2 months’ patching therapy (4-h daily patching with an
opaque patch) was tested after 2 months of refractive adaptation. The
short-term monocular deprivation effect was quantified by the shift of
perceptual eye dominance in binocular phase combination after 2 h of
amblyopic eye patching before the initiation of the treatment.

phase combination task. In the measure, two horizontal sine-
wave gratings (1 cycle/◦, 2◦ × 2◦), with equal and opposite phase
shifts (+22.5◦ and −22.5◦) relative to the center of the screen,
were dichoptically presented to the two eyes. The perceived phase
of fused stimuli was 0◦ when the two eyes contributed equally to
binocular fusion. The interocular contrast ratio at that condition
was the balance point in binocular phase combination. We first
tested this balance point for each patient with the contrast of the
stimuli in the amblyopic eye set as 100%. This was achieved by
measuring individual’s binocularly perceived phase at interocular
contrast ratios of 0, 0.1, 0.2, 0.4, 0.8, and 1, and the binocularly
perceived phase versus interocular contrast ratio (PvR) curve was
fitted with a contrast-gain control model (Ding and Sperling,
2006; Zhou et al., 2013b). One to 3 h of practice trials were
provided before we conducted the main study to make sure
patients understood the task and had a reliable performance in
the binocular phase combination task. Individuals’ PvR curves
measured before treatment are provided in Figure 2. The balance
points of patients before treatment are provided in Table 1.

We then fixed the contrast of the stimuli in the two eyes
based on the individual’s balance point and tested individuals’
binocularly perceived phase before and after a 2 h of monocular
deprivation of the amblyopic eye with an opaque patch. Two
stimulus configurations were used for measuring the binocularly
perceived phase to account for positional bias: +22.5◦ phase in
the amblyopic eye and−22.5◦ phase in the fellow eye, and−22.5◦
phase in the amblyopic eye and +22.5◦ phase in the fellow eye.
The half of the difference between these two configurations was
calculated as the binocularly perceived phase. Each session of
binocularly perceived phase measurement contains 16 trials (two
configurations × eight repetitions). The two configurations were
randomly assigned in different trials. In each trial, observers were
asked to adjust the position of a flanking reference line to locate
the middle of the dark strip of the binocularly perceived grating
to indicate its phase. A high-contrast frame (0.11◦ in width and 6◦
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in length) with four white diagonal lines (0.11◦ in width and 2.83◦
in length) was continually presented surrounding the grating in
each eye to help observers maintain fusion. Subjects normally
needed around 3 min to finish one measurement session. We
tested three sessions of binocularly perceived phase within 10 min
after patients finished the 2 h of monocular deprivation. We
averaged the results of these three sessions and then calculated
the difference between the average post-patching perceived phase
and the baseline to get the perceptual eye dominance difference
index after the 2 h of monocular deprivation. We also normalized
individuals’ perceptual eye dominance difference index to the
largest one in this group. This normalization ensured that the
normalized perceptual eye dominance difference index ranged
from −0.5 to 1, similar to the range reported in the study of
Lunghi et al. (2016). The normalization itself would not change
any correlation analysis we conducted in this study.

For the best-corrected visual acuity measure, we asked
patients to read the optotypes one after another and stopped
when they could not respond within 10 s. We calculated their
percentage correct at different lines of the logarithmic visual
acuity chart. We then used linear interpolation to calculate the
score associated with 75% correct judgments. This score was
defined as patients’ visual acuity.

RESULTS

Figure 2 illustrates individual’s binocularly perceived phase as a
function of the interocular contrast ratio measured before the
treatment. The contrast-gain control model fit well to the data,
with an average goodness-of-fit of 0.941 ± 0.054 (mean ± SD).
This is similar to our previous observation (Zhou et al., 2013b)
in adults with amblyopia (0.951 ± 0.022), indicating that our
patients in this study were able to make reliable measurements
with the binocular phase combination task before the treatment.
Also, similar to our previous observation (Zhou et al., 2013b),
there was a trend toward decreasing contrast ratios being
associated with increasing interocular visual acuity differences
(r =−0.59, P = 0.16).

Long-term patching therapy (4 h/day for 2 months)
significantly improved the visual acuity of the amblyopic eye in
our patients, from an average of 0.62 ± 0.05 to 0.41 ± 0.07
(logMAR): Z = −2.38, P = 0.018, 2-tailed Wilcoxon signed ranks
test. In Figure 3A, we plot the amblyopic eye acuity improvement
after 2 months of treatment as a function of the normalized short-
term perceptual eye dominance index difference for the seven
patients in our study. The normalized perceptual eye dominance
index difference was larger than 0 in five of the seven patients,
which indicates a strengthening of the patched eye after the 2-
h short-term monocular deprivation. Two of the seven patients
had a shift of perceptual eye dominance in the reversal direction.
This pattern of result was similar to that previously reported by
Lunghi et al. (2016), in which one of their 10 patients had a shift of
perceptual eye dominance in the reversal way (Figure 3B). A two-
tailed Pearson correlation analysis showed that the correlation
between the amblyopic eye acuity improvement after 2 months
of treatment and the normalized perceptual eye dominance index

difference after 2 h of amblyopic patching was not significant:
r = 0.20, P = 0.66.

DISCUSSION

We show that there was no significant correlation between the
amblyopic eye’s acuity improvement after 2 months of occlusion
treatment and the normalized perceptual eye dominance index
difference associated with the perceptual eye dominance plasticity
after 2-h occlusion of the amblyopic eye.

Our results seem to be in conflict with the claim made by
Lunghi et al. (2016) that the change in perceptual eye dominance
measured after 2-h of occlusion therapy predicts “the recovery
rate” of the amblyopic eye in anisometropic children. However,
Lunghi et al. (2016) in their original article plotted the change
in perceptual eye dominance against the absolute acuity of the
amblyopic eye at end of treatment. This is because they defined
the effects of occlusion treatment (the “recovery rate”) in terms
of the absolute visual acuity of the amblyopic eye measured
after 2 months of treatment. This is an incorrect metric for
the “recovery rate.” Their conclusion is not interesting because
clinically, in patients with amblyopia, their final visual acuity after
treatment is best predicted by their initial visual acuity before
treatment. This is also true in Lunghi and colleagues’ study.
According to Table 1 in Lunghi and colleagues’ article, there is
a strong correlation between the amblyopic eye’s visual acuity
before and after 2 months of treatment: r = 0.731, P = 0.016.
The p-value is even smaller than that reported in Lunghi and
colleagues’ article using the homeostatic plasticity (ρ = −0.65,
P = 0.04). This suggests that if one’s objective were to predict
amblyopic eye’s absolute visual acuity after 2 months of occlusion
therapy, one could simply rely on patients’ initial visual acuity
rather than a complicated psychophysics measure. What one
really would want to do is to predict what change would occur
in acuity as a result of treatment. That is what we set out to do.

Thus, our purpose was to investigate the effects of the
occlusion therapy, in terms of the visual acuity improvement
(i.e., the acuity benefit) of the amblyopic eye measured after
2 months of treatment, and establish whether it is correlated with
the magnitude of short-term monocular deprivation–induced
visual plasticity before treatment. Therefore, we plotted the
change in perceptual eye dominance from short-term deprivation
against the change in acuity from classical patching, as this
is the only valid way of assessing whether changes in short-
term plasticity can predict improvements in long-term patching.
According to Amblyopia PPP (Wallace et al., 2018), the success
of patching therapy only makes sense if it is measured in
terms of an incremental change (i.e., “improvement”). After
replotting Lunghi et al. (2016) data in the more conventional
way (corresponding to our data Figure 3A), where perceptual eye
dominance changes are plotted against patching-induced acuity
changes, their results agree with ours and show no significant
correlation (Lunghi et al: r = −0.22, P = 0.54; the present study:
r = 0.20, P = 0.66) between perceptual eye dominance changes
at the beginning of patching therapy and acuity changes after
2 months of classical patching therapy.
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FIGURE 2 | Individual’s binocularly perceived phase as a function of the interocular contrast ratio measured before the patching treatment. Each panel plots results
of one patient. Error bars represent standard errors from eight repetitions of the test. The curve in each panel represents fits with a contrast-gain-control model (Zhou
et al., 2013b). The purple triangle represents where the two eyes were balanced. The corresponding interocular contrast ratio (in short “BP”) and the goodness-of-fit
are provided in each panel.

FIGURE 3 | The relationship between the amblyopic eye acuity improvement after 2 months of treatment and the short-term monocular deprivation effect.
(A) Results from the present study. The horizontal axis represents the effect of short-term monocular deprivation on the perceptual eye dominance (PED) shift. The
value, if larger than 0, indicates the patched eye was getting stronger after the short-term monocular deprivation. The larger the value indicates the larger PED
plasticity. The dashed line is a linear fit of the data. The error bars represent standard deviation based on the three posttest sessions measured within 10 min after
patients finished the 2 h of monocular deprivation. A 2-tailed Pearson correlation analysis showed that the correlation between the amblyopic eye acuity
improvement after 2 months of treatment and the normalized PED index difference was not significant: r = 0.20, P = 0.66. (B) Reports from Lunghi et al. (2016)
study. Their work is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivatives 4.0 International License. The results from Figure 4B and
Table 1 in Lunghi et al. (2016) article are replotted here. Ten patients [6.2 ± 1.0 years (SD)] accepted Bangerter filter patching therapy (whole walking time in each
day) after 2 months of refractive adaptation. The PED index difference was quantified using a binocular rivalry task before the start of the patching therapy. The
dashed line is a linear fit of the data. A two-tailed Pearson correlation analysis showed that the correlation between the amblyopic eye acuity improvement after
2 months of treatment and the PED index difference was not significant: r = −0.22, P = 0.54.
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There are a number of important differences between our
study and the previous one by Lunghi et al. (2016). However,
because the data from the two studies are consistent in that there
is no significant correlation between short-term perceptual eye
dominance plasticity changes and longer-term patching therapy
improvements, none of these differences can be particularly
crucial. Thus, despite the differences, our conclusions are well
founded. Our conclusions are outlined below:

First, Lunghi et al. (2016) used binocular rivalry to measure
perceptual eye dominance, whereas we used a binocular
combination task. Both tasks are laboratory-based tests and are
potentially challenging for children to accurately complete. In the
study of Lunghi et al. (2016), they added features to make the
test child-friendly. In our study, we included practice sessions
and chose patients who were able to do the test accurately. This
form of accuracy was verified by looking at the R2 values for the
“binocularly perceived phase versus interocular contrast ratio”
curve; if they were larger than 0.85, then the children performed
well to be eligible for the study. Nevertheless, both tests have
been widely used in studying the homeostatic plasticity in normal
adults (rivalry: Lunghi et al., 2011, 2013, 2015b; Lunghi and Sale,
2015; Bai et al., 2017; Kim et al., 2017; Ramamurthy and Blaser,
2018; Finn et al., 2019; Sheynin et al., 2019a,b; combination:
Zhou et al., 2013a, 2014, 2017a,b; Bai et al., 2017; Wang et al.,
2017; Yao et al., 2017; Min et al., 2018, 2019; Sheynin et al.,
2019a) and in patients with amblyopia (rivalry: Lunghi et al.,
2019; combination: Zhou et al., 2013c, 2019).

Second, Lunghi et al. (2016) measured perceptual eye
dominance associated with short-term occlusion of the fellow
fixing eye, whereas we measured changes in perceptual eye
dominance associated with short-term deprivation of the
amblyopic eye. To our limited knowledge, it is so far not clear
whether the effect of short-term patching differs in magnitude
for patching different eyes. We have no reason to believe
that the underlying mechanisms in patching different eyes are
different. We are at present assuming this. In support of this
assumption, both studies found similar directions of perceptual
eye dominance shift (in favor of the patched eye) in most of
the patients (9/10 in Lunghi and colleagues’ study and 5/7 in
the present study) after the short-term monocular deprivation.
Limited by the small sample in the present study, the normalized
perceptual eye dominance indices for the seven patients were not
statistically larger than 0 [t(6) = 1.33, P = 0.23]. However, we still
failed to find any significantly correlation between the amblyopic
eye acuity improvement after 2 months of occlusion treatment
and the normalized perceptual eye dominance index difference
associated with the perceptual eye dominance plasticity based on
those having an perceptual eye dominance shift in favor of the
patched eye (n = 5, r =−0.14, P = 0.82).

In addition, their patients had mild–moderate amblyopia
(≤0.4 logMAR) and were treated by occluding the fellow eye with
a Bangerter filter (strength 0.4), whereas our patients had more
severe amblyopic >0.45 logMAR and were treated by occluding
the fellow eye with an opaque patch.

Furthermore, the main conclusions in both the Lunghi et al.
(2016) and the current study relied on correlations in small
samples [i.e., 7 in ours and 10 in Lunghi et al. (2016)]. It is

always hard to justify what is the proper sample size for a valid
conclusion based on a correlation analysis; for example, why
10 is enough, whereas 7 is not acceptable? This itself is tightly
linked to the question that one asks. In particular, for the question
that we asked, whether the homeostatic plasticity predicts the
recovery rate (or the effects of occlusion therapy, or the visual
acuity improvement), both Lunghi and colleagues’ and our study
failed to reach a significant correlation. Thus, both studies suggest
that the homeostatic plasticity might not be able to predict the
acuity improvements from occlusion therapy. Considering that
this conclusion relies on two studies (Lunghi and colleagues’ and
ours) with 17 patients (10 in Lunghi and colleagues’ and 7 in
ours) from two independent groups using different techniques,
we believe that this strengthens the conclusion. In other words,
if one must get a large sample to reach significance in this kind
of correlation analysis, it is hard to believe that we can use the
homeostatic plasticity as a prediction index in clinical practice.

Moreover, in Lunghi and colleagues’ study, compliance
was monitored via parents’ reports, whereas in our study no
compliance measure was used. Because data from the two
studies come to the same conclusion, the fact that compliance
was not monitored in the current study cannot be critical to
our conclusions.

In summary, we aimed to investigate whether the short-term
patching-induced perceptual eye dominance shift per se is a good
indicator of the visual acuity improvement after patching therapy.
We show that short-term perceptual eye dominance plasticity
does not provide an index of cortical plasticity in the general
sense, such that it could be used to predict acuity improvement
outcomes from classical patching. This conclusion is robust to
the type of measurement method used, the degree of amblyopia
treated, the eye that is occluded (i.e., fixing vs. amblyopic) in the
short-term perceptual eye measurement, and the extent to which
compliance is monitored.

It remains a possibility that the variability in monocular
visual outcome (e.g., visual acuity) following monocular patching
therapy could derive not from a difference in plasticity capacity
but from a variety of other factors including the amblyopia
phenotype (Tacagni et al., 2007), treatment compliance (Beardsell
et al., 1999; Menon et al., 2005; Wallace et al., 2018; Handa and
Chia, 2019), lifestyle or environment (Woodruff et al., 1994),
level of activity, or a plethora of other factors (Stewart et al.,
2005; Awan et al., 2010) that do not relate to the inherent
capacity for plasticity.
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