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Graph neural networks (GNN) rely on graph operations that include neural network

training for various graph related tasks. Recently, several attempts have been made to

apply the GNNs to functional magnetic resonance image (fMRI) data. Despite recent

progresses, a common limitation is its difficulty to explain the classification results in a

neuroscientifically explainable way. Here, we develop a framework for analyzing the fMRI

data using the Graph Isomorphism Network (GIN), which was recently proposed as a

powerful GNN for graph classification. One of the important contributions of this paper

is the observation that the GIN is a dual representation of convolutional neural network

(CNN) in the graph space where the shift operation is defined using the adjacency matrix.

This understanding enables us to exploit CNN-based saliency map techniques for the

GNN, which we tailor to the proposed GIN with one-hot encoding, to visualize the

important regions of the brain. We validate our proposed framework using large-scale

resting-state fMRI (rs-fMRI) data for classifying the sex of the subject based on the

graph structure of the brain. The experiment was consistent with our expectation such

that the obtained saliency map show high correspondence with previous neuroimaging

evidences related to sex differences.

Keywords: graph neural networks, saliency mapping, functional neuroimaging, resting-state, explainable artificial

intelligence

1. INTRODUCTION

Graphs provide an efficient way to mathematically model non-regular interactions between data
in terms of nodes and edges (Bassett and Bullmore, 2009; He and Evans, 2010; Sporns, 2018). The
network of the brain can be modeled as a graph consisting of ROIs as the nodes and their functional
connectivity as the edges (Bassett and Sporns, 2017). In classical graph theoretic approaches,
various graphmetrics including local/global efficiency, average path length, and small-worldedness,
are computed to analyze the brain networks (Wang et al., 2010). These metrics could be further
used for group comparison to reveal the different network properties, providing insights to the
physiological characteristics and the disorders of the brain (Micheloyannis et al., 2006; Tian et al.,
2011).

Recently, there have been remarkable progresses and growing interests in Graph Neural
Networks (GNNs), which comprise graph operations performed by deep neural networks (see
the extensive survey in Wu et al., 2019). The GNNs are suitable for solving tasks such as
node classification, edge prediction, graph classification, etc. Usual GNNs typically integrate the
features at each layer to embed each node features into a predefined next layer feature vector.
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The integration process is implemented by choosing appropriate
functions for aggregating features of the neighborhood nodes. As
one layer in the GNN aggregates its 1-hop neighbors, each node
feature is embedded with features within its k-hop neighbors of
the graph after k aggregating layers. The feature of the whole
graph is then extracted by applying a readout function to the
embedded node features.

Considering the development of GNNs, it is not surprising
that there are keen interests in applying GNNs to fMRI data
analysis. For example, some works have applied the GNN to
classify one’s phenotypic status based on the graph structure
of the brain functional networks (Ktena et al., 2017, 2018; Ma
et al., 2018; Li et al., 2019a,b). Some other works employed
the GNN to classify the subjects, not only based on the
imaging data, but also including the non-image phenotypic
data (Parisot et al., 2017, 2018; He et al., 2019). Despite
the early contribution of these works in applying the GNNs
for fMRI analysis, there exists a common limitation in that
they often fail to provide proper mapping of the ROIs for
neuroscientific interpretation. To overcome this limitation, there
have been recent attempts to address the issue of neuroscientific
interpretability by visualizing the important features of the brain
(Arslan et al., 2018; Duffy et al., 2019; Li et al., 2019a). These
attempts involved saliency mapping methods of the GNNs,
such as class activation mapping (CAM) (Zhou et al., 2016) to
delineate the important features, as demonstrated in Arslan et al.
(2018).

Here we revisit the Graph Isomorphism Network (GIN)
(Xu et al., 2018a), which was recently proposed to implement
Weisfeiler-Lehman (WL) graph isomorphism test (Shervashidze
et al., 2011) in a neural network. Our classification results on
sex classification confirmed that GIN method can provide more
powerful classification performance, but the direct calculation of
the graph saliency map was not clear.

Therefore, another important contribution of this work
is to show that while GIN is similar to spectral-domain
approaches such as the graph convolutional network (GCN)
in learning the spectral filters from graphs, GIN can be
considered as a dual representation of the convolutional
neural network (CNN) with two-tab convolution filter in
the graph space where the adjacency matrix is defined as
a generalized shift operation. With this generalization, we
can employ one of the most widely used saliency map
visualization technique in CNN, called the gradient-weighted
class activation mapping (Grad-CAM) (Selvaraju et al., 2017)
that can be applied to any CNN architecture at any layer.
We further found that to visualize the important brain regions
that are related to a certain phenotypic difference, Grad-
CAM should be calculated at the input layer and the one-hot
encoding of the graph node is ideally suitable for such saliency
map visualization.

Experimental results on sex classification confirm that
our method can provide more accurate classification
performance and better interpretability of the classification
results in terms of saliency maps, which provide some new
insights to the topic of sex differences on the resting-state
fMRI (rs-fMRI).

1.1. Mathematical Preliminaries
We denote a graph G = (V ,E) with a set of vertices
V(G) = {1, · · · ,N} with N : = |V| and edges E(G) = {eij},
where an edge eij connects vertices i and j if they are adjacent
or neighbors. The set of neighborhoods of a vertex v is denoted
byN (v). For weighted graphs, the edge eij has a real value. If G is
an unweighted graph, then E is a sparse matrix with elements of
either 0 or 1.

When analyzing the fMRI data, the functional connectivity
between two regions of the brain is often computed from the
Pearson correlation coefficient between the fMRI time series.
Specifically, the Pearson correlation coefficient between the fMRI
time series yi at the vertex i and the fMRI time series yj at the
vertex j is given by

Rij =
Cov(yi, yj)

σyi
σyj

∈ R
N×N

where Cov(yi, yj) is the cross covariance between yi and yj, and
σyi

denotes the standard deviation of yi. Unweighted graph edge
can be derived from the functional connectivity by thresholding
the correlation coefficients by a certain threshold.

For a simple unweighted graph with vertex set V , the
adjacency matrix is a square |V| × |V| matrix A such that its
element Auv is one when there is an edge from vertex u to vertex
v, and zero when there is no edge. For the given adjacency matrix
A, the graph Laplacian L and its normalized version Ln are then
defined by

L : = D− A, Ln = I − D− 1
2AD− 1

2 (1)

where D is the degree matrix with the diagonal element

Duu = d(u) =
∑

v

Auv (2)

and zeros elsewhere.
Graph Laplacian is useful for signal processing on a graph

(Shuman et al., 2013; Huang et al., 2018; Ortega et al., 2018).More
specifically, the graph convolution for real-valued functions on
the set of the graph’s vertices, x, y :V 7→ R

|V| is often defined by

x ∗G y = U
(

U⊤x⊙ U⊤y
)

(3)

where the superscript ⊤ denotes the adjoint operation, U is the
matrix composed of singular vectors of the normalized graph
Laplacian, i.e.,

Ln = U3U⊤ (4)

where 3 denotes the diagonal matrices with the singular values,
which is often referred to as the graph spectrum.

1.2. Graph Neural Networks
The goal of GNNs for the graph classification task is to learn a
non-linear mapping g from a graph to a feature vector:

g :G 7→ pG, (5)

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 630

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kim and Ye Graph Isomorphism Network rs-fMRI Analysis

where pG is a feature vector of the whole graph G that
helps predicting the labels of the graph. Recent perspective
distinguishes the GNNs into two groups based on the
neighborhood aggregating schemes (Wu et al., 2019). First group
is the spectral-based convolutional GNNs (spectral GNN). This
group of GNNs are inspired by the spectral decomposition of
the graphs, and aim to approximate the spectral filters in each
aggregating layers (Bruna et al., 2013; Kipf and Welling, 2016).
The other group of GNNs are the spatial-based convolutional
GNNs (spatial GNN). They do not explicitly aim to learn spectral
features of graph, but rather implement the neighborhood
aggregation based on the nodes’ spatial relations. Some well-
known examples of the spatial GNNs are the Message Passing
Neural Network (MPNN) (Gilmer et al., 2017) and the GIN (Xu
et al., 2018a). In this section, we provide a brief review of the these
approaches to understand their relationships.

Spectral GNNs are based on the graph convolution
relationship (3), in which U⊤y is replaced by the parameterized
graph spectrum ŷ : = U⊤y:

x ∗G y = U
(

ŷ⊙ U⊤x
)

More specifically, the graph convolutional layer of the spectral
GNN is then implemented as follows:

x
(k)
i = σ

(
∑

j
UY

(k)
i,j U

⊤x
(k−1)
j

)

(6)

where σ (·) is an element-by-element non-linearity, x
(k)
i is the

graph signal at the channel i of k-th layer and Y
(k)
i,j is a

diagonal matrix that parameterized the graph spectrum ŷ with
learnable parameters.

To realize these ideas, GCN was proposed as the first-order
approximation of the spectral GNN (Hammond et al., 2011;
Kipf and Welling, 2016). Specifically, the authors of Kipf and
Welling (2016) showed that the first order-approximation of the
Chebyshev expansion of the spectral convolution operation can
be implemented as the spatial domain convolution:

X(k) = σ

(

D̃
− 1

2 ÃD̃
− 1

2X(k−1)W(k)
)

∈ R
N×C(k)

. (7)

where Ã = A+ I is the adjacency matrix assuming the recurring
loop, D̃ is a degree matrix of Ã, and

X(k) =
[

x
(k)
1 · · · x

(k)

C(k)

]

∈ R
N×C(k)

(8)

denotes the C(k) channel signals at the k-th layer. This implies
that GCN implements the node feature with its neighborhoods
bymapping through a layer-specific learnable weightmatrixW(k)

and non-linearity σ .
Unlike the spectral GNN, spatial-based methods define

graph convolutions based on a node’s spatial relations. More
specifically, this operation is generally composed of the
AGGREGATE, and COMBINE functions:

a(k)v = AGGREGATE(k)
({

p(k−1)
v : u ∈ N (v)

})

,

p(k)v = COMBINE(k)
(

p(k−1)
v , a(k)v

)

,

where p
(k)
v ∈ R

C(k)
denotes the k-th layer feature vector at the v-th

node. In other words, the AGGREGATE function collects features
of the neighborhood nodes to extract aggregated feature vector

a
(k)
v for the layer k, and COMBINE function then combines the

previous node feature p
(k−1)
v with aggregated node features a

(k)
v

to output the node feature of the current k-th layer p
(k)
v . After this

spatial operation, the mapping (5) is defined by

pG = READOUT
({

p(k)v |v ∈ G
})

.

Moreover, the AGGREGATE and COMBINE share the similar
idea of information propagation/message passing on graphs (Wu
et al., 2019).

In particular, GIN was proposed by Xu et al. (2018a) as a
special case of spatial GNN suitable for graph classification tasks.
The network implements the aggregate and combine functions as
the sum of the node features:

p(k)v = MLP(k)
(

(1+ǫ
(k))·p(k−1)

v +
∑

u∈N (v)
p(k−1)
u

)

∈ R
C(k)

, (9)

where ǫ
(k) is a learnable parameter, and MLP is a multi-layer

perceptron with non-linearity. For graph-level readout, the
embedded node features of every layers are summed up and then
concatenated to obtain the final graph feature pG as in (Xu et al.,
2018a,b),

p
(k)
G = sum(p(k)0 , p

(k)
1 , ..., p

(k)
N ) (10)

pG = concatenate({p(k)G }|k = 0, 1, ...,K). (11)

The authors of Xu et al. (2018a) argue that the proposed network
architecture can learn injective mapping of the function g, which
makes the model to be possibly as powerful as the WL test
for graph classification tasks (Weisfeiler and Lehman, 1968;
Shervashidze et al., 2011; Xu et al., 2018a).

2. THEORY

In this section, we mathematically show that the GIN is a dual
representation of CNN on the graph space where the adjacency
matrix is defined as a generalized shift operation. Along with this
finding, we further propose a method for applying the GIN to the
rs-fMRI data for graph classification and analysis.

2.1. GIN as a Generalized CNN on the
Graph Space
Note that the GIN processing (9) can be decomposed as

p(k)v = MLP(k)(r(k)v ) ∈ R
C(k)

, v = 1, · · · ,N, (12)

where

r(k)v = c(k)p(k−1)
v +

∑

u∈N (v)
p(k−1)
u (13)
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=
[

p
(k−1)
1 · · · p

(k−1)
N

]

︸ ︷︷ ︸

P(k−1)

(

c(k)I + A
)

:,v
∈ R

C(k−1)
(14)

where c(k) : = 1 + ǫ
(k) and A is the adjacency matrix and

M:,v denotes the v-th column of a matrix M. This operation is
performed for k = 1, · · · ,K.

One of the most important observations is that the feature
matrix P(k−1) is closely related to the signal matrix X(k−1) in (8).
More specifically, we have the following dual relationship:

X(k−1) = P(k−1)⊤ (15)

Then, using the observation that c(k)I + A is self-adjoint,
the matrix representation of (13) can be converted to a
dual representation:

X(k) = σ

(

(c(k)I + A)X(k−1)W(k)
)

∈ R
N×C(k)

(16)

where W(k) ∈ R
C(k−1)×C(k)

denotes the fully connected network
weight from the MLP. Equation (16) shows that aside from the
iteration dependent ǫ

(k), the main difference of GIN from GCN
is the presence of the (c(k)I + A) instead of the normalized
adjacency matrix Ã. This implies that GIN can be considered as
an extension of the GCN as a first order approximation of the
spectral GNN using the unnormalized graph Laplacian.

However, another important contribution of this paper is
that the difference is not a minor variation, but that it implies
an important difference between the two approaches. More
specifically, by exploring the role of c(k) in (16), Theorem 1 shows
that (16) is a dual representation of the two tab convolutional
neural network without pooling layer on the graph spaces, where
the adjacency matrix is defined as a shift operation.

Theorem 1. The GIN iteration in (13) or (16) is a dual
representation of a CNN without pooling layers using two-tab filter
on the graph space, where the adjacency matrix A is defined as a
shift operation.

Proof: To understand this claim, we first revisit the classical CNN
for the 1-D signal. A building block for the CNN is the following
multi-channel convolution (Ye and Sung, 2019):

x
(k)
i = σ



8
⊤

C(k−1)
∑

j=1

(

x
(k−1)
j ⊛ h

(k)
i,j

)



 (17)

whereC(k) is the number of channels at the k-th layer, x
(k)
i denotes

the i-th channel signal at the k-th layer, and h
(k)
i,j is the convolution

filter that convolves with j-th input channel signal to produce i-th
channel output. Finally,8⊤ denotes the matrix that represent the
pooling operation.

Suppose that the convolution filter h
(k)
i,j has two tabs. Without

loss of generality, the filter can be represented by

h
(k)
i,j =

[

c(k)w
(k)
i,j w

(k)
i,j

]⊤
∈ R

2

for some constant c(k),w
(k)
i,j . Then, the convolution operation can

be simplified as

x
(k−1)
j ⊛ h

(k)
i,j = c(k)w

(k)
i,j x

(k−1)
j + w

(k)
i,j Sx

(k−1)
j

where S is the shift matrix defined by

S =










0 0 · · · 0 1
1 0 · · · 0 0
...

...
. . .

...
...

0 · · · · · · 0 0
0 · · · · · · 1 0










(18)

if we assume the periodic boundary condition. Accordingly, for
the cases of a CNN with no pooling layers, i.e., 8⊤ = I, (17) with
the two-tab filter can be represented in the followingmatrix form:

X(k) = σ

((

c(k)X(k−1) + SX(k−1)
)

W(k)
)

(19)

where

X(k) =
[

x
(k)
1 · · · x

(k)

C(k)

]

∈ R
N×C(k)

W(k) =







w
(k)
1,1 · · · w

(k)

C(k),1
...

. . .
...

w
(k)

1,C(k−1) · · · w
(k)

C(k),C(k−1)







∈ R
C(k−1)×C(k)

By inspection of the dual representation of GIN in (16) and the
CNN operation (19), we can see that the only difference of (16)
is the adjacency matrix A instead of the shift matrix S in (19).
Therefore, we can conclude that the GIN is a dual representation
of CNN with two tab filter in the graph space where adjacency
matrix is defined as a shift operation.

Note that the identification of the adjacency matrix as
a generalized shift operation is not our own invention, but
rather it is a classical observation in graph signal processing
literature (Shuman et al., 2013; Huang et al., 2018; Ortega
et al., 2018). Accordingly, Theorem 1 confirms that the insight
from the classical signal processing plays an important role
in understanding the GNN. Based on this understanding, we
can now provide a dual space insight of the GIN operations
in (10) and (11). More specifically, (10) can be understand as
sum-pooling operation, since we have

(

p
(k)
G

)⊤
= 8

⊤
sumX

(k), (20)

where the pooling matrix 8
⊤
sum is given by

8
⊤
sum =

[

1 · · · 1
]

. (21)

Then, (11) is indeed the multichannel concatenation layer from
the pooled feature at each layer as shown in Figure 1. Therefore,
the GIN operations can be understood as a dual representation of
CNN classifier on the graph signal space where the shift operation
is defined by the adjacency matrix. In fact, CNN and GIN differs
in their definition of the shift operation as shown in Figures 1,
2. We provide an exemplar GIN operation for a more expressive
explanation in the Figure 3 and Supplementary Material.
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FIGURE 1 | Schematic illustration of the Graph Isomorphism Network based resting-state fMRI analysis. (A) Graph signal space. (B) GIN as generalized CNN on the

graph space. (C) Classification. (D) Saliency mapping.

FIGURE 2 | Comparison of shift operation in (A) classical CNN, and (B) an example of GIN. In the graph space, the adjacency matrix is defined as shift operation.

2.2. Saliency Map of GIN
Thanks to the mathematical understanding of the similarity
between the GIN and the CNN, we can now readily use the
saliency map techniques for the CNNs to visualize important
brain regions. For example, Arslan et al. (2018) used the CAM
to visualize the graph saliency map. Instead, we propose to
visualize the salient regions based on the Grad-CAM, which is
a generalized version of the CAM without the restriction of the

need of the global average pooling layer (Selvaraju et al., 2017).
Specifically, the Grad-CAM saliency map at the k-th layer GIN
can be calculated by

S(k) =

N
∑

j=1

α
(k)
j x

(k)
j (22)
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FIGURE 3 | Example of the GIN operation with a small graph (N = 4). (A) Node features are embedded as one-hot vectors. (B) Neighboring nodes are

aggregated/combined. (C) Aggregated node features are mapped with learnable parameters. (D) Mapped node features are passed through nonlinear

activation function.

where

α
(k)
j =

N
∑

i=1

∂y

∂X
(k)
ij

(23)

where X
(k)
ij is the (i, j)-th element of X(k) or i-th element of x

(k)
j .

Since we are interested in the input node contribution for the
classification, we found that the meaningful Grad-CAM saliency
map should be calculated at the input layer, i.e., k = 0, in which
case the final representation becomes much simpler:

S(0) =

N
∑

j=1

α
(0)
j x

(0)
j =

N
∑

j=1

α
(0)
j ej

=

[
N∑

i=1

∂y

∂X
(0)
i1

· · ·
N∑

i=1

∂y

∂X
(0)
iN

]⊤

∈ R
N (24)

where the second equality comes from that x
(0)
j is one-hot vector,

i.e., x
(0)
j = ej, where ej has one at the j-the elements whereas all

the other elements are zero, and the last equality comes from

α
(0)
j =

N
∑

i=1

∂y

∂X
(0)
ij

(25)

Note that in contrast to CAM (Zhou et al., 2016) as in Arslan
et al. (2018) where sensitivity should be calculated with respect
to the last layer, our approach using Grad-CAM provides a
direct link from the input nodes to the final classification. Using
experimental data, we will show that the resulting saliency map
can quantify the sensitivity with respect to the node geometry,
which provide a neuroscientific information about the relative
importance of the each ROIs related to the class features.

3. MATERIALS AND METHODS

Based on the aforementioned understanding of the GIN, we
proceed to apply the GIN to the rs-fMRI data for classification
of the subjects’ sex and provide neuroscientific interpretation.
The Figure 1 provides schematic illustration of the proposed
analysis pipeline.

3.1. Data Description and Preprocessing
The rs-fMRI data was obtained from the Human Connectome
Project (HCP) dataset S1200 release (Van Essen et al., 2013). The
data was acquired for two runs of two resting-state session each
for 15 min, with eyes open fixating on a cross-hair (TR = 720
ms, TE = 33.1 ms, flip angle = 52◦, FOV = 208 × 180mm,
slice thickness = 2.0mm). Of the total 4 runs, we used the first
run of the dataset. Preprocessing of the fMRI volume time-series
included gradient distortion correction, motion correction, and
field map preprocessing, followed by registration to T1 weighted
image. The registered EPI image was then normalized to the
standard MNI152 space. Finally, FIX-ICA based denoising was
applied to reduce non-neural source of noise in the data (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014). Details of the HCP
preprocessing pipeline is referred to Glasser et al. (2013).

From the preprocessed HCP dataset, rs-fMRI scans of 1,094
subjects were obtained from the project. To further minimize
the unwanted effect of head motion on model training, we
discarded the subject scans with framewise displacement (FD)
over 0.3mm at any time of the scan. The FD was computed with
fsl_motion_outliers function of the FSL (Jenkinson et al.,
2012). There were 152 discarded scans from filtering out with the
FD, and 942 scans were left. The 942 scans consisted of data from
531 female subjects and 411 male subjects. We paired each scan
with the sex of the corresponding subject as an input-label for
training the neural network.
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3.2. Graph Construction From
Preprocessed Data
The ROIs are defined from the cortical volume parcellation by
Schaefer et al. (2017).We used the 400 parcellations as in Kashyap
et al. (2019), Weis et al. (2019). Semantic region labels (e.g.,
Posterior cingulate cortex) and functional network labels (e.g.,
Default mode) corresponding to every parcels are provided with
the dataset (Schaefer et al., 2017). Vertices are defined as one-
hot vectors encoding the semantic region labels of the whole 400
ROIs. It can be said that no actual signal from the fMRI blood
oxygen level dependency (BOLD) activity is represented in the
vertex of the constructed graph.

To define the edges, functional connectivity matrix was
constructed as follows. First, mean time-series of cortical parcels
were obtained by averaging the preprocessed fMRI data voxels
within each ROIs. Functional connectivity is defined as the
correlation coefficient of the pearson’s correlation between the
time-series of the two voxels. Thus, the connectivity matrix is
constructed by computing the pearson’s correlation coefficient
between every other ROIs. Derivation of the mean time-series
and the connectivity matrix was performed with the MATLAB
toolbox GRETNA (Wang et al., 2015). To derive an undirected,
unweighted graph from the connectivity matrix, we threshold
the connectivity matrix with sparsity by selecting the top M-
percentile elements of the connectivity matrix as connected, and
others unconnected.

3.3. Training Details
All following experiments are conducted with PyTorch 1.4.0. We
used the GIN (Equation (9)) for our classification experiment.
The concatenated graph features from all K layers pG in (11)
is mapped to the classifier output y = [y[1], · · · , y[c]]⊤ for
predicting the one-hot vector encoded ground-truth label of
the graph ygt = [ygt[1], · · · , ygt[c]]

⊤, where ygt[i] ∈ {0, 1}
and c is a set of all possible class labels. Note that we omit
the graph feature from the 0-th layer when concatenating since
it is the same one-hot embedding of each pre-defined ROIs
which have no difference between the subjects. One-dimensional
batch normalization was applied after each layers of the network
followed by the ReLU activation. The GIN is then trained to
minimize the cross-entropy loss Lxent:

Lxent = −E

[
c

∑

i=1

ygt[i] · log(y[i])

]

(26)

where the expectation is taken over the training data. For the sex
classification in this paper, the classifier is binary, so we use c = 2.

Deep Graph Infomax (DGI) was introduced in Veličković
et al. (2018) as an unsupervised method for the representation
learning of the graph. The DGI learns the node representation
by maximizing the mutual information between the node
feature vectors pv and the corresponding graph feature pG. A
discriminator D that takes a pair of a node feature vector and a
graph feature as input is trained to discriminate whether the two
embeddings are from the same graph:

LInfomax =
∑

logD(pv, pG)+
∑

log(1−D(p̃v, pG)). (27)

Here, p̃v is a corrupted node feature vector, which is usually
obtained by randomly selecting a node feature vector from
another sample in the minibatch (Veličković et al., 2018).
The DGI was first proposed as an unsupervised representation
learning method, but (Li et al., 2019b) has made use of the DGI
as a regularizer for the graph classification task.

Following the work by Li et al. (2019b), we added the DGI loss
as a regularizer with the expectation that maximizing the mutual
information between the node features and the graph features can
help extract better representation of the graph. Thus, the final loss
function is defined as:

L = Lxent + λ · LInfomax, (28)

where Lxent is the cross entropy loss in (26) and LInfomax is
defined in (27), respectively. In this paper, we coin the term
Infomax regularization indicating the regularizer LInfomax. To
train the network, the Adam optimizer was used for 150 epochs of
training with the learning rate of 0.01. Learning rate was decayed
by the scale of 0.8 after every 5 epochs of training. We performed
10-fold cross-validation of the 942 graphs following (Varoquaux
et al., 2017). The final model hyperparameters are reported in the
section 4.1 based on the hyperparameter tuning experiments.

3.4. Comparative Study
To investigate the optimality of the proposed method, we
performed comparative study with other methods. The first
comparative study was performed to ensure the classification
capability of our proposed method over other recent ones.
Specifically, we re-implemented and evaluated the performance
of the GCN-based method by Arslan et al. (2018) on our HCP
dataset to serve as the baseline. Additionally, we compared the
results of sex classification accuracy on the same HCP dataset
reported by Zhang et al. (2018), Weis et al. (2019). Second
comparative study was to find the optimal hyperparameter of
our proposed method. We performed several hyperparameter
tuning experiments which includes varying the level of sparsity,
regularization coefficient λ, number of layers, number of hidden
units, learning rate, and the dropout rate with the same dataset
and the same GIN model. Lastly, we compared the classification
performance when the input features were not encoded in one-
hot vectors. Instead of embedding the input feature as a one-hot
vector of each parcellation ROIs, we embedded the input features
as mean BOLD activation of the ROI or its centroid coordinates
(Ktena et al., 2017, 2018; Li et al., 2019a,b), and trained the
proposedmodel with samemodel hyperparameters. The centroid
coordinates are defined as a three-dimensional vector with each
vector element representing the location of the axis R, A, and
S. To exclude the possibility that the difference in classification
performance comes from the first layer width of the model, we
performed an additional experiment that the embedded centroid
coordinate node features are first linearly mapped into the same
dimension as in the one-hot encoded case, which is 400.

3.5. Saliency Mapping
The proposed saliency mapping was applied for visualizing
the brain regions that are related to each class of sexes. We
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computed the saliency map using (24) for each test subject. To
obtain the group-level map, each subject-level saliency map was
averaged across all subjects, and then was normalized to the range
[0.0, 1.0]. Here, we specifically focus on the regions within the
top 5-percentile values, which correspond to top 20 regions of
the 400. To clarify the validity and advantages of our method,
we compare the robustness and mapping results with the CAM-
based saliency mapping method by Arslan et al. (2018). We
evaluate how many top 5-percentile salient regions from only a
subset of the subject groups match those from the whole group
to demonstrate the robustness of the methods. Specifically, we
compute the ratio of matching top salient regions between the
maps derived by aggregating the full fold results and the maps
derived from each fold of the cross-validation tests. Each cross
validation fold consisted of around one tenth (n = 95 or n = 94)
of the whole subjects (n = 942). The final robustness is calculated
as the average of the matching ratios of the each 10-fold maps.
Comparison of the full fold aggregated result and the five-fold
aggregated result (n = 470 or n = 472) was additionally done.

4. RESULTS

4.1. Classification Results
The classification accuracy, precision, and recall are reported
in Table 1 along with other methods on the same first run of
the HCP dataset. Highest accuracy of 84.61% was achieved by
the proposed method, whereas the baseline GCN-based method
achieved 83.98% accuracy. Other recent approaches with non
GNN-based methods reported the classification performance
lower than the baseline.

Results of the experiments to find the optimal
hyperparameters of our method are as follows. We first
compared the classification performance given the sparsity 5,
10, 15, 20, 30, 40% to find the optimal level of sparsity of the
graph edges. The level of sparsity vs. classification accuracy
was also tested with the GCN-based baseline method, which
showed similar trend to the proposed method with slightly lower
accuracy (Figure 4). The best performance was achieved with
the sparsity 30%, so we report the results with sparsity 30% from
here. Results of the other hyperaparameter tuning experiments,
including the regularization coefficient λ, dropout rate, learning
rate, number of layers, and number of hidden units in each layers
are summarized in the Table 2. Based on theses hyperparameter
experiments, the final GIN model was implemented 5 layers

deep with 64 hidden units in each layers. Dropout was applied
at the final linear layer with dropout rate of 0.5 during the
training phase, and the regularization cofficient λ of (28) was
set to 0.05.

The last comparative study was on classification performance
of different node embeddings. It was found from the experiments
that embedding the node feature as the centroid coordinate or the
mean BOLD activity resulted in a significantly lower classification
accuracy (Table 3). To evaluate the latent space of the model
trained with differently embedded node features, we visualized
the latent space of themodel with the t-SNE (Maaten andHinton,
2008), and computed the silhouette score between the two classes
(Rousseeuw, 1987). The silhouette score represents how each
subjects are well-clustered to its class in the latent space. The t-
SNE visualization of the latent space in Figure 5 was found to
be more linearly separable when trained with one-hot embedded
node features, while other embedding methods showed highly
entangled latent space. The mean silhouette score of the test data
across the 10-folds was 0.123 with the one-hot node features,
while the BOLD mean, centroid coordinate, and the dimension
matched centroid coordinate node features resulted in lower
scores with 0.007, 0.014, 0.017, respectively.

FIGURE 4 | Classification accuracy with respect to the edge sparsity.

TABLE 1 | Comparison of various methods for sex classification with the HCP dataset.

Model Accuracy (%) Precision (%) Recall (%) Subjects Parcellation Validation Author Year

GIN + Infomax 84.61 ± 2.9 86.19 ± 3.3 86.81 ± 4.9 942 Schaefer 400 10-fold Ours 2020

GIN 84.41 ± 2.8 85.39 ± 2.6 87.60 ± 7.5 942 Schaefer 400 10-fold Ours 2020

SVM-RBF 68.7 ± 2.6 - - 434 Schaefer 400 + Fan 39 10-fold Weis et al. 2019

SVM-RBF 64.3 ± 2.6 - - 310 Schaefer 400 + Fan 39 Separate Weis et al. 2019

GCN* (baseline) 83.98 ± 3.2 84.59 ± 3.1 87.78 ± 6.4 942 Schaefer 400 10-fold Arslan et al. 2018

PLS 79.9 ± 0.9 - - 820 Dosenbach 160 10-fold Zhang et al. 2018

*Re-implemented to test for the HCP dataset. Bold value indicates the saliency with respect to the input (24).
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TABLE 2 | Hyperparameter tuning experiments.

Model λ Dropout Learning rate Layers Hidden units Accuracy (%) Precision (%) Recall (%)

GCN (Baseline) None 0.5 (2,4,5 layer) 0.005 5 32/32/64/64/128 83.98 ± 3.2 84.59 ± 3.1 87.78 ± 6.4

GIN+Infomax 0.05 0.5 0.005 5 64 84.61 ± 2.9 86.19 ± 3.3 86.81 ± 4.9

GIN 0.0 - - - - 84.41 ± 2.8 85.39 ± 2.6 87.60 ± 7.5

- 0.01 - - - - 84.08 ± 2.2 86.72 ± 4.4 85.31 ± 5.5

- 0.1 - - - - 84.51 ± 2.1 86.85 ± 4.5 86.06 ± 5.5

- - 0.0 - - - 83.99 ± 3.4 85.78 ± 4.4 86.26 ± 6.1

- - - 0.01 - - 83.13 ± 3.4 85.89 ± 3.4 84.01 ± 5.2

- - - 0.001 - - 81.54 ± 3.3 85.45 ± 3.4 81.37 ± 7.3

- - - - 4 - 83.11 ± 3.2 84.62 ± 2.8 85.70 ± 4.2

- - - - - 32 83.13 ± 3.4 85.20 ± 4.3 85.14 ± 5.5

Bold value indicates the saliency with respect to the input (24).

TABLE 3 | Comparison of different node feature embeddings.

Node feature Accuracy (%) Precision (%) Recall (%)

One-hot 84.61 ± 2.9 86.19 ± 3.3 86.81 ± 4.9

BOLD mean 67.73 ± 2.9 69.90 ± 4.1 76.46 ± 8.3

Coordinate 72.19 ± 4.4 76.06 ± 6.8 75.88 ± 7.2

Coordinate* 70.90 ± 4.1 72.94 ± 4.9 78.33 ± 8.6

*Dimension matched to one-hot.

4.2. Saliency Mapping
First, we demonstrate the robustness of the proposed saliency
mapping method. Experiment on the robustness of the proposed
method showed average of 63.5 and 65.5% top region match on
one-fold aggregated saliency maps for female and male classes,
respectively (Table 4). The robustness was higher for five-fold
aggregated result as expected, showing 92.5 and 87.5% top region
match. Significantly lower top region match with high standard
deviation was found with the CAM-based saliency mapping
method under same conditions. This was especially notable for
the saliency maps of the female class, which showed 46.5% top
region match on the one-fold aggregated maps and 70.0% top
region match on the five-fold aggregated maps.

Plotted image and the full list of ROIs of the top 5-percentile
salient regions from the proposed method are reported in
the Figure 6, and the Table 5. The brain regions shown to
be salient to the female class were the left prefrontal cortex
(PFC), the right medial PFC, the right orbitofrontal cortex,
the right cingulate cortex, the left frontal operculum, the left
frontal eye field, the left temporal pole, the left temporal and
parietal lobe regions, the bilateral visual cortex, and the bilateral
somatomotor area. The functional networks that these brain
regions comprise include all seven networks from the Yeo 7
networks (Thomas Yeo et al., 2011), which are the default
mode network (DMN), the saliency/ventral attention network
(SVN), the cognitive control network (CCN), the dorsal attention
network (DAN), the limbic network (LN), the somatomotor
network (SMN), and the visual network (VN). Among the seven
networks, regions within the DMN was the most prominent
taking up 30% of the 20 regions, followed by the SMN (25%),

and the SVN (20%). Between the two hemispheres, salient regions
were dominant in the left hemisphere (65%) when compared to
the right hemisphere (35%).

For the male class, salient regions were the left PFC, the
right medial and lateral PFC, the left orbitofrontal cortex, the
bilateral posterior cingulate cortex (PCC), the right precuneus,
the bilateral cingulate cortex, the left temporal pole, the right
temporal lobe region, the right intraparietal sulcus, the right
visual cortex, and the bilateral somatomotor area. The DMN was
also predominant of all the functional networks as in the female
class. While ratio of the dominant networks in the male class
showed a similar trend to the female class, the left hemisphere
dominance was not present as in the female class (See pie charts
of the Figure 6).

Next, we explore the saliency mapping result from the CAM-
based method (Arslan et al., 2018) and compare it with our
method (Figure 7, Table 6). From the CAM-based methods,
salient regions from both the female and the male class
overlapped with our proposed method, including areas such
as the PFC, the orbitofrontal cortex, the cingulate cortex, the
PCC, the precuneus, and the temporal/parietal lobe regions. The
most notable difference was the absence of the regions from the
SMN and the VN in both classes. There were five functional
networks that included the salient regions, the DMN, the SVN,
the CCN, the DAN, and the LN. The dominance ratio of these five
functional networks were similar to that found in our proposed
saliency mapping results. In the male class, not only the regions
from the SMN and the VN were missing, but also from the SVN,
the DAN, and the LN. The only salient regions in the male class
were the left PFC, the right medial/lateral PFC, the left PCC, the
left precuneus, the temporal lobe and the parietal lobe regions
from the DMN and the CCN. Hemisphere dominance showed
a similar trend to the proposed method in that the female class
clearly showed left hemisphere dominance (75%), while the male
class did not show any hemisphere dominance (50%).

5. DISCUSSION

In this study, we proposed a framework for analyzing the
fMRI data with the GIN. The framework suggests on first
constructing the graph from the semantic region labels and
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FIGURE 5 | Visualization of the latent space with t-SNE. Values on the lower right indicate the mean silhouette score of each embedding methods. Results of the

10-fold cross-validation are plotted in separate spaces with perplexity 50. Asterisk indicate that the dimension is matched to the one-hot embedding.

TABLE 4 | Robustness of the saliency mapping methods.

Method Proposed CAM

One-fold (%) Five-folds (%) One-fold (%) Five-folds (%)

Female 63.5±6.7 92.5±2.5 46.5±16.9 70.0±5.0

Male 65.5±5.2 87.5±7.5 62.0±25.4 92.5±2.5

the functional connectivity between them. We train a GIN for
classifying the subject phenotype based on the whole graph
properties. After training, we can classify the subject with the
trained GIN, or visualize the regions related to the classification
by backpropagating through the trained GIN. An important
theoretical basis that we found which underlie in this proposed
method is that the GIN is not just a black-box operation that
aggregates the graph structure with theMLP, but is actually a dual
representation of a CNN on the graph space where the adjacency
matrix is used as a generalized shift operator.

Classification of sex based on the rs-fMRI data resulted
in the accuracy, precision, and recall of 84.61, 86.19, and
86.81%, respectively. The performance of the classifier is at least
comparable, if not outperforming, to other recent methods for
classifying sex based on the rs-fMRI data of the HCP dataset
(Arslan et al., 2018; Zhang et al., 2018; Weis et al., 2019)
(Table 1). Through the comparative studies, we have shown the
validity of our proposed method that it can accurately classify
the sex of the subjects with the rs-fMRI data. When training

the GNN, adding the Infomax regularization had improved the
classification performance of the GIN (Table 2). We have not
gone through extensive experiment regarding the role of the
Infomax regularization, but suggest to add it when training the
neural network based on the results of our experiment. One
interesting finding in our comparative experiments was that
embedding the node feature as vectors of centroid coordinate or
mean BOLD activity results in a significantly lower classification
performance (Table 3). We expect that this comes from the linear
dependence of the node features when embedded with centroid
coordinate or mean BOLD activity. Further discussion regarding
this topic is covered in the Supplementary Material.

After fully training the GIN for the sex classification task,
we could map the salient regions related to the classification
by the saliency mapping method. From the saliency mapping
result, we could find that the regions within the DMN takes the
most prominent role in classifying both the female and the male
subjects. Importance of the DMN in the sex classification based
on rs-fMRI data has been consistently reported (Zhang et al.,
2018; Weis et al., 2019). In the study by Zhang et al. (2018),
there were seven features involving the DMN of the top twenty
important regions (35%) for sex classification, which is similar
to our result (30% for the female class and 35% for the male
class). This importance of the DMN for the sex classification task
is known to be related to the difference of the DMN functional
connectivity between the two sexes during the resting-state (Mak
et al., 2017). Considering the difference of the DMN between
the two sexes, it has been found consistently, and also from
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FIGURE 6 | Saliency mapping result of the proposed method. Top 20 salient regions are plotted with respect to the Yeo 7 networks (Thomas Yeo et al., 2011). The pie

charts indicate the ratio of the two hemispheres and the ratio of each networks across the salient regions.

the meta-analysis, that the female individuals show stronger
functional connectivity of the DMN compared to the males
(Bluhm et al., 2008; Biswal et al., 2010; Allen et al., 2011; Mak
et al., 2017; Zhang et al., 2018). CAM-based saliency mapping
method also reflected this difference in the DMNbetween the two
sexes and has shown predominance of the DMN in the saliency
map, which is replicative of the original CAM-based saliency
mapping study by Arslan et al. (2018). These findings suggest the
validity of our saliency mapping method that it corresponds to
the previous neuroimaging evidences regarding the importance
of the DMN in sex classification.

Hemisphere related sex differences are also previously
reported (Tian et al., 2011; Hjelmervik et al., 2014). The studies
indicate that female subjects show higher functional connectivity
in the left hemisphere, and male subjects in the right hemisphere
(Tian et al., 2011). This difference in hemisphere dominance
has shown the same trend in our experiment. In the female
class, the salient regions in the left hemisphere outnumbered
the salient regions in the right hemisphere (left 65% vs. right
35%), whereas the male class resulted in the right hemisphere
lateralized saliency mapping result (left 45% vs. right 55%). The
left hemisphere dominance of the female class was also found
from the CAM-based saliency mapping results (left 75% vs. right
25%), but was not apparent in the male class (left 50% vs. right
50%). We interpret that the hemisphere related sex differences
found in our saliencymapping result further supports the validity
of our method.

Given the validity of the proposed saliency mapping method,
the novel advantages of our method is highlighted by comparing

it with the results from the CAM-based method. We find that
the two major advantages over the CAM-based method are
the robustness and the mapping sensitivity. The advantage in
robustness is suggested from the experiment result that our
proposed method captures more consistent top salient regions
than the CAM-based method even with small number of subjects
(Table 4). The other advantage, mapping sensitivity, is implied
in the saliency mapping results. Mapping results from our
method revealed the involvement of the regions within the
SMN and the VN, while the CAM-based method was not
able to identify them (Figures 6, 7). There are some previous
studies noting that there exist difference between the two sexes
in terms of the functional connectivity within the SMN and
the VN (Allen et al., 2011; Xu et al., 2015; Zhang et al.,
2018). However, the evidences supporting this difference in the
SMN and the VN are not as prominent and well-established
as the difference in the DMN between the two sexes. It can
be said that another supportive evidence of the difference of
the SMN and the VN between the two sexes is added to the
functional neuroimaging field by the proposed saliency mapping
method, which would had not been identified by the CAM-
based method. Based on this mapping sensitivity, applying the
proposed method other types of classification tasks or to other
subject groups is expected to provide new interesting findings to
the neuroscientific field. To sum up, the proposed GIN based rs-
fMRI analysis framework achieves state-of-the-art classification
performance while providing a robust and sensitive saliency map
which can be interpreted to add new insights to the field of
functional neuroimaging.
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TABLE 5 | Top 5-percentile salient regions identified by the proposed method for the female and the male class.

Female Male

Side Region Network R A S Value Side Region Network R A S Value

L. Somatomotor area SMN −8 −42 70 1.000 R. Medial PFC DMN 10 66 0 1.000

R. Somatomotor area SMN 64 −34 10 0.968 L. Somatomotor area SMN −48 −12 14 0.986

L. Visual cortex VN −18 −64 6 0.951 R. PCC DMN 8 −44 20 0.985

R. Medial PFC DMN 8 54 12 0.931 L. Somatomotor area SMN −58 −36 16 0.976

R. Visual cortex VN 4 −80 24 0.909 R. Cingulate cortex SVN 6 10 58 0.973

R. Orbitofrontal cortex LN 20 42 −18 0.887 L. PCC DMN −4 −54 20 0.960

L. PFC DMN −6 34 20 0.863 R. Temporal lobe DMN 48 16 −20 0.951

L. PFC DMN −22 20 52 0.835 L. Cingulate cortex SVN −6 −48 56 0.949

L. PFC DMN −36 36 −12 0.835 R. Somatomotor area SMN 12 −18 42 0.935

R. Somatomotor area SMN 6 −22 72 0.832 L. PFC DMN −14 58 30 0.932

L. Temporal lobe DMN −40 −78 30 0.821 R. Cingulate cortex SVN 16 6 70 0.908

L. Parietal lobe CCN −44 −42 46 0.816 R. Visual cortex VN 24 −74 −10 0.899

L. Somatomotor area SMN −52 −6 44 0.814 R. Lateral PFC CCN 44 18 44 0.881

L. Frontal operculum SVN −52 8 14 0.806 L. Orbitofrontal cortex LN −16 64 −8 0.881

L. Frontal operculum SVN −44 6 −16 0.806 L. PFC DMN −18 36 48 0.854

L. Temporal pole LN −54 −22 −30 0.804 R. Intraparietal sulcus DAN 8 −72 52 0.843

L. PFC DMN −8 42 52 0.799 L. Temporal pole LN −26 −10 −32 0.835

R. Somatomotor area SMN 40 −20 4 0.784 R. Visual cortex VN 36 −88 2 0.835

R. Cingulate cortex SVN 6 −2 66 0.781 L. PCC DMN −6 −40 24 0.834

L. Frontal eye field DAN −26 0 56 0.777 R. Precuneus CCN 14 −72 40 0.834

FIGURE 7 | Saliency mapping result of the CAM-based method. The pie charts indicate the ratio of the two hemispheres and the ratio of each networks across the

salient regions.

There are some limitations and caveats that needs to be
discussed. First, the demographics that can affect the analysis
have not been considered or controlled thoroughly. It is
well-known that the resting-state network can be affected

by the age, handedness, fluid intelligence, and other subject
characteristics. The results are expected to have stronger
explainability by taking the demographics of the subjects
into account in the analysis. Second, the cutoff threshold for
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TABLE 6 | Top 5-percentile salient regions identified by the CAM-based method for the female and the male class.

Female Male

Side Region Network R A S Value Side Region Network R A S Value

L. PFC DMN −30 14 58 1.000 L. PCC DMN −8 −52 10 1.000

L. PFC DMN −8 42 52 0.965 R. Parietal lobe DMN 54 −46 20 0.983

L. PFC DMN −42 8 48 0.964 L. PCC DMN −14 −60 18 0.970

L. PFC DMN −22 20 52 0.944 R. Parietal lobe DMN 48 −64 22 0.961

L. Frontal operculum SVN −52 8 14 0.884 R. Medial PFC DMN 26 34 38 0.953

R. Cingulate cortex SVN 6 −2 66 0.880 R. Parietal lobe DMN 56 −46 32 0.941

L. Orbitofrontal cortex LN −12 24 −20 0.870 R. Medial PFC CCN 8 34 24 0.922

L. PFC DMN −22 50 32 0.852 R. Parietal lobe DMN 54 −54 26 0.920

L. Parietal lobe CCN −58 −42 46 0.835 R. Temporal lobe DMN 48 16 −20 0.914

L. Parietal lobe SVN −62 −24 32 0.819 L. Temporal lobe DMN −60 −36 −18 0.865

L. Frontal operculum SVN −50 2 4 0.812 L. Temporal lobe DMN −62 −18 −20 0.865

L. Temporal pole LN −24 6 −40 0.804 L. Temporal lobe DMN −60 −34 −4 0.858

L. Intraparietal sulcus DAN −14 −50 72 0.798 L. Temporal lobe DMN −52 −22 −6 0.853

L. Parietal lobe CCN −34 −62 48 0.796 R. Lateral PFC CCN 42 6 50 0.844

R. Frontal operculum SVN 54 12 12 0.784 R. Temporal lobe DMN 50 8 −32 0.816

R. Orbitofrontal cortex LN 14 24 −20 0.780 L. Temporal lobe DMN −58 −48 16 0.811

L. Parietal lobe CCN −44 −42 46 0.777 L. PFC DMN −6 10 64 0.796

R. Medial PFC DMN 18 64 16 0.770 R. Medial PFC CCN 4 28 48 0.789

L. PFC DMN −36 36 −12 0.770 L. Precuneus CCN −10 −78 46 0.777

R. Medial PFC DMN 8 54 12 0.769 L. PFC DMN −12 24 60 0.772

determining the salient region was heuristically set. We have
set the regions with the top 5 percentile values as salient,
but the method would have even more validity if the salient
regions were determined in a more data-driven way, as in
the classical methods perform statistical testing to determine
the significance of each voxels. We have not gone through
extensive study on the topic of determining the significant
regions from the saliency map, but is worth further studies
and discussion.

Still, we insist that analyzing the fMRI data based on the
GIN has shown its theoretical and experimental validity in this
study. We believe that the GIN based analysis method offers
a potential advancement in the area, by opening a way to
exploit the capability of the GIN to learn highly non-linear
mappings. Some interesting topics related to this work can
be considered. Theoretically, exploring the operations beyond
the two-tab convolution filter by GIN can potentially provide
better performance than the existing GIN. Neuroscientifically,
extension of the method to clinical data interpretation or to the
multi-class graph classification problem can be interesting topics
in the future. With enough data assured, the proposed method
is expected to help reveal new findings from the functional
networks of the brain.
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