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Closed-loop control strategies for deep brain stimulation (DBS) in Parkinson’s disease

offer the potential to provide more effective control of patient symptoms and fewer

side effects than continuous stimulation, while reducing battery consumption. Most of

the closed-loop methods proposed and tested to-date rely on controller parameters,

such as controller gains, that remain constant over time. While the controller may

operate effectively close to the operating point for which it is set, providing benefits

when compared to conventional open-loop DBS, it may perform sub-optimally if the

operating conditions evolve. Such changesmay result from, for example, diurnal variation

in symptoms, disease progression or changes in the properties of the electrode-tissue

interface. In contrast, an adaptive or “self-tuning” control mechanism has the potential

to accommodate slowly varying changes in system properties over a period of days,

months, or years. Such an adaptive mechanism would automatically adjust the controller

parameters to maintain the desired performance while limiting side effects, despite

changes in the system operating point. In this paper, two neural modeling approaches

are utilized to derive and test an adaptive control scheme for closed-loop DBS, whereby

the gain of a feedback controller is continuously adjusted to sustain suppression of

pathological beta-band oscillatory activity at a desired target level. First, the controller is

derived based on a simplified firing-rate model of the reciprocally connected subthalamic

nucleus (STN) and globus pallidus (GPe). Its efficacy is shown both when pathological

oscillations are generated endogenously within the STN-GPe network and when they

arise in response to exogenous cortical STN inputs. To account for more realistic

biological features, the control scheme is then tested in a physiologically detailed

model of the cortical basal ganglia network, comprised of individual conductance-based

spiking neurons, and simulates the coupled DBS electric field and STN local field

potential. Compared to proportional feedback methods without gain adaptation, the

proposed adaptive controller was able to suppress beta-band oscillations with less

power consumption, even as the properties of the controlled system evolve over time

due to alterations in the target for beta suppression, beta fluctuations and variations in

the electrode impedance.
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1. INTRODUCTION

Deep brain stimulation (DBS) is a clinically effective treatment
used in patients with advanced Parkinson’s disease (PD) to
supplement or replace pharmacological treatment of symptoms.
It consists of high-frequency stimulation of neurons within the
basal ganglia, with the subthalamic nucleus and globus pallidus
being the most common targets, using a chronically implanted
electrode and a subcutaneous pulse generator. At present, DBS
is delivered clinically in an open-loop fashion where stimulation
parameters remain fixed over time. This approach, however, may
lead to overstimulation, inducing side effects and shortening
battery life. Regular retuning of parameters is also required,
involving a time-consuming trial and error process (Lozano et al.,
2019).

The search for new approaches to improve the attenuation
of patient symptoms and minimize side effects while increasing
battery life has motivated a growing interest in closed-loop
DBS over the last several years (Santaniello et al., 2010; Rosin
et al., 2011; Santos et al., 2011; Carron et al., 2013; Beuter
et al., 2014; Shah et al., 2018; Eitan et al., 2019). In a closed-
loop paradigm, the stimulation waveform is modified based on
specific biomarkers which are used as a surrogate measure of
symptom severity. To date, beta-band (13–30 Hz) activity in the
STN local field potential (LFP) has been one of the most widely
investigated biomarkers for closed-loop DBS during Parkinson’s
disease (Parastarfeizabadi and Kouzani, 2017). Increased beta-
band power in the STN LFP is correlated with motor impairment
symptoms in Parkinson’s disease, and its suppression, due
to medication or high frequency DBS, with improved motor
performance (Kühn et al., 2006, 2008; Hammond et al., 2007;
Eusebio et al., 2011).

Closed-loop stimulation utilizing LFP beta-band power has
been experimentally validated in patients for short periods
(Rosin et al., 2011; Little et al., 2013, 2016; Rosa et al., 2015;
Arlotti et al., 2018; Velisar et al., 2019), however, longer term
investigations have yet to be conducted. The improvement in
symptoms has been comparable to that with conventional open-
loop DBS while the energy required has been substantially
reduced. In a number of studies, the stimulation signal has been
delivered in an “on-off” fashion, switching the stimulation on
or off depending on whether or not the biomarker exceeded a
specified threshold (Little et al., 2013, 2016). Using this approach,
suitable stimulation parameters must be first identified, as in
the case of open-loop DBS. Using two thresholds, Velisar et al.
(2019) increased or decreased stimulation amplitude to maintain
the biomarker within a given range. Proportional feedback
approaches, where the stimulation amplitude is proportional
to the measured biomarker, have also shown potential in both
clinical (Rosa et al., 2015; Arlotti et al., 2018) and computational
studies (Tukhlina et al., 2007; Chaillet et al., 2017; Popovych
and Tass, 2019). Clinical studies in patients have confirmed
that proportional stimulation responding to slowly changing
beta-band LFP activity is not only effective and well-tolerated
by patients, but might also help avoid stimulation-induced
dyskinesia when patients are on medication (Rosa et al., 2015;
Arlotti et al., 2018).

Similar to on-off strategies, which utilize fixed stimulation
parameters, proportional feedback requires a fixed controller
gain parameter to be identified where the stimulation amplitude
at a given time is controlled by this gain and an estimated
biomarker value. Identification of the controller gain parameter
is a potentially complicated and time-consuming postoperative
process. Furthermore, although the selected gain may be suitable
for the operating point at which it was initially set, it may provide
suboptimal performance and require retuning when properties of
the system change, for example in response to disease progression
or changes in the properties of the electrode-tissue interface.

To address this problem, we propose a self-tuning control
strategy inspired by adaptive control theory, where the value of
the controller gain evolves based on the measured pathological
activity. The controller gain automatically increases until the
detected pathological oscillations are sufficiently suppressed and
then begins to dissipate when the oscillation amplitude is low
enough. In this manner, the proportional controller self-adapts
its gain to the lowest value that guarantees suppression of the
oscillations to the desired level. Using tools from control theory,
namely Lyapunov-Krasovskii analysis, we mathematically show
in a firing-rate model that the proposed controller guarantees
disruption of the pathological oscillations provided that the
internal coupling within the GPe is sufficiently weak. The
controller is derived first under the assumption of endogenously
generated oscillations, arising from increased coupling within
the STN-GPe network, and is then extended to the case where
oscillatory activity arises in the STN-GPe loop due to exogenous
cortical inputs.

While firing-rate models provide a means to represent
the activity of the network in a mathematically tractable
manner, they lack the physiological detail that enables them
to be easily related to the underlying processes at the cellular
level. To overcome this limitation, we computationally test its
performance in a more physiologically relevant context, by
implementing it in a network of conductance-based neuron
models.We first demonstrate through simulations that the firing-
rate and conductance-based network models studied here have
similar characteristics in terms of the emergence of oscillations
as a function of connection strength between STN and GPe, and
that both models have similar qualitative frequency responses.
Firing-rate model parameters are then identified based on data
obtained from simulations of the conductance-based model to
link the two models and demonstrate that the latter fulfills the
theoretical criterion of low internal GPe connectivity. Finally, the
ability of the adaptive controller to “self-tune” to maintain the
suppression of pathological oscillations is assessed numerically in
three different scenarios: changing the target suppression level,
modifying the background beta activity in the network, and
varying the electrode impedance.

2. MATERIALS AND METHODS

2.1. Firing-Rate Model
The firing-rate model, which we derive the self-tuning DBS
strategy and mathematically prove its efficacy, is inspired by the
STN-GPe loop model originally proposed in Nevado-Holgado
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et al. (2010) to study the emergence of pathological beta
oscillations observed in the parkinsonian basal ganglia. The
model is defined as follows:

τ1ẋ1(t) = −x1(t)+ S1
(

c11x1(t − δ11)− c12x2(t − δ12)+ b1u1(t)
)

(1a)

τ2ẋ2(t) = −x2(t)+ S2
(

c21x1(t − δ21)− c22x2(t − δ22)− b2u2(t)
)

.
(1b)

The instantaneous firing activities (in pulses per second) of the
STN and GPe, are respectively represented by x1(t) and x2(t).
τ1, τ2 > 0 are time constants. For each i, j ∈ {1, 2}, the
constant cij ≥ 0 represents the synaptic connection strength from
population j to population i and δij ≥ 0 is a time delay that
occurs due to finite velocity of axonal and synaptic transmission
from population j to population i. u1 and u2 represent the
influence of cortical (into STN) and striatal (into GPe) inputs
to the system, respectively, modulated by the synaptic weights
b1 ≥ 0 and b2 ≥ 0. All the coupling constants cij and bj
being non-negative, the sign represents whether the neurons in
the presynaptic population have excitatory (STN and cortex)
or inhibitory (GPe and striatum) effect on the postsynaptic
one. The activation functions S1 and S2 encode the response
of the neuronal populations to their input. Although they were
considered in Nevado-Holgado et al. (2010) as sigmoids, the
theoretical analysis provided below allows them to be any
increasing function with bounded derivative.

2.1.1. Self-Tuning Controller Derivation
It was shown in Nevado-Holgado et al. (2010) and Pasillas-
Lépine (2013) that if the coupling weights c12 and c21 between
STN and GPe are sufficiently high, the model exhibits sustained
endogenous oscillations, which fall in the beta frequency band for
appropriate values of themodel parameters. The controller is first
derived and assessed under that assumption and is then further
explored in the case where oscillations within the loop arise from
exogenous inputs to the STN-GPe network.

Under the assumption that the cortical and striatal inputs are
constant (u(t) = (u1(t), u2(t))

T = ū), consider the change of
variables u ← [ u − ū, and x ← [ x − x̄, where x̄ is an equilibrium
value of x = (x1, x2)

T for the input ū, whose existence is
guaranteed by Pasillas-Lépine (2013). Adding a feedback µ(t)
representing the influence of artificial stimulation (DBS) on STN
and shifting the activation functions Sj such that Sj(0) = 0 for
j ∈ {1, 2}, we obtain the following dynamics:

τ1ẋ1(t) = −x1(t)+ S1
(

c11x1(t − δ11)− c12x2(t − δ12)+ µ(t)
)

(2a)

τ2ẋ2(t) = −x2(t)+ S2
(

c21x1(t − δ21)− c22x2(t − δ22)
)

. (2b)

The model described by (2) has been studied by Pasillas-
Lépine et al. (2013) and Haidar et al. (2016), who showed
that a proportional feedback acting only on STN is capable of
disrupting exaggerated oscillations and stabilizing the system.
More precisely, assuming that the inner GPe interconnections are
sufficiently weak, namely:

c22ℓ2 < 1, (3)

where ℓ2 denotes the maximum slope of the GPe activation
function S2, it was demonstrated in those papers that the system
(2) is asymptotically stable under proportional feedback from the
STN to itself, namely:

µ(t) = −θx1(t), (4)

where the proportional gain θ > 0 should be chosen to be
sufficiently large.

The original result was obtained using linearization
techniques. Since then, it has been extended to take full
account of the nonlinear effects induced by the activation
functions Sj (Chaillet et al., 2017, 2019). In particular, it was
shown in Chaillet et al. (2019), using Lyapunov-Krasovskii
methodology, that the network described in (2) in closed loop
with (4) is globally exponentially stable, provided that θ is above
some minimum value θ∗ > 0 and condition (3) is satisfied.
Global exponential stability of the origin means that there exist
η, γ > 0 such that the solutions of (2) satisfy

|x(t)| ≤ η‖x0‖e
−γ t , ∀t ≥ 0, (5)

for any initial state x0. The model being a delay differential
equation, the state here is not a point in R

2, but rather a history
function defined as xt(s) = x(t + s) for all s ∈ [−δ, 0], where
δ denotes the maximum delay δij involved in the dynamics. This
state (hence, the initial state) belongs to the set of all continuous
functions from [−δ, 0] to R

2 and we employ the norm ‖xt‖ =
maxs∈[−δ,0] |x(t + s)| on this functional set. Global exponential
stability is thus a very strong stability property, as it imposes
an exponential convergence to the equilibrium and a transient
overshoot proportional to the magnitude of the initial state, no
matter where the system initially lies. Imposing such a property
on the firing-rate model (2) impedes the existence of steady-
state pathological oscillations. Global exponential stability is also
known to induce robustness properties with respect to exogenous
inputs for a wide class of systems (Yeganefar et al., 2008), which
may prove useful for the problem considered here due to the
inherent imprecision and variability of biological models.

One of the major limitations of the stimulation strategy
proposed above is that we do not know a priori the value of the
minimum effective gain θ∗. In Chaillet et al. (2019), the following
estimate of θ∗ was proposed:

θ∗ ≤ 8

(

c211 +
4c221c

2
12

(1− c22)2

)

,

but it is a conservative approximation. Moreover, this value
depends on the connection parameters cij that would be very hard
to estimate accurately in practical applications, due to the high
level of abstraction of the considered model.

The alternative to pure proportional control that we propose
here is inspired from adaptive control theory and involves
updating the gain parameter θ based on the measured state of
the system, namely:

µ(t) = −θ(t)x1(t) (6a)

τθ θ̇(t) = |x1(t)| − σθ(t), (6b)
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where σ , τθ > 0 are control parameters governing how fast the
control gain reacts to changes in the system.

First note that, similar to (4), this control law requires
recording of the STN activity only. In the same way, it involves
only stimulation of the STN. In practice, these constitute
important features in terms of limited insertion of measurement
and stimulation electrodes.

The idea behind the adaptive law (6) is simple. As long as
x1 is not at zero (meaning that STN activity has not reached its
equilibrium), the term |x1(t)| ≥ 0 increases the proportional
gain θ . With that, θ(t) will eventually overpass θ∗ (no matter
what its precise value is) and cause the state to converge to zero
exponentially. On the other hand, the dissipation (or leakage)
term −σθ(t) decreases the value of θ whenever σθ(t) ≥ |x1(t)|,
due to either a too high value reached by the gain θ or because
x1 has reached a sufficiently low value (as desired). These
balanced effects are designed in such a way that the control law
automatically adjusts its gain around the (unknown) value θ∗.

The dissipation term −σθ(t) present in (6b) is in the
spirit of what is known in the control theory literature as
the “σ -modification” (Ioannou and Kokotovic, 1984). It was
introduced to increase robustness of adaptive control to external
disturbances and unmodeled dynamics. It has been shown to
guarantee that all the closed-loop signals are bounded and that
their mean values converge to a residual set, whose size can be
made arbitrarily small with an appropriate choice of σ (Ioannou
and Fidan, 2006), even for certain classes of nonlinear systems
(Fradkov et al., 1999). Until recently, this methodology was
confined to delay-free systems but, for the purpose of the present
study, we have extended it to nonlinear time-delay systems
(Orłowski, 2019). More precisely, we have the following result
(the interested reader is referred to Orłowski, 2019 for more
details on the mathematical aspects of this result).

Proposition. Let ℓi denote the maximum slope of the activation
functions Si and let θ̃0 = θ0 − θ∗. Under the condition that
ℓ2c22 < 1, there exists q > 0 such that, for any σ ≥ 0 small
enough and any initial conditions x0 and θ0, the solution of system
(2) in closed loop with (6) is bounded and satisfies the following
property for all t,T ≥ 0:

1

T

∫ t+T

t
|x(τ )|dτ ≤

q

T

(

‖x0‖ +min{θ̃0; 0}θ̃0 + 1
)

+ qσ .

This statement ensures that solutions are bounded and the system
is “stable in the mean.” This latter property guarantees that
the mean value of the solution, taken over a sufficiently long
time window T, converges to a neighborhood proportional to
σ , regardless of the initial state. Since σ is a tunable parameter
in our controller, this means we can arbitrarily decrease the
average amplitude of steady-state oscillations by picking a
sufficiently small σ (picking σ as zero would annihilate steady-
state oscillations, but would impede the ability to decrease the
proportional gain θ whenever possible). The key assumption
under which this stabilization is made possible is that ℓ2c22 < 1,
meaning that the GPe self-coupling should be reasonably low.
More discussion on this assumption and its biological meaning
is provided in section 4.2.

In order to selectively attenuate pathological oscillations,
with moderate effect on other frequency bands, we propose the
following frequency-sensitive version of (6):

µ(t) = −θ(t)x1(t) (7a)

τθ θ̇(t) = β(x1t)− σθ(t), (7b)

where β(x1t) ≥ 0 is a biomarker detection function. β is
implemented as the peak-to-peak amplitude of a bandpass-
filtered signal (Butterworth filter, order 5, 15–30 Hz) from t−500
ms to t.

This version is similar in spirit to the self-tuning controller (6),
but the increase of the gain θ depends only on the STN activity
within the targeted frequency band (beta). In a situation when
no beta activity is present in the STN, the leakage term −σθ(t)
would cause the gain θ(t) to converge to zero, in which case no
DBS signal would be delivered.

2.1.2. Endogenous and Exogenous Generation of

Beta Oscillations
The mathematical derivations in section 2.1.1 assume that
external inputs into the STN-GPe loop are constant and
pathological oscillations arise in an endogenous manner due to
too strong synaptic coupling between STN and GPe (Plenz and
Kital, 1999; Nevado-Holgado et al., 2010; Pavlides et al., 2012).
However, the origin of beta oscillations is still a subject of much
debate and there is increasing evidence supporting a role for an
exogenous mechanism in which oscillations originating in the
cortex or striatum are transmitted to the STN-GPe network and
amplified within the network (Magill et al., 2001; Sharott et al.,
2005; Mallet et al., 2008; Tachibana et al., 2011; Corbit et al.,
2016).

To simulate oscillations arising due to exogenous inputs to the
STN, the synaptic coupling between STN and GPe were taken as
sufficiently low such that the firing-rate model is not only stable
but also incrementally stable (Chaillet et al., 2013) which implies
that its steady-state solutions in response to any T-periodic
inputs are themselves T-periodic. Thus, any oscillatory input
(from cortex or striatum) can entrain the STN-GPe network
and cause it to oscillate at the same frequency. This observation
enables us to identify the frequency characteristics of the STN-
GPe network (despite its nonlinear nature) and which frequency
bands, if any, are preferably amplified (see section 3.1.2).

In the firing-rate model, the exogenous and endogenous
hypotheses of beta oscillations generation thus correspond to
two distinct dynamical behaviors: instability for the former
and incremental stability (entrainment) for the latter. Both
mechanisms are studied in the simulations presented in this
paper (Figures 2–5), using the parameter values presented in
Table 1. Additionally, the time constants of the populations were
set to τ1 = 6 ms, τ2 = 14 ms, and the delays in the system were
set to δ12 = δ21 = 6 ms and δ22 = 4 ms. The functions Si were
implemented as sigmoids with slope 1

Si(x) =
MiBi

Bi + exp(−4x/Mi)(Mi − Bi)
, (8)
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TABLE 1 | Parameters of the firing-rate model (1) used in numerical simulations to

obtain Figures 2A, 3A, 4, 5.

c12 c21 c22 b1 b2

Figure 2A (endogenous) 0–4 0–32 4 8 139.4

Figure 3A (exogenous) 1.12 19 0.9 2.42 15.1

Figure 4 (endogenous) 3 10 0.9 5 139.4

Figure 5 (exogenous) 1.12 19 0.9 2.42 15.1

where the constants were set to M1 = 300, M2 = 400, B1 = 17,
B2 = 75.

2.2. Conductance-Based Model
2.2.1. Model and Controller Implementation
In view of its self-tuning capacities, induced robustness and
limited requirements in terms of recording and stimulation
electrodes, the proposed adaptive closed-loop DBS strategy is
promising. Nevertheless, the strong abstraction of the model
considered, which summarizes the activity of an entire neuronal
population by a unique variable (its firing rate), makes it difficult
to assess whether this strategy would be effective clinically. To
address this, the performance of the proposed controller was
assessed in a biophysically realistic network model of the cortical
basal ganglia network comprised of conductance-based neurons.
The model is presented in Fleming et al. (2020) and consists of
a population of multicompartment cortical pyramidal neurons
and single compartment models of cortical interneurons as well
as STN, GPe, GPi, and thalamic neurons which have been
previously validated and used in other modeling studies (Terman
et al., 2002; Otsuka et al., 2004; Rubin and Terman, 2004;
Pospischil et al., 2008; Hahn and McIntyre, 2010; Foust et al.,
2011; Kang and Lowery, 2013, 2014; Kumaravelu et al., 2016).
Each population was comprised of 100 neurons, where synaptic
connections between neurons were modeled by spike detectors in
presynaptic neurons coupled to synapses in postsynaptic neurons
by a time delay. Synaptic connections in the model were either
excitatory (AMPAergic) or inhibitory (GABAergic) depending
on the synapse type (Destexhe et al., 1994). Striatal input to the
network was represented as Poisson-distributed spike trains to
GPe neurons with a mean firing rate of 3 Hz. An overview of the
model structure is presented in Figure 1.

The model captures key features of the cortical basal ganglia
network required for simulating clinical implementations of
closed-loop DBS including: (i) the extracellular DBS electric
field, which is required to accurately model changes in the
DBS amplitude, (ii) antidromic and orthodromic activation of
STN afferent fibers, and (iii) the STN LFP detected at non-
stimulating contacts of the DBS electrode. In Fleming et al.
(2020), the model parameters were tuned to match key features
observed during experimental investigations of DBS including
cortical desynchronization (Li et al., 2012), GPe entrainment
(McConnell et al., 2012), and a gradual suppression of beta-
band power detected in the STN LFP for increasing stimulation
amplitude (Davidson et al., 2016). The model is described in
full detail in its original publication (Fleming et al., 2020) and

available to download fromModelDB (https://senselab.med.yale.
edu/modeldb/) at ascension number 262046.

The oscillatory properties of the model’s STN-GPe network
were first examined to explore the duality between its oscillatory
behavior and that of the firing-rate model. Beta-band activity
was then configured to remain fixed, or was varied according to
the three numerical scenarios detailed below which may require
controller adaptation in vivo.

In line with (7), the proposed self-tuning controller was
implemented in the conductance-based model to adapt the
amplitude of the stimulation waveform as follows:

µ(t) = θ(t)x1(t) (9a)

τθ θ̇(t) = |e(t)| − σθ(t), (9b)

where µ(t) is the controller output and represents the
instantaneous stimulation amplitude, θ(t) is the controller gain,
x1(t) is the biomarker measurement [i.e., the average rectified
value (ARV) of a 100 ms epoch from the beta-band filtered
STN LFP, which was filtered using a fourth order Chebyshev
band-pass filter with an 8 Hz bandwidth, centered on 25 Hz
as described in Fleming et al., 2020], |e(t)| is the half-wave
rectified error signal calculated as the difference between the
measured biomarker and the desired target suppression level, and
τθ and σ represent tuning parameters which were fixed at 100
ms and 0.00875, respectively, for all controller simulations in the
conductance-based model.

A key difference with (7) is that the DBS in (9) is
delivered as a positive feedback on the biomarker [as indicated
by the positive sign in µ(t)]. This difference is due to
the implementation of DBS in the conductance-based model,
whereby increasing DBS amplitude results in a stronger
suppression of pathological oscillations.

The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented
in Python using the PyNN API package (Davison et al.,
2009). The model was numerically integrated using the Crank-
Nicholson method with a 0.01 ms timestep for all simulations.
Simulations were run on the UCD Sonic high-performance
computing cluster.

2.2.2. Numerical Scenarios
The self-tuning controller (9) was tested in three independent
scenarios to simulate practical situations in which adaptation of
controller parameters in vivo may be required to maintain the
biomarker (the ARV of LFP beta activity) at a target value. All
scenarios were simulated for a 130 s duration.

In the first scenario, background beta-band activity in the
model was set to its maximum value for the duration of the
simulation while the target level for beta suppression was varied.
The beta-band activity (prior to DBS activation) was set by fixing
the firing rates of cortical neurons to 26 pulses per second, which
resulted in a peak in the LFP power spectrum at 26 Hz. Target
values of 10, 0.2, 0.05, 0.15, and 10 µV were then considered
over the time intervals 0–10, 10–40, 40–70, 70–100, and 100–
130 s, respectively.
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FIGURE 1 | Cortical Basal ganglia network structure. Excitatory and inhibitory populations in the network model are represented in red and blue, respectively.

Synaptic connections in the population model are represented by solid black lines. The firing-rate model, representing only a subnetwork of the population model, is

highlighted by a green box. White lines correspond to connections which are common to both the population and the firing-rate model.

In the second scenario, the target value for the LFP biomarker
was fixed at 0.1 µV for the duration of the simulation while
background beta-band activity in the model was modulated to
be low during the 0–10, 40–70, and 100–130 s time intervals
and high during the 10–40 and 70–100 s time intervals.
The intracellular cortical neuron bias current was varied to
shift the mean cortical neuron firing rate between 14 and 26
pulses per second during the low and high beta-band activity
periods, respectively. Thus, beta-band activity in the model was
modulated to display a 14 Hz peak in the LFP power spectrum
during the low beta-band activity periods, which shifted to 26
Hz during the high beta-band activity periods. As the bandwidth
of the biomarker filter was centered at 25 Hz, modulation of the
background beta-band activity in this manner led to lower beta
ARV measurements during the low beta-band activity periods.

The third scenario considered a linear variation of the
electrode impedance over the simulation period, while
background beta-band activity in the model was fixed at its
maximum value and the beta ARV target value remained
constant at 0.1 µV. In the simulation, the electrode impedance
remained constant at 0.5 k� up to t = 30 s, after which it was
linearly increased to a maximum value of 2.5 k� at t = 130 s.

2.2.3. Performance Measures
Controller performance was quantified using two measures:
the error while tracking the target value and the mean power
consumption. The mean squared error (MSE) was utilized to
measure the controller’s ability to track the target level. It is

defined as

MSE =
1

Tsim

∫ Tsim

0
e(t)2 dt, (10)

where Tsim is the simulation duration (Tsim = 130 s) and e(t) is
the normalized error signal between the measured LFP beta ARV
and the target value, as used in (9). For simplicity, the MSE value
for the controllers in each scenario are reported as a percentage
of the MSE value that was measured in each respective scenario
when DBS was off. Power consumption (PC) was measured as

PC =
1

Tsim

∫ Tsim

0
ZE(t)IDBS(t)

2 dt, (11)

where ZE is the electrode impedance, assumed to be 0.5 k� in
the non-varying electrode impedance scenarios, and IDBS is the
delivered DBS current.

2.3. Parameter Identification
One of the necessary conditions for practical stabilization
using the adaptive controller, as recalled in section 2.1.1,
is that the internal connections within GPe are weak, as
expressed by c22ℓ2 < 1 in the firing-rate model. It was,
therefore, first checked whether this condition was fulfilled in the
conductance-based model.

The value of c22 from the firing-rate model is related to the
maximum conductance of the GPe-GPe synapses ḡGPeGPe, in the
conductance-based model, which was set to 0.015 µS. ℓ2 is the
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maximum slope of the GPe activation function S2. Thus, in order
to verify the stabilizability criterion, we need to identify the slope
of the GPe activation function in the conductance-based model,
as well as the value of c22 corresponding to the value of ḡGPeGPe
used in the conductance-based model.

To that aim, the GPe neurons of the conductance-based
model were disconnected from the rest of the network, the only
remaining connections being the excitatory projections from
STN to GPe. In the firing-rate model, this translates in the
following dynamics:

τ2ẋ2(t) = −x2(t)+ S2
(

u(t)+ c22x2(t − δ22)
)

, (12)

where u(t) represents synaptic inputs to GPe from STN. Setting
ḡGPeGPe = 0 in the conductance-based model leads to c22 = 0 in
the firing-rate model, thus yielding

τ2ẋ2(t) = −x2(t)+ S2(u(t)). (13)

We conducted a series of simulations for different values of
cortical input to STN and we estimated the firing rate u(t) of
STN and the firing rate x2(t) of GPe. We have rescaled the data
to obtain a slope 1, by fitting a linear function and dividing the
values by the obtained slope a = 1.29. We then fitted a sigmoid
of the form (8) to the obtained data and rescaled it by the same
factor a, to obtain an estimate of the activation function S2.

Next, we obtained a similar set of data for ḡGPeGPe = 0.015µS.
Using the activation function S2 determined in the previous step,
we found the equilibrium of (12) for different values of c22 and
constant STN input u using a numerical solver. We compared
the curves obtained for the different values of c22 with the steady-
state data from the conductance-based model, to identify the
value that minimized the normalized square error:

nLSQ(c22; STN,GPe) =

∑

i

(

fc22 (STN[i])− GPe[i]
)2

∑

i GPe[i]
2

, (14)

where STN[i] andGPe[i] represent the firing rate of STN andGPe
taken from simulation i, and fc22 (STN[i]) is the solution of

x = S2(u+ c22x)

for a given c22 with u = STN[i], meaning the steady-state
solution of (12) for these generated inputs from STN. The best fit
was reached for c22 = 0.35. Since the GPe activation S2 identified
in (8) has maximum slope ℓ2 = 1.29, the stabilizability criterion
(3) is satisfied.

3. RESULTS

3.1. Qualitative Comparison Between the
Two Models
3.1.1. Endogenous Oscillations
For constant striatal and cortical inputs, beta-band oscillations
emerged in the firing-rate model when the STN-GPe and GPe-
STN connectivity strength was sufficiently increased (Figure 2A).
In the conductance-based model, the intensity of beta power in
the spectra of the cumulative STN and GPe population spike

trains similarly increased with increasing STN-GPe and GPe-
STN connectivity strengths (Figure 2B). The increase in beta
power within the STN and GPe was accompanied by an increase
in synchronization of the two populations within the beta band.
The beta-band coherence of the STN and GPe neural spike
trains increased similarly with increased connectivity strengths
(Supplementary Figure 1).

Both models exhibited beta-band oscillations as STN-GPe
and GPe-STN connectivity increased, indicating that the firing-
rate abstraction well captures the oscillatory dynamics of
the conductance-based model. Differences between the two
models are, however, observed. In particular, in the firing-
rate model, the transition from non-oscillatory to oscillatory
behavior occurs more abruptly than in the conductance-based
model and oscillatory conditions are associated with a relatively
stronger coupling from STN to GPe than from GPe to STN.
Also, in the conductance-based model, fluctuations in the
frequency and amplitude of the beta oscillations are apparent
as GPe-STN connectivity increases. Nevertheless, the overall
behavior of the models is qualitatively similar with oscillations
emerging in bothmodels as STN-GPe connectivity and GPe-STN
connectivity increase.

3.1.2. Exogenous Oscillations
When synaptic coupling between STN and GPe is sufficiently
low, the firing-rate model of the STN-GPe loop is not only
stable but also entrainable, meaning that any T-periodic input
(whether cortical or striatal) generates T-periodic steady-state
solutions (Chaillet et al., 2013). While this feature is guaranteed
for stable linear systems, the nonlinear nature of the firing-
rate model makes it less straightforward. This entrainability is
a fundamental requirement for constructing frequency profiles
of the STN-GPe network. By considering a sinusoidal input at a
given frequency, it is indeed possible tomeasure themagnitude of
the resulting steady-state oscillations, and thus the amplification
of the network at this specific frequency (Pavlov et al., 2007).
Repeating this procedure across a range of input frequencies,
we obtained the nonlinear Bode plots depicted as solid lines in
Figure 3A.

When DBS is off (solid curves), a clear resonance is
observed in the beta frequency band, thus indicating that the
network preferably amplifies beta components of the cortical
input. This resonance can therefore be interpreted as the beta
generation mechanism in the exogenous hypothesis. Due to
the nonlinear nature of the firing-rate model, this resonance
strength depends on the amplitude of the applied cortical input
with more pronounced resonance occurring for stronger mean
cortical input.

Akin to the resonance behavior in the firing-rate model, the
influence of an external cortical oscillatory input to the STN-GPe
network was investigated in the conductance-based model. The
connectivity strengths between the STN and GPe populations
were selected to lie below the threshold for which the network
generated endogenous beta-band oscillations (at 0.11 µS for
both), analogous to the entrainable state in the firing-rate model.
The frequency of cortical inputs to the STN were varied from
3 to 100 pulses per second, while striatal input to the network
remained fixed at 3 pulses per second.
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FIGURE 2 | Normalized endogenous beta-band activity in the firing rate and conductance-based models for varying STN and GPe coupling strengths. (A) Beta-band

oscillation amplitude in the (i) STN and (ii) GPe of the firing rate model. The beta-band oscillation amplitude in each population was estimated for each combination of

connectivity parameters (c12 and c21) by band-pass filtering the firing rate signals using a fifth order Butterworth filter with 8 Hz bandwidth centered on 20Hz. The

oscillation amplitude in each population was normalized between 0 and 1 in each panel separately. (B) Beta-band activity of the (i) STN and (ii) GPe populations in the

conductance-based model. Beta-band activity was quantified in each population by integrating the power spectra of the cumulative spike trains for each population

between 16 and 24 Hz. The power for each population was normalized between 0 and 1 in each panel separately.

The frequency response of the STN-GPe network due to
synchronous cortical inputs through the hyperdirect pathway
was examined by estimating the power of the cumulative
population spike trains and the spike train coherence between
STN and GPe populations within a 4 Hz window centered on
the mean frequency of the cortical input. Additionally, resonant
network activity was calculated by estimating the power in the
simulated STN LFP at the cortical input frequency. Resonance
effects were examined as the strength of cortical connectivity
to the STN was systematically increased from 0.03 to 0.12 µS
(Figure 3B).

As the strength of the hyperdirect pathway was increased, a
beta-band resonance emerged in the STN and GPe populations
and in the power spectrum of the STN LFP. This was

accompanied by synchronization across the STN and GPe
populations, as evidenced by a peak in the coherence between
STN and GPe spike trains for cortical inputs in the beta
frequency range (Figure 3B). Further strengthening of the
hyperdirect pathway led to a broadening of the frequency
band at which resonance occurred in the cumulative spike
trains of the STN and GPe populations and the STN LFP,
extending beyond the beta-band. Synchronous cortical inputs
to the STN at low connectivity strengths in the beta band
and at frequencies outside this range resulted in coherent
activity in the subnetwork, but with relatively low power
(Figure 3B). Consistent with the firing-rate model (Figure 3A),
the beta-band resonance was more pronounced for stronger
cortical inputs.
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FIGURE 3 | Resonance behavior of the firing rate and conductance-based models in response to synchronous cortical drives. (A) Bode plot illustrating amplification

of cortical input signals of varying frequency by the (i) STN and (ii) GPe populations in the firing rate model. The amplitude ratio is defined as the amplitude of the input

oscillation (the cortical input signal) to the amplitude of the steady state oscillation in the (i) STN and (ii) GPe populations at each cortical input frequency. Solid lines

represent the frequency response of each population when DBS is off. Dashed lines represent the frequency response of each population when the self-tuning DBS

(7) is implemented with σ = 0.1 and τθ = 50 ms. Two mean values of the cortical input signal are represented. (B) Resonance plot of the power centered at the

cortical input frequency in the (i) STN and (ii) GPe cumulative spike trains, (iii) the STN LFP power spectrum and (iv) the coherence between the STN and GPe

populations for varying cortical input frequencies. Power at the cortical input frequency was estimated in the cumulative spike trains and LFP power spectra by

integrating the power in a 4 Hz window centered on the input frequency in the respective power spectra. The coherence between the STN and GPe populations at the

cortical input frequency was estimated from pairs of composite spike trains randomly chosen from the STN and GPe populations (Farina et al., 2014; McManus et al.,

2019). The spike trains in the STN and GPe were summed to obtain two composite spike trains. The magnitude squared coherence between the two composite

spike trains was then calculated with 1 s overlapping Hamming windows. This was repeated for 200 randomly chosen combinations of spike trains from the STN and

GPe populations, as each combination will generate a slightly different coherence estimate. The coherence between the populations was then estimated as the

median coherence spectrum over all 200 combinations. The coherence at the cortical input frequency was determined by integrating the resulting coherence

spectrum in the 4 Hz window centered on the input frequency. Four cortical to STN connectivity strengths are represented, where the resonance responses are

normalized between 0 and 1 in each panel separately.

3.2. Self-Tuning Controller Assessment
3.2.1. Firing-Rate Model

3.2.1.1. Endogenous oscillations with beta-band activity

variation
Suppression of endogenous beta oscillations during DBS was
assessed first in the firing-rate model, with synaptic weights

c12 and c21 between STN and GPe increased to generate beta
oscillations within the network. A performance comparison
between self-tuning DBS (6) and proportional DBS (4) is

presented in Figure 4. Both strategies successfully disrupt

pathological oscillations between 200 and 750 ms. At t = 750ms,
an additional increase of the cortical input to STN was artificially
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FIGURE 4 | Performance comparison of self-tuning and proportional controllers on endogenous oscillations in the firing-rate model. During simulation, DBS was

initially off and then switched on at t = 200 ms, where either the (A) self-tuning controller or (B) proportional controller was implemented. At t = 750 ms, the

magnitude of the constant cortical input to STN was artificially increased by from 27 to 42, amplifying the endogenous oscillations present in the STN and GPe. The

cortical input is presented in green at the top of the figure, aligned with respect to the simulation time with the plots underneath. Left panels illustrate the firing rate

behavior of the STN and GPe populations and the right panels correspond to the instantaneous peak-to-peak oscillation amplitude of each population (measured with

a sliding window of 100 ms) due to either (A) the self-tuning controller (7) with τθ = 75 ms and σ = 0.19 or (B) the proportional controller (4) with θ = 2.

introduced to simulate an increase in beta oscillations. While the
self-tuning DBS automatically adapts the proportional gain θ to
maintain the attenuation of beta oscillations, pure proportional
DBS is unable to do so, resulting in strong beta oscillations
that cannot be counteracted without manual tuning of the
proportional gain. The self-tuning controller thus outperforms
the proportional controller in terms of robustness to disease
evolution in the simulated endogenous mechanism scenario.

3.2.1.2. Exogenous oscillations with beta-band activity

variation
Selective disruption of pathological beta oscillations generated
through exogenous inputs to the STN using the self-tuning
controller (7) was then confirmed. With the self-tuning DBS
(dashed curves) (Figure 3A) the beta-band resonance was
eliminated in the firing-rate model, while the frequency profile

of the STN-GPe network remained essentially unaltered in other
frequency bands, as DBS remains off when beta activity is
not detected within the STN. Figure 5 illustrates that, similar
to the endogenous case, self-tuning DBS (6) outperforms
proportional DBS (4) when faced with changes in the exogenous
oscillations. After the stimulation is turned on at t = 200
ms, both controllers successfully decrease the amplitude of the
pathological oscillations. After themean level of the cortical input
as well as the amplitude of oscillations is increased at t = 750
ms, the self-tuning controller achieves higher damping of the
oscillations than the proportional controller.

3.2.2. Conductance-Based Model

3.2.2.1. Scenario 1: beta-band target variation
The self-tuning controller maintained the LFP beta ARV
around the desired target values between 10 and 100 s,
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FIGURE 5 | Performance comparison of self-tuning and proportional controllers on exogenous 20 Hz oscillations in the firing-rate model. During simulation, DBS was

initially off and then switched on at t = 200 ms, where either the (A) self-tuning controller or (B) proportional controller was implemented. At t = 750 ms, the amplitude

of the cortical oscillations was increased from 10 to 60 and the mean level of the oscillations is raised from 50 to 60, amplifying the exogenous oscillations present in

the STN and GPe. The cortical input is presented in green at the top of the figure, aligned with respect to the simulation time with the plots underneath. Left panels

illustrate the firing rate behavior of the STN and GPe populations and the right panels correspond to the instantaneous peak-to-peak oscillation amplitude of each

population (measured with a sliding window of 100 ms) due to either (A) the self-tuning controller (7) with τθ = 5 ms and σ = 0.01 or (B) the proportional controller (4)

with θ = 25.

and turned off from 0 to 10 and 100 to 130 s, where
the target value was high and stimulation was not required
(Figure 6A). The self-tuning controller resulted in a mean
power consumption of 11.0 µW and a 82.1% reduction in
the MSE. Proportional controllers with fixed gain were able
to maintain beta ARV at a single target value, however
they were unsuitable for target values other than the one
for which they were tuned and resulted in either under
or over stimulation when attempting to maintain beta ARV
(Figures 6B–D). Proportional controllers with fixed gains at 7,
10 and 26 resulted in mean power consumption values of 6.9,
9.3, and 28.2 µW and reductions in the MSE of 79.4, 85.1, and
81.1%, respectively.

3.2.2.2. Scenario 2: beta-band activity variation
The LFP beta ARV was maintained at the target value by the
self-tuning controller as the background beta activity was varied

between low and high activity periods (Figure 7A). The self-
tuning controller consumed 17.9 µW and resulted in a 91.4 %
reduction of the MSE. The proportional controller with a fixed
gain value of 10 was able to maintain the LFP beta ARV at the
target value during low background beta activity periods, but did
not provide sufficient stimulation to suppress to the target value
during periods of high background beta activity (Figure 7B). The
proportional controller with a fixed gain value of 40 maintained
the LFP beta ARV at the target value during both low and high
background beta activity periods (Figure 7C). The proportional
controllers with fixed gain values of 10 and 40 resulted in MSE
reductions of 73.4 and 95.0 % and power consumption values
of 6.6 and 34.8 µW, respectively. When maintaining the LFP
beta activity at the target value, the proportional controller with
a fixed gain value of 40 resulted in over stimulation during the
low background activity periods, consuming more power than
necessary to maintain the LFP beta ARV.
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FIGURE 6 | Performance comparison of self-tuning and proportional controllers in response to beta ARV target variations in the conductance-based model.

Background beta-band activity in the model was fixed to its maximum value for the duration of the simulation while the target value was modulated to 10, 0.20, 0.05,

0.15, and 10 µV during the 0–10, 10–40, 40–70, 70–100, and 100–130 s time periods, respectively. The target value for each time period is highlighted by the red

segmented bar at the top of the figure. Left panels illustrate the target value (dashed red), the beta ARV measured from the STN LFP when DBS was off (gray) or on

(black), where the DBS amplitude is modulated by the corresponding controller. Right panels illustrate the time evolution of the DBS amplitude (black) and controller

gain θ (blue) during simulation. (A) Self-tuning DBS controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with a fixed gain value of θ = 7. (C)

Proportional controller with a fixed gain value of θ = 10. (D) Proportional controller with a fixed gain value of θ = 26.
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FIGURE 7 | Performance comparison of self-tuning and proportional controllers in response to background beta-band activity variations in the conductance-based

model. The beta ARV target value was fixed to 0.1µV for the duration of the simulation while the background beta-band activity was modulated to be at its maximum

value during the 10–40 and 70–100 s time periods and at its minimum value during the 0–10, 40–70, and 100–130 s time periods, respectively. The mean ARV of the

background beta-band activity measured in the LFP when DBS was off is highlighted by the gray segmented bar at the top of the figure. Left panels illustrate the

target value (dashed red), the beta ARV measured from the STN LFP when DBS was off (gray) or on (black), where the DBS amplitude was modulated by the

corresponding controller. Right panels illustrate the time evolution of the DBS amplitude (black) and controller gain θ (blue) during simulation. (A) Self-tuning DBS

controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with a fixed gain value of θ = 10. (C) Proportional controller with a fixed gain value of θ = 40.

3.2.2.3. Scenario 3: electrode impedance variation
The self-tuning controller maintained the LFP beta ARV at the
target level as the electrode impedance was linearly increased
over the course of the simulation to five times its initial
impedance value, i.e., from an initial value of 0.5–2.5 k�
(Figure 8A). Background beta activity and the target value of
0.1 µV remained fixed over the course of the simulation.
The self-tuning controller resulted in a MSE reduction of
93.5% and a power consumption of 11.2 µW. Proportional
controllers with fixed gain values of 10 and 40 lead to MSE

reductions of 77.0 and 96.0 % while consuming 6.2 and 27.7
µW, respectively. Similar to scenarios 1 and 2, the self-tuning
controller was able to tune its gain to the required level to
maintain beta ARV at the target level. Proportional control
with fixed gain of 10 became less effective over the course
of the simulation, while proportional control with fixed gain
of 40 was effective throughout the simulation, but consumed
more power than necessary (Figures 8B,C). A summary of the
controller performance under the different scenarios considered
is presented in Table 2.
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FIGURE 8 | Performance comparison of self-tuning and proportional controllers in response to electrode impedance variations in the conductance-based model. The

beta ARV target value was fixed to 0.1µV and the background beta-band activity was fixed to its maximum value for the duration of the simulation. The electrode

impedance was fixed at 0.5 K� during the 0–30 s period and was then linearly increased from 0.5 to 2.5 K� over the 30–130 simulation period. The electrode

impedance variation is illustrated by the purple bar at the top of the figure. Left panels illustrate the target value (dashed red), the beta ARV measured from the STN

LFP when DBS was off (gray) or on (black), where the DBS amplitude was modulated by the corresponding controller. Right panels illustrate the time evolution of the

DBS amplitude (black) and controller gain θ (blue) during simulation. (A) Self-tuning DBS controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with

a fixed gain value of θ = 10. (C) Proportional controller with a fixed gain value of θ = 40.

4. DISCUSSION

4.1. Firing-Rate and Conductance-Based
Models
The proposed firing-rate model facilitated the derivation of a

robust control law capable of disrupting pathological beta-band

oscillations in the STN-GPe network in Parkinson’s disease and

the analytic establishment of its efficiency. Firing-rate models

capture the average behavior of neural populations and facilitate
tractable mathematical analysis of network behavior (Destexhe
and Sejnowski, 2009). These models, however, summarize the
neuronal population to a single variable: the number of spikes
it emits per unit time. They are thus unable to capture
cellular-level features such as sub-threshold activity, LFP activity,
specific responses induced by bursting, antidromic activation
of STN afferent inputs or the interaction between neurons and
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TABLE 2 | Summary of controller performance in the three considered scenarios.

Target variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 7.9 11.0

Proportional controller (θ = 7) 20.6 6.9

Proportional controller (θ = 10) 14.9 9.3

Proportional controller (θ = 26) 18.9 28.2

Beta variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 8.6 17.9

Proportional controller (θ = 10) 26.6 6.6

Proportional controller (θ = 40) 5.0 34.8

Electrode impedance variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 6.5 11.2

Proportional controller (θ = 10) 23.0 6.2

Proportional controller (θ = 40) 4.0 27.7

In each scenario, the MSE value is reported as a percentage of the DBS Off case, where

the DBS Off case corresponds to a 100% MSE.

the induced extracellular potential. In contrast, networks of
conductance-based neuron models offer the ability to capture
more complex network dynamics and interactions, but are
usually too complex to analyze mathematically.

While recent approaches have attempted to bridge the gap
between these two types of models (di Volo et al., 2019),
we have empirically assessed the similarities and discrepancies
between them and shown that key features needed to analyze
and control pathological oscillations in Parkinson’s disease
are indeed captured by both models (Figures 2, 3). We also
demonstrated in section 2.3 the possibility to check the
theoretical stabilization condition (3), derived on the firing-rate
model, using observations from the conductance-based model.
By utilizing both modeling approaches, the limitations of each
model are complemented by the strengths of the other. The
joint analysis of these two models also supports the relevance of
abstract firing-rate models for the derivation of advanced DBS
strategies aiming at counteracting a targeted brain oscillation,
which can then be validated in computationally detailed models
before preclinical investigations.

4.2. Physiological Interpretation of the
Stabilizability Condition
The theoretical condition obtained on the firing-rate model to
ensure stabilizability by the self-tuning DBS signal reads ℓ2c22 <

1 (see Proposition). In other words, the synaptic weights from
GPe to itself should be sufficiently low. This condition ensures
that the GPe does not act as a pacemaker on its own, as low
internal coupling is a standard sufficient condition for stability of
a neuronal population (see for instance Faye and Faugeras, 2010).
The necessity to impose that GPe does not generate pathological
oscillations on its own is quite reasonable: considering the
extreme case when STN is not connected to the GPe, it would

be impossible to attenuate self-generated GPe oscillations by
stimulating STN only.

It is worth noting that the proposed condition precludes
GPe self-oscillatory activity no matter the value of its internal
delay. This constitutes a noteworthy feature of our mathematical
result as this delay does not need to be estimated. Nevertheless,
for realistic values of internal GPe delays (of the order of few
milliseconds), no such self-oscillatory GPe activity is observed
even if the condition is violated, at least for reasonable values of
the striatal input. This was confirmed in numerical simulations of
the conductance-based model in which the internal GPe synaptic
weights were artificially increased by two orders of magnitude.
Even in that case, GPe was unable to autonomously generate
oscillations and the proposed self-tuning DBS successfully
disrupted network beta oscillations (data not shown).

4.3. Endogenous and Exogenous
Generation of Oscillations
Beyond employing two modeling approaches of the structures
involved, the paper also investigated two possible mechanisms
of pathological oscillations generation: the emergence of
endogenous oscillations, in which the STN-GPe network acts
as a pacemaker, and the generation of oscillations through the
interaction of the network with inputs originating from other
structures such as the cortex.

The ability of the STN-GPe network to endogenously generate
beta-band oscillations was consistent across both the firing-
rate and conductance-based models (Figure 2). The STN-GPe
network has been proposed as a potential source of pathologically
increased beta-band oscillations in Parkinson’s disease, where
connectivity changes in the reciprocally connected network
leads to the endogenous generation of beta-band oscillations.
This behavior has been previously explored in modeling studies
utilizing firing-rate models where the progression of Parkinson’s
disease is represented as an increase in the synaptic coupling
strengths between the STN and GPe neuron populations
(Nevado-Holgado et al., 2010; Pavlides et al., 2012; Pasillas-
Lépine, 2013). The firing-rate model presented here is consistent
with these previous studies in which a Hopf bifurcation
occurs and leads to beta-band oscillations in the network
when the synaptic coupling strengths are sufficiently increased
(Figure 2A). This behavior is well-matched in the conductance
model, where increases in the synaptic coupling strengths
between the two populations also leads to the endogenous
emergence of beta-band oscillations in the network (Figure 2B).

Although modeling studies support the hypothesis that
the reciprocally connected STN-GPe network is capable of
generating the beta-band oscillatory activity, investigations of
isolated STN-GPe cell cultures in vitro have observed the
emergence of endogenous oscillations at much lower frequencies
(Plenz and Kital, 1999). Furthermore, increasing evidence from
experimental studies in patients and animal models suggest
that external inputs to the STN-GPe loop may play a key
role in the generation of elevated beta-band oscillations in the
parkinsonian cortex and basal ganglia. The STN-GPe network
occupies a crucial location in the cortical basal ganglia network
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receiving inputs from both cortical and striatal structures
through the hyperdirect and indirect pathways, respectively.
Due to connectivity changes in the STN-GPe loop during
Parkinson’s disease, it is thus hypothesized that exogenous beta
oscillations are locally amplified by the loop, with subsequent
oscillations then propagating throughout the full cortical basal-
ganglia network (Magill et al., 2001; Mallet et al., 2008; Corbit
et al., 2016; West et al., 2018). Consistent with this, Sharott et al.
(2005) observed that the power and coherence of beta oscillations
in the cortex and STN were elevated during dopamine depletion
in a parkinsonian rat model, while Litvak et al. (2011) observed
cortical beta activity leading to STN beta activity in parkinsonian
patients. In primate studies, oscillatory activity in the GPe
was observed to be mainly due to excitatory activity from the
STN, while oscillatory activity in the STN was primarily due to
excitatory cortical input (Tachibana et al., 2008, 2011).

Both the firing-rate and conductance-based models in the
present study demonstrated the STN-GPe network’s ability to
entrain to an external cortical rhythm (Figure 3). A Bode
plot of the input-output relationship in the firing-rate model
showed a marked peak in the beta frequency band, with this
peak increasing in magnitude and broadening with increasing
strength of the inputs to the STN (Figure 3A). This behavior
was consistent with the conductance-based model behavior,
where the STN-GPe network displayed a resonant peak in the
beta frequency band for low connectivity strength between the
cortex and STN (Figure 3B). Increasing the strength of the
hyperdirect pathway led to increased resonance in the model
and also to a widening of the frequency bands where resonance
was observed (Figure 3B). This observed resonance is consistent
with other modeling investigations of the STN-GPe network,
where firing-ratemodels (Nevado-Holgado et al., 2014; Detorakis
and Chaillet, 2017; Liu et al., 2017, 2020) and conductance-
based neuron models (Ahn et al., 2016; Shouno et al., 2017;
Koelman and Lowery, 2019) were used to investigate the behavior
of STN-GPe network in response to external drives. Although
those studies have illustrated the resonant capabilities of the
STN-GPe network of both firing-rate and conductance-based
models separately, this study is the first to demonstrate that both
modeling approaches lead to comparable results (Figure 3).

4.4. Self-Tuning DBS Controller
Having established qualitative consistency in the behavior of
the firing-rate and conductance-based models, the performance
of the proposed self-tuning DBS controller was first proven
mathematically and validated in the firing-rate model where
the controller was capable of disrupting both exogenously and
endogenously generated beta-band activity in the STN-GPe
network (Figures 3A, 4, 5). The simulations confirmed that the
self-tuning controller autonomously adapts its gain value to the
minimal value required to counteract pathological oscillations,
thus avoiding over-stimulation and allowing for adaptation to
possible changes in the system properties associated with disease
progression (Figures 4, 5).

The performance of the controller to maintain network
beta-band oscillations at a target level was then assessed in
the conductance-based model in three example conditions,

which emulated practical situations in which gain adaptation
may be required in vivo: modification of the beta-level target,
variation of the beta oscillations intensity, and alteration of the
electrode impedance.

4.4.1. Adaptation to Target-Level Changes
The self-tuning controller adapted the controller gain in response
to changes in the target value (Figure 6A). For each target
value, the controller identified the necessary gain to maintain the
biomarker at the target level. In contrast, proportional controllers
with fixed gain were unable to track target changes and resulted
in less reduction in the MSE than the self-tuning controller
(Figures 6B–D, Table 2). The self-tuning controller consumed
more power than the controllers with low fixed gain and less
power than the controller with high fixed gain, but was able to
maintain low error as the target changed (Table 2).

Similar issues were identified by Su et al. (2019) who
investigated the ability of a proportional-integral controller to
modulate DBS frequency to track dynamic changes in a target
signal during closed-loop DBS using a conductance-basedmodel.
While the proportional-integral controller considered in that
study was able to successfully track dynamic changes in the
target beta signal, it required different controller gain values for
each beta-band target level considered. The adaptive controller
proposed here overcomes this issue as the controller self-tunes
its gain value to find the gain necessary for maintaining the beta
ARV at the target values (Figure 6A).

4.4.2. Adaptation to Beta Oscillation Fluctuations
The self-tuning controller was able to maintain the biomarker
at the target level while beta activity in the network varied
(Figure 7A). Between t = 0 and t = 10 s, the self-tuning
controller adapted its gain value to the low beta activity. Once
beta activity in the network increased, during the 10–40 s period,
the controller increased its gain to suppress the beta activity to the
target level. The proportional controller with low fixed gain value
(θ = 10) was able to maintain the biomarker at the target level
during low beta activity periods, but was unable to during high
beta periods (Figure 7B). In contrast, the proportional controller
with a high fixed gain value (θ = 40) was able to maintain the
biomarker close to the target during both low and high beta
activity periods (Figure 7C), but at the cost of increased power
consumption (Table 2).

In line with the power consumption in scenario 1, the
controllers with low and high fixed gain resulted in the lowest
and highest power consumption, respectively, and the power
consumption of the self-tuning controller lay between these
values (Table 2). Essentially, the self-tuning controller identified
the gain required to maintain the beta ARV at the target level in
both the high and low beta activity periods and consumed the
necessary power to maintain beta at the target.

Clinical investigations of proportional control strategies in
patients with Parkinson’s disease (Rosa et al., 2015; Arlotti et al.,
2018), have observed attenuation of DBS when subjects were
on and off medication, motivating the need for self-tuning in
response to varying background beta activity. Arlotti et al. (2018)
investigated proportional control over an 8 h period and showed
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a 30–45 % improvement in patient UPDRS III motor scores.
Although these clinical studies showed promising results, we
hypothesize that additional benefits may result from using the
self-tuning controller proposed here. The proportional control
scheme implemented in Rosa et al. (2015) and Arlotti et al. (2018)
utilized a fixed gain value, and thus may lead to under or over
stimulation if a suitable gain is not selected.

4.4.3. Adaptation to Electrode Impedance Variations
Clinical measurements of electrode impedance usually vary
between 0.5 and 1.5 k� (Obeso et al., 2001; Volkmann et al.,
2002). However, many factors contribute to the electrode
impedance, and its variability between subjects. These factors
include the surface properties of the electrodes, electrical double
layer, conductivity of the bulk tissue medium and thickness of
the surrounding encapsulation layer (Butson et al., 2006). The
electrode impedance plays a crucial role in determining the
current delivered to tissue during voltage-controlled stimulation.
Clinical investigations of closed-loop DBS have not yet
investigated the impact of electrode impedance variations on
DBS efficiency as the timescales at which these variations take
place are much longer than the current timescales at which
closed-loop DBS has been investigated clinically. For closed-
loop DBS to remain effective when chronically implemented, it
is necessary to utilize controllers which can accommodate such
changes and avoid a need for clinical retuning of the controller
parameters. This third scenario, therefore, aimed to assess this
robustness to electrode impedance variations. In response to the
simulated changes, the self-tuning controller gradually increased
the controller gain to maintain the biomarker at the target level
(Figure 8A).

In contrast, the proportional controller with low fixed gain
was able to maintain the beta ARV at the target up until t =
60 s, but became less effective thereafter (Figure 8B). With a
higher fixed gain value, the proportional controller was able to
accommodate changes in the electrode impedance and remained
effective at suppressing the beta ARV to the target for whole the
duration of the simulation (Figure 8C).

In line with the other examples, the power consumption of the
self-tuning controller was greater than that of the proportional
controller with low fixed gain and less than the proportional
controller with the high fixed gain (Table 2). Although both the
proportional controller with high fixed gain and the self-tuning
controller successfully maintained beta activity at its target level,
more power consumption was needed for the former than for
the latter.

4.5. Clinical Implementation of the
Self-Tuning DBS
The self-tuning controller presented here offers several
advantages for experimental implementation. First, it relies
only on data from the STN, no additional recording electrodes
in other brain structures are required. Moreover, although
the firing-rate model utilized the number of STN pulses
per second, the simulations conducted in the conductance-
based model showed the efficiency of the approach when
only STN LFP is accessible. More importantly, the self-tuning

controller relies on very limited information regarding the
system parameters. The theoretical result of Proposition simply
requires that the GPe internal synaptic weights are sufficiently
low. This condition, also present in theoretical investigations
on fixed-gain proportional DBS (Chaillet et al., 2017), does
not require precise knowledge on the exact shape of activation
functions, or the values of the time constants, synaptic weights,
or delays.

Nonetheless, experimental validation of the self-tuning
controller also comes with challenges. First, both the stimulation
and the recording are assumed to be within the STN. This
would lead to stimulation artifacts that should be removed.
Several techniques are available to address this issue (Rossi
et al., 2007; Stanslaski et al., 2012; Basir-Kazeruni, 2017)
The proposed controller also requires some embedded
computational capabilities in order to filter the STN LFP
and implement the control law (7). While more demanding
than classical open-loop DBS, the required computational
power is comparable to the algorithms employed for
proportional or on-off stimulation. In addition, the upper
and lower bounds on the applied current or voltage would
be the same as those used during conventional stimulus
parameter setting.

Despite its self-tuning nature, the control law (7) requires two
parameters to be chosen: the time constant τθ and the dissipation
parameter σ . Both these parameters have a strong impact on
the beta attenuation performance. For the sake of illustration,
these parameters have been chosen here to demonstrate quick
adaptation of the gain over the simulation duration. In an
experimental setting, τθ should be chosen on the order of
the timescale at which the targeted variations occur. Generally
speaking, a large value of τθ is more convenient for adaptation to
slow variations. σ should be chosen as a compromise between
rapid decrease of the gain when the beta level is low (high
σ ) and limited gain overshoot in response to an increase of
the beta level (low σ ). In practice, the controller parameters
could also be obtained through an optimization process, such
as the dual-loop framework outlined in Grado et al. (2018),
though an optimization approach would itself also require the
identification of appropriate objective functions which may
be non-trivial.

In summary, the proposed self-tuning DBS controller
offers increased robustness to variations in system properties
including changes in the strength of beta oscillations and
or the electrode-tissue interface, and can accommodate
alterations in the desired beta level. Compared to fixed-
gain proportional control, it provides a better compromise
between power consumption and efficient attenuation of beta
oscillations, with little additional computational complexity or
technological requirements.
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