'," frontiers

in Neuroscience

ORIGINAL RESEARCH
published: 30 June 2020
doi: 10.3389/fnins.2020.00653

OPEN ACCESS

Edited by:

Damien Querlioz,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:

Timothée Masquelier,

Centre National de la Recherche
Scientifique (CNRS), France
Sumit Bam Shrestha,

Institute for Infocomm Research
(A*STAR), Singapore

*Correspondence:
Priyadarshini Panda
priya.panda@yale.edu

Specialty section:

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

Received: 16 February 2020
Accepted: 26 May 2020
Published: 30 June 2020

Citation:

Panda R, Aketi SA and Roy K (2020)
Toward Scalable, Efficient, and
Accurate Deep Spiking Neural
Networks With Backward Residual
Connections, Stochastic Softmax, and
Hybridization.

Front. Neurosci. 14:653.

doi: 10.3389/fnins.2020.00653

Check for
updates

Toward Scalable, Efficient, and
Accurate Deep Spiking Neural
Networks With Backward Residual
Connections, Stochastic Softmax,
and Hybridization

Priyadarshini Panda ™, Sai Aparna Aketi? and Kaushik Roy?

" Department of Electrical Engineering, Yale University, New Haven, CT, United States, 2 School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, United States

Spiking Neural Networks (SNNs) may offer an energy-efficient alternative for
implementing deep learning applications. In recent years, there have been several
proposals focused on supervised (conversion, spike-based gradient descent) and
unsupervised (spike timing dependent plasticity) training methods to improve the
accuracy of SNNs on large-scale tasks. However, each of these methods suffer
from scalability, latency, and accuracy limitations. In this paper, we propose novel
algorithmic techniques of modifying the SNN configuration with backward residual
connections, stochastic softmax, and hybrid artificial-and-spiking neuronal activations
to improve the learning ability of the training methodologies to yield competitive
accuracy, while, yielding large efficiency gains over their artificial counterparts. Note,
artificial counterparts refer to conventional deep learning/artificial neural networks. Our
techniques apply to VGG/Residual architectures, and are compatible with all forms
of training methodologies. Our analysis reveals that the proposed solutions yield near
state-of-the-art accuracy with significant energy-efficiency and reduced parameter
overhead translating to hardware improvements on complex visual recognition tasks,
such as, CIFAR10, Imagenet datatsets.

Keywords: spiking neural networks, energy-efficiency, backward residual connection, stochastic softmax,
hybridization, improved accuracy

1. INTRODUCTION

Neuromorphic computing, specifically, Spiking Neural Networks (SNNs) have become very
popular as an energy-efficient alternative for implementing standard artificial intelligence
tasks (Indiveri and Horiuchi, 2011; Cao et al, 2015; Panda and Roy, 2016; Sengupta
et al, 2016; Pfeiffer and Pfeil, 2018; Roy et al, 2019). Spikes or binary events drive
communication and computation in SNNs that not only is close to biological neuronal
processing, but also offer the benefit of event-driven hardware operation (Indiveri et al., 2015;
Ankit et al., 2017; Roy et al, 2019). This makes them attractive for real-time applications
where power consumption and memory bandwidth are important factors. What is lacking,
however, is proper training algorithms that can make SNNs perform at par with conventional
artificial neural networks (ANNs). Today, there is a plethora of work detailing different

Frontiers in Neuroscience | www.frontiersin.org 1

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00653
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00653&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:priya.panda@yale.edu
https://doi.org/10.3389/fnins.2020.00653
https://www.frontiersin.org/articles/10.3389/fnins.2020.00653/full
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/910762/overview
http://loop.frontiersin.org/people/502975/overview

Panda et al.

Accurate and Efficient Spiking Networks

algorithms or learning rules for implementing deep
convolutional spiking architectures for complex visual
recognition tasks (Masquelier and Thorpe, 2007; Masquelier
et al, 2009; O’Connor et al,, 2013; Diehl and Cook, 2015;
Diehl et al., 2015; Hunsberger and Eliasmith, 2015; Lee et al.,
2016, 2018a,b; Panda and Roy, 2016; Mostafa, 2017; Panda
et al, 2017; Bellec et al., 2018; Kheradpisheh et al., 2018;
Srinivasan et al., 2018; Neftci et al., 2019; Sengupta et al.,
2019; Severa et al., 2019; Srinivasan and Roy, 2019). Most
algorithmic proposals focus on integrating the discrete or
discontinuous spiking behavior of a neuron in a supervised
or unsupervised learning rule. All proposals maintain overall
sparse network activity (implies low power operation) while
improving the accuracy (implies better performance) on image
recognition applications [mostly, benchmarked against state-
of-the-art datasets like Imagenet (Deng et al, 2009), CIFAR
(Krizhevsky and Hinton, unpublished manuscript), MNIST
(LeCun et al., 2010)].

Collating the previous works, we can broadly categorize the
SNN training methodologies into three types: (1) Conversion
from artificial-to-spiking models (Diehl et al., 2015; Sengupta
et al., 2019), (2) Approximate Gradient Descent (AGD) based
backpropagation with spikes (or accounting temporal events)
(Lee et al,, 2016; Neftci et al., 2019), and (3) Unsupervised
Spike Timing Dependent Plasticity (STDP) based learning
(Diehl and Cook, 2015; Srinivasan et al., 2018). Each technique
presents some advantages and some disadvantages. While
conversion methodology has yielded state-of-the-art accuracies
for large datasets like Imagenet on complex architectures
[like VGG (Simonyan and Zisserman, 2014), ResNet (He
et al,, 2016)], the latency incurred to process the rate-coded
image1 is very high (Pfeiffer and Pfeil, 2018; Lee et al., 2019;
Sengupta et al, 2019). AGD training addresses the latency
concerns yielding ~ 10 — 15x benefits as compared to the
conversion (Bellec et al., 2018; Lee et al.,, 2019; Neftci et al,,
2019). However, AGD still lags behind conversion in terms
of accuracy for larger and complex tasks. The unsupervised
STDP training, while being attractive for real-time hardware
implementation on several emerging and non-von Neumann
architectures (Pérez-Carrasco et al., 2010; Linares-Barranco et al.,
2011; Ankit et al, 2017; Sengupta and Roy, 2017; van de
Burgt et al, 2017; Wang et al, 2017), also suffers from
accuracy/scalability deficiencies.

From the above discussion, we can gather that addressing
Scalability, Latency, and Accuracy issues are key toward
achieving successful SNN methodologies. In this paper, we
precisely address each of these issues through the lens of
network architecture modification, softmax classifier adaptation,
and network hybridization with a mix of Rectified Linear
Unit/ReLU (or ANN-like) and Leaky-Integrate-and-Fire (or SNN-
like) neuronal activations in different layers.

'SNNs process event data obtained with rate or temporal coding instead of real-
valued pixel data. Rate coding is widely used for SNN applications, where, a real-
valued pixel data is converted to a Poisson-distribution based spike train with the
spiking frequency proportional to the pixel value (Dichl and Cook, 2015). That is,
high valued pixels output more spikes and vice-versa.

2. RELATED WORK, MOTIVATION, AND
CONTRIBUTIONS

2.1. Addressing Scalability With Backward

Residual Connections

Scalability limitations of STDP/AGD approaches arises from
their depth incompatibility with deep convolutional networks
which are necessary for achieving competitive accuracies.
SNNs forward propagate spiking information and thus require
sufficient spike activity across all layers of a deep network to
conduct training. However, previous works have shown that
spiking activity decreases drastically for deeper layers of a
network (that we define as vanishing spike propagation), thereby,
causing training issues for networks with large number of
layers (Masquelier et al,, 2009; Diehl et al.,, 2015; Lee et al,
2016, 2018b; Panda and Roy, 2016; Kheradpisheh et al., 2018;
Srinivasan et al., 2018).

From ANN literature, it is known that depth is key to
achieving improved accuracy for image recognition applications
(LeCun et al,, 2015; Szegedy et al., 2015). Then, the question
arises, can we modify the spiking network architecture to be
less deep without compromising accuracy? Kubilius et al. (2018)
proposed Core Object Recognition or CORnet models (with
what we term as backward residual connections) that transform
deep feedforward ANN models into shallow recurrent models.
Figure 1 illustrates the Backward Residual (BackRes) block
architecture. It is similar to that of a recurrent network unrolled
over time with weights shared over repeated computations of the
output. Specifically, the computations in Blockl are performed
twice before processing Block2. For n = 1, Blockl processes
original input information, while, for n = 2, the same Blockl
with repeated weights processes the output from previous step.
Note, the original input is processed only once for n = 1. For
n > 1, the block processes its output from the previous step.
Essentially, BackRes connections enable a network to achieve
similar logical depth as that of a deep feedforward network
without introducing additional layers. The 1-convolutional layer
block in Figure 1A achieves the logical depth of a 2-convolutional
layer block as shown in Figure 1B and is expected to achieve near
iso-accuracy with that of the 2-convolutional layer block?. The
BackRes connection brings two key advantages: (1) Reduction in
the total number of parameters since we are reusing the same
weights over multiple steps of unrolling, (2) Diversification of
gradient update for each unrolled step due to different input-
output combinations.

2.1.1. Our Contribution

We utilize BackRes connections and the diversified gradients
to enable training of logically deep SNN models with AGD
or STDP that otherwise cannot be trained (with multiple
layers) due to vanishing spike propagation. Further, we show
that converting a deep ANN (with BackRes blocks) into a

2There is a limit to which BackRes compensates for depth diversity with iso-
accuracy. VGG2x8 network with 2 convolutional layers unrolled 8 times may suffer
accuracy loss as compared to a VGG16 network with 16 convolutional layers. But,
VGG2x4 may yield near iso-accuracy as VGG8. Note, VGG2x4 and VGG8 have
same logical depth of 8 convolutional layers.

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al. Accurate and Efficient Spiking Networks
A N B
Block2 - Block2 .
A T
— \ / Output ‘ \
{ Output ‘ ‘ Output ‘ ,;’ |
| _t " RelU
RelU RelU R S
I . t Conv2
= | Y S
Conv Conv Output ‘
\_1 1 W, ED
Block1 Block1l RelU
Input \_ | Convi
4 S
n=1 n=2 =
Input
FIGURE 1 | (A) A simple neural network architecture with Backward Residual (BackRes with n = 2) connections is shown. The layers in Block1 are unrolled n = 2
times to perform the BackRes computation with weights of Conv layer reused at each unrolling step. (B) A network with 2 unique convolutional layers in Block1 is
shown. Note, BackRes computation in (A) achieves the same logical depth of the network in (B).

deep SNN necessitates the use of multiple threshold-spiking
neurons per BackRes block to achieve lossless conversion. We
also demonstrate that BackRes SNN models (say, VGG2x4)
yield both lower memory complexity (proportional to number
of weights/parameters) and sparser network activity with
decreased computational overhead (proportional to total
inference energy) as compared to a deep architecture
(say, VGG8) of similar logical depth across different SNN
training methodologies.

2.2. Addressing Latency With Stochastic

Softmax (Stochmax)

In order to incur minimal loss during pixel-to-spike
conversion with rate coding! (generally, used in all SNN
experiments), the number of time steps of the spike
train has to sufficiently large. This, in turn, increases the
latency of computation. Decreasing the latency implies
larger loss in image-to-spike conversion that can result in
lower accuracy.

Across all SNN training methodologies, the final classifier or
output layer which yields the prediction result is usually a softmax
layer similar to that of an ANN. It is general practice, in SNN
implementation, to collect all the accumulated spiking activity
over a given time duration from the penultimate layer of a deep
SNN and feed it to a softmax layer that calculates the loss and
prediction based on the integrated spike information (Masquelier
and Thorpe, 2007; Lee et al.,, 2016, 2019). While the softmax
classifier based training has produced competitive results, the
latency incurred still is significantly high. The question that
arises here is, “Can we compensate for reduced latency (or, higher
loss during image-to-spike conversion) by improving the learning

capability of the SNN by augmenting the softmax functionality?”
Lee H. B. et al. (2018) proposed a stochastic version of a softmax
function (stochmax) that drops irrelevant (non-target) classes
with adaptive dropout probabilities to obtain improved accuracy
in ANN implementations. Stochmax can be viewed as a stochastic
attention mechanism, where, the classification process at each
training iteration selects a subset of classes that the network has
to attend to for discriminating against other false classes. For
instance, while training for a cat instance, it is useful to train
the model with more focus on discriminating against confusing
classes, such as, jaguar, tiger instead of orthogonal classes like
truck, whale. Softmax, on the other hand, collectively optimizes
the model for target class (cat) against all remaining classes
(jaguar, tiger, truck, whale) in an equally weighted manner,
thereby, not involving attentive discrimination.

2.2.1. Our Contribution

Given that stochmax improves intrinsic discrimination
capability, we utilized this stochastic regularization effect to
decrease the training/inference latency in SNN frameworks.
We show how standard AGD can be integrated with stochmax
classifier functionality to learn deep SNNs. Our analysis yields
that deep SNNs of 3-4 layers trained with stochmax yield
higher accuracy at lower latency than softmax baselines (for
AGD training).

2.3. Addressing Accuracy With Network
Hybridization

It is evident that accuracy loss due to vanishing spike propagation
and input pixel-to-spike coding are innate properties of SNN
design that can be addressed to certain extent, but, cannot be

Frontiers in Neuroscience | www.frontiersin.org

3 June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

completely eliminated. In order to achieve competitive accuracy
as that of an ANN, we believe that taking a hybrid approach with
a partly-artificial-and-partly-spiking neural architecture will be
most beneficial.

2.3.1. Our Contribution

We demonstrate a hybrid neural architecture for AGD training
methodologies. In case of AGD, since the training is performed
end-to-end in a deep network, vanishing spike-propagation
becomes a limiting factor to achieve high accuracy. To address
this, we use ReLU based neurons in the initial layers and have
spiking leaky-integrate-and-fire neurons in the latter layers and
perform end-to-end AGD backpropagation. In this scheme, the
idea is to extract relevant activity from the input in the initial
layers with ReLU neurons. This allows the spiking neurons in
latter layers to optimize the loss function and backpropagate
gradients appropriately based on relevant information extracted
from the input without any information loss.

Finally, we show the combined benefits of incorporating
BackRes connections with stochmax classifiers and network
hybridization across different SNN training methodologies and
show latency, accuracy, and compute-efficiency gains. Through
this work, our goal is to communicate good practices for
deploying SNN frameworks that yield competitive performance
and efficiency as compared to corresponding ANN counterparts.

3. SNN: BACKGROUND AND
FUNDAMENTALS

3.1. Input and Neuron Representation

Figure 2A illustrates a basic spiking network architecture with
Leaky-Integrate-and-Fire (LIF) neurons processing rate-coded
inputs!. It is evident from Figure 2B that converting pixel values
to binarized spike data {1: spike, 0: no spike} in the temporal
domain preserves the integrity of the image over several time
steps. The dynamics of a LIF spiking neuron is given by

AVimem
o mem

i (1

= —Vmem + Ziliw;

The membrane potential vy, integrates incoming spikes I;
through weights w; and leaks (with time constant v) whenever
it does not receive a spike. The neuron outputs a spike event
when vyem crosses certain threshold vy,.s. Refractory period
ensues after spike generation during which the post-neuron’s
membrane potential is not affected. In some cases, Integrate-and-
Fire (IF) neurons are also used where leak value is 0 for simplicity
in simulations/hardware implementations. Note, while Figure 2
illustrates a fully-connected network, SNNs can be constructed
with a convolutional hierarchy comprising multiple layers. For
the sake of notation, we will refer to networks with real-valued

| 3wy, P‘KI‘_/{\\'Q

— |

Vmem® Vthresh
i )

T
LIF

Pre-Neuron

Post neuron spikes
Post-neuron’s
Membrane Potential

. Refractory Period,
: time

T I

Original

plotted at t = n is a summation of all spike maps fromt=0tot=n.

e coded spike im

FIGURE 2 | (A) A feedforward fully-connected SNN architecture with Leaky-Integrate-and-Fire (LIF) spiking dynamics is shown. The notations correspond to Equation
(1). (B) A sample CIFAR10 RGB pixel image (denoted as original) and corresponding rate-coded spike images at different time instants are shown. The spike image

>
Pre/Post spikes time

ages

— o

t=100

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

computations/ReLU neurons as ANNs and networks with spike-
based computations/LIF or IF neurons as SNNs.

3.2. Training Methodology

3.2.1. Conversion From ANN-to-SNN

To achieve higher accuracy with SNNs, a promising approach has
been to convert ANNs trained with standard backpropagation
into spiking versions. Fundamentally, the goal here is to match
the input-output mapping function of the trained ANN to that of
the SNN. Recent works (Diehl et al., 2015; Sengupta et al., 2019)
have proposed weight normalization and threshold balancing
methods in order to obtain minimal loss in accuracy during the
conversion process. In this work, we use the threshold balancing
method (Sengupta et al., 2019) that yields almost zero-loss
ANN-to-SNN conversion performance for deep VGG/ResNet-
like architectures on complex Imagenet dataset.

In threshold balancing, after obtaining the trained ANN, the
first step is to generate a Poisson spike train corresponding to
the entire training dataset for a large simulation duration or time
period (generally, 2,000-2,500 time steps). The Poisson spike train
allows us to record the maximum summation of weighted spike
input (X;w;.X;(t)) received by the first layer of the ANN. vy eq,
value for the first layer is then set to the maximum summation
value. After the threshold for the first layer is set, the network is
again fed the input data to obtain a spike-train at the first layer,
which serves as the input spike-stream for the second layer of
the network. This process of generating spike train and setting
Vinresh value is repeated for all layers of the network. Note, the
weights during this balancing process remain unchanged. For
more details on this technique (please see Sengupta et al., 2019).

While conversion approach yields high accuracy, the
computation cost is large due to high latency in processing.
Reducing the time period from 2,000 to 100/10 time steps causes
large decline in accuracy as vy.s; balancing fails to match the
output rate of SNN to that of ANN. Note, the accuracy of an
SNN in conversion case is bounded by the accuracy of the
corresponding ANN.

3.2.2. Approximate Gradient Descent (AGD)

The thresholding functionality in the spiking neuron yields
a discontinuous/non-differentiable functionality making it
incompatible with gradient-descent based learning methods.
Consequently, several training methodologies have been
proposed to incorporate the temporal statistics of SNNs and
overcome the gradient descent challenges (O’Connor et al., 2013;
Lee et al., 2016, 2018b; Panda and Roy, 2016; Bellec et al., 2018;
Neftci et al., 2019). The main idea is to approximate the spiking
neuron functionality with a continuously differentiable model or
use surrogate gradients as a relaxed version of the real gradients
to conduct gradient descent training. In our work, we use the
surrogate gradient approach proposed in Neftci et al. (2019).

In Neftci et al. (2019), the authors showed that temporal
statistics incorporated in SNN computations can be implemented
as a recurrent neural network computation graph (in, PyTorch,
Tensorflow; Abadi et al., 2016 frameworks) that can be unrolled
to conduct Backpropagation Through Time (BPTT) (Werbos
et al., 1990). The authors in Neftci et al. (2019) also showed

that using LIF computations in the forward propagation and
surrogate gradient derivatives during backpropagation allows
SNNs (of moderate depth) to be efficiently trained end-to-
end. Using a recurrent computational graph enables the use of
BPTT for appropriately assigning the gradients with chain rule
in the temporal SNN computations. Here, for a given SNN,
rate coded input spike trains are presented and the output
spiking activity at the final layer (which is usually a softmax
classifier) is monitored for a given time period. At the end of the
time period, the loss from the final softmax layer is calculated
and corresponding gradients are backpropagated through the
unrolled SNN computation graph.

Figure 3A illustrates the SNN computational graph. From an
implementation perspective, we can write the dynamics of an LIF
neuron in discrete time as

Vmem,'[t +1] = avmem,‘[t] + Ii[t] (2)
I[t] = EjW,’ij[t] (3)

Here, the output spike train S; of neuron i at time step
t is a non-linear function of membrane potential S;[tf] =
OVimem;[t] — Vinresh) where © is the Heaviside step function
and Ve, is the firing threshold. I; is the net input current
and @ = exp(—A;/Tmem) is the decay constant (typically in
the range {0.95,0.99}). During backpropagation, the derivative
of S(Vinem(t)) = O(Viem(t) — Vinresn) is zero everywhere except
at Viuem = Viresn Where it is not defined. This all-or-nothing
behavior of spiking neurons stops gradient from flowing through
chain rule making it difficult to perform gradient descent. We
approximate the gradient using surrogate derivatives for ®
following (Bellec et al., 2018; Neftci et al., 2019) as

ds[t]
AViem|1]

V, t] —
— ymax{0,1 — | mem ] — Vihresh I (4)

Vihresh

where y is a damping factor (set to 0.3) that yields stable
performance during BPTT. As shown in Figure 3B, using a
surrogate gradient (Equation 4) now replaces a zero derivative
with an approximate linear function. For more details and
insights on surrogate gradient descent training (please see Bellec
et al., 2018; Neftci et al., 2019). For convenience in notation,
we will use AGD to refer to surrogate descent training in the
remainder of the paper.

Using end-to-end training with spiking computations enables
us to lower the computation time period to 50-100 time
steps. However, these methods are limited in terms of
accuracy/performance and are also not suitable for training very
deep networks.

3.2.3. Unsupervised STDP Learning

STDP is a correlation based learning rule which modulates the
weight between two neurons based on the correlation between
pre- and post-neuronal spikes. In this work, we use a variant of
the STDP model used in Diehl and Cook (2015), Srinivasan et al.
(2018), and Srinivasan and Roy (2019) described as

Ipost—tpre

—( =

Awsrpp =1 X (e ) — STDP 1) (5)

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

A BPTT

St] s[o] s[1] SIN]
t t t t

V[t] = |V[0] — V[1] — ... —> V[N]
S t ;
I[t] 1[0] 1[1] I[N]

t=0 t=1 t=N

flow of gradients in AGD training.

FIGURE 3 | (A) SNN computational graph unrolled over multiple time-steps for computing the V or Ve and resultant output spike train S as a function of input
spikes /[t] is shown. (B) lllustration of indeterminate derivative for a threshold or step function that is replaced with a surrogate piecewise linear derivative to allow the

>

| —— Deriv. of Threshold/Step

— Piecewise linear surrogate deriv.

Derivative

1
Vthresh
Membrane Potential, V

where Awgsrpp is the weight update, 1 is the learning rate,
tpost» tpre are the time instants of post- and pre-neuronal spikes,
7 is the STDP time constant. Essentially, the weight is increased
if a pre-neuron triggers a post-neuron to fire within a time
period specified by the STDP,g,, implying strong correlation.
If the spike timing difference is large between the pre- and
post-neurons, the weight is decreased. In Srinivasan and Roy
(2019), the authors implemented a mini-batch version of STDP
training for training convolutional SNNs in a layerwise manner.
For training the weight kernels of the convolutional layers
shared between the input and output maps, the pre-/post-
spike timing differences are averaged across a given mini-batch
and corresponding STDP updates are performed. In this work,
we perform mini-batch training as in Lee et al. (2018b) and
Srinivasan and Roy (2019). We also use the uniform threshold
adaptation and dropout scheme following (Lee et al., 2018b;
Srinivasan et al., 2018; Srinivasan and Roy, 2019) to ensure
competitive learning with STDP. For more information on the
learning rule (please see Lee et al., 2018b; Srinivasan et al., 2018).

Generally, a network trained with layerwise STDP (for
convolutional layers) is appended with a classifier (separately
trained with backpropagation) to perform final prediction. The
authors in Srinivasan and Roy (2019) showed that unsupervised
STDP learning (even with binary/probabilistic weight updates)
of a deep SNN, appended with a fully-connected layer of ReLU
neurons, yields reasonable accuracy. However, similar to AGD,
layerwise STDP training is not scalable and yields restrictive
performance for deep multi-layered SNNs.

4. SNNS WITH BACKRES CONNECTIONS

BackRes allows a model to perform complex computation
over multiple logical depth by means of repeated unrolling.
From Figure 1, it appears that the number of output and
input channels in a BackRes block need to be equal for
consistency. However, given a BackRes block with 64 input
channels and 128 output channels (say, VGG2x4 network),
one can randomly drop 64 channels from the output during
unrolled computations. Selecting top-64 channels with maximal
activity, or averaging the response of 128 channels into 64 also
yields similar accuracy as that of a baseline network (VGGS).

For convenience, in our experiments, we use models with same
input/output channels and convert them to BackRes blocks. Next,
we discuss how to integrate BackRes connection for different
SNN training methodologies.

4.1. Conversion

In this methodology, SNN is constructed from a trained ANN.
Hence, the ANN has to incorporate BackRes connections with
repeated ReLU computations (similar to Figure 1) which then
need to be appropriately matched to spiking neuronal rates.
Figure 4 illustrates the conversion from ReLU to IF neurons.
Here, since unrolling each time yields a different output rate,
we need to ensure that we use multiple threshold IF neurons
where IF; with threshold v, is activated for n = 1 and
IF, with threshold vyq, for n = 2. Thus, the number of
thresholds vy, will be equal to the number of unrolling steps
n. During threshold balancing for conversion (see section 3.2.1),
we need to set the thresholds for each layer as well as each step
of unrolling within a layer separately. Interestingly, we find that
Vihresh increases with n, i.e., Viresh, < Vimreshy -+~ < Vihresh,-
Increasing threshold implies lesser spiking activity with each
unrolling which reduces the overall energy cost (results shown
in section 8.1).

4.2. AGD Training

In AGD training, an SNN is trained end-to-end with the loss
calculated at the output layer using surrogate gradient descent
on LIF neurons. The thresholds of all neurons are set to a user-
defined value at the beginning of training and remain constant
throughout the learning process. The weight updates inherently
account for the balanced spiking activity given the set thresholds.
Adding BackRes blocks in this case will be similar to training
a recurrent model with unrolled computation, that is treating
the BackRes block as a feedforward network of # layers. During
backpropagation, the gradients are passed through the unrolled
graph of the BackRes block, where, the same weights w are
updated »n times.

Figure 5 illustrates the backpropagation chain rule update. It
is worth mentioning that the LIF activity with every unrolling
varies, that eventually affects the weight update value at each
step. As in conversion, we find that networks with BackRes

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

| Block2 ° | Block2 ; \ Block2 -
.
Output Output Output Output
R.:._u c°"v‘\”;':i°“ |I= ||I1 Dhreresh, ||Iz i i
! x2 Threshold ! 2| = !
Conv Balancing Conv Conv Conv
2 t T Block1
‘-\.‘I\B_Iockl I!I "\-§|°Ck1 ¢" ln;;ut
Input Input n=1 n=2

FIGURE 4 | Conversion of ANN with BackRes blocks into SNNs using threshold balancing. Here, during BackRes computations, we need to use multiple threshold
Vinresh, , IF neurons IFy, IF2 to match the input-output activity between ANN and SNN at each unrolling step n = 1, 2.

Output | 04 Output 0,
f f
UF £, UF  f,
t t
Conv Conv

(w) (w)

Input (X) *

n=1 n=2

6; for BackProp

FIGURE 5 | AGD backpropagation chain rule update with BackRes connections. The BackRes block is essentially unrolled n times and the loss is propagated
through the unrolled graph to compute the weight updates at each unrolling step n = 1, 2 as shown. Note, the Conv layer weights w of the BackRes block receive
two updates with different input and output combinations giving rise to diverse gradients.

AGD with BackRes unrolling

Awatn =2

6, = WT5L * fz'
Awp_p = 6,0,
Awatn =1

8 =wTé,* fi
Awypoy = 6, X

w=w—n(Awp_y + Awy_5)

blocks and shared weights (say, VGG2x2) generally have lower
spiking activity than equivalent depth baseline network with
separate layers (say, VGG4), yielding energy improvements. This
implies that the repeated computation with unrolling gives rise to
diverse activity that can possibly model diverse features, thereby,
allowing the network to learn even with lesser depth. Note, the
BackRes network and the baseline network have same v e
through all layers when trained with AGD. Further, AGD training
has scalability limitations. For instance, a seven-layered VGG
network fails to learn with end-to-end surrogate gradient descent.
However, a network with BackRes blocks with real depth of
five layers and logical depth of seven layers can now be easily
trained and in fact yields competitive accuracy (results shown
in section 8.1).

4.3. STDP Training

SNNs learnt with STDP are trained layerwise in an iterative
manner. Generally, in one iteration of training (comprising of
T time-steps or 1 time period of input presentation), a layer’s
weights are updated k times (k < T) depending upon the
total spike activity in the pre-/post-layer maps and spiking
correlation (as per Equation 5). Since BackRes performs n
repeated computations of a single layer, in this case, we make
k x n weight updates for the given layer in each iteration of
STDP training. From Figure 5, we can gather that the pre-/post-
correlation at n = 1 unrolling step will correspond to input X
and Conv layer’s output that will determine its weight updates.
For n = 2, the Conv layers output from previous step will
serve as pre-spiking activity based on which the weights are

Frontiers in Neuroscience | www.frontiersin.org 7

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

updated again. Similar to AGD training, the overall activity at the
output of Conv changes with n which diversifies and improves the
capability of the network to learn better. We also find reduced
energy cost and better scalability toward large logical depth
networks that otherwise (with real depth) could not be trained
in a layerwise manner (results shown in section 8.1).

5. SNNS WITH STOCHMAX

Stochmax as noted earlier is a stochastic version of a softmax
function that allows a network to discriminate better by focusing
or giving importance to confusing classes. A softmax classifier is
defined as

Dyl 0) = exp(oy(x; 0))

= SPOrn 70 6
Srexp(op(x; 6)) (6)

where ¢ is the target label for input x, k is the number of
classes, and o(x;0) = WTh + b6 = {W,b} is the logits
score generated from the last feature vector h = NN(x; w) of
a neural network NN(.) parameterized by w. With Stochmax,
the objective is to randomly drop out classes in the training
phase with a motivation of learning an ensemble of classifiers in
a single training iteration. From Equation (6), we can see that
making exp(og) = 0 drops class k completely even eliminating
its gradients for backpropagation. Following this, Stochmax is
defined as:

zklx ~ Ber(z; pi(x; 6),
(2t + €)exp(os(x; 0))
S (zi + €)exp(or(x; 0))

P(}’|x)2§9) 10) == (7)

Here, we drop out classes with a probability (1 — px) based on
Bernoulli (Ber) trials. Further, to encode meaningful correlations
in the probabilities pg, we learn the probabilities as an output
of the neural network which takes last feature vector k as input
and outputs a sigmoidal value p(x; ¥) = O(WTw +by) Y =
{Wy, by }. By learning v, we expect that highly correlated classes
can be dropped or retained together. In essence, by dropping
classes, we let the network learn on different sub-problems at
each iteration. In SNN implementations, we replace the softmax
classifier (Equation 6) with a Stochmax function (Equation 7) at
the output. Generally, the classifier layer is a non-spiking layer
which receives accumulated input from the previous spiking layer
h integrated over the T time-steps per training iteration. The
loss is then calculated from stochmax output which is used to
calculate the gradients and perform weight updates.

It is evident that AGD training where the loss function at the
classifier is used to update the weights at all layers of a deep
SNN will be affected by this softmax-to-stochmax replacement.
We find that this attentive discrimination that implicitly models
many classifiers (providing different decision boundaries) per
training iteration allows an SNN to be trained even with lower
latency (or lesser time steps per training iteration or input
presentation) while yielding high accuracy. Lower latency implies
that pixel-to-spike input coding with Poisson rate will incur more
loss. However, the deficit of the input coding gets rectified with
improved classification.

In Conversion, an ANN is trained separately and is completely
dissociated from the spiking statistics. STDP, on similar lines,
has spike-based training of intermediate feature extractor layers.
The final classifier layers (which are separately trained) are
appended to the STDP-trained layers and again do not influence
the weight or activity learnt in the previous layers. Thus, while
Stochmax classifier inclusion slightly improves the accuracy of
both conversion/STDP methods, they remain unaffected from a
latency perspective.

6. SNNS WITH HYBRID RELU-AND-LIF
NEURONS

The objective with a partly-artificial-and-partly-spiking neural
architecture is to achieve improved accuracy. For artificial-to-
spiking conversion methodology, since training is performed
using ReLU neuronal units and inference with spiking integrate-
and-fire neurons, network hybridization is not necessary
and will not add to the overall accuracy. Most works on
STDP learning use hybrid network architecture where STDP
is used to perform feature extraction with greedy layer-
wise training of the convolutional layers of a deep network.
Then, a one-layer fully connected ANN (with ReLU neurons)
is appended to the STDP trained layers to perform final
classification. However, STDP is limited in its capability to
extract specific features from the input that are key for
classification. We find that strengthening the ANN hierarchy
of an STDP-trained SNN (either with Stochmax or deepening
the ANN with multiple layers) yields significant improvement
in accuracy.

In AGD, since learning is performed end-to-end vanishing
spike-propagation restricts the training of a deep many-layered
network. For instance, a VGG7 network fails to train with AGD.
In fact, even with residual or skip connections that leads to a
ResNet7-like architecture, the model is difficult to train. BackRes
connections are potential solutions for training logically deep
networks. However, to achieve better accuracy for deeper many-
layered networks, there is a need to hybridize the layers of the
network with ReLU and LIF neurons.

Figure 6 illustrates the hybrid network configuration. We
have ReLU neurons in initial layers and temporal LIF neurons
in latter layers. During forward propagation, the input processed
through the ANN — block is then propagated through
the SNN — block unrolled over different time-steps as a
recurrent computational graph to calculate the loss at the final
output layer (that can be softmax/stochmax function). In the
backward phase, the gradient of loss is propagated through
the recurrent graph updating the weights of the SNN block
with surrogate linear approximation of the LIF functionality
corresponding to activity at each time step. The loss gradient
calculated through BPTT are then passed through the ANN-
block (which calculates the weight updates in ANN with
standard chain rule). It is worth mentioning that setting up
a hybrid network in a framework like PyTorch automatically
performs recurrent graph unrolling for SNN-block and standard
feedforward graph for ANN-block and enables appropriate

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al. Accurate and Efficient Spiking Networks
Input Convl — RelU — Conv2 — RelU ~H Convd — LIF — Conv4d — LIF % Output
ANN-Block J\ SNN-Block
qus

—— s[o] s[1] SIN] | |

I

Input ANN- t ¢ t :

Block V[0] — V[1] — ... — V[N] |

: j t ) -

dLoss  0dloss PR b A X| !
OW ann OW sy |

\ 0 =1 onN-Block N

real-valued input X computed from the ANN — block at each time-step.

FIGURE 6 | A hybrid network architecture with ReLU activation initially and LIF activation in latter layers for AGD training is shown. During AGD backpropagation, the
SNN — block is unrolled and the weight updates are calculated through the unrolled graph over different time-steps using chain-rule. The loss gradient from the
SNN — block, a%‘;i]i] , is then backpropagated through the ANN computational graph to calculate the ANN loss gradients FIoA

dLoss
N

Note, the SNN — block receives the

gradient calculation and weight updates. We would also like
to note that we feed in the output of the ANN-block as it
is (without any rate-coding) to the SNN-block. That is, the
unrolled SNN graph at each time-step receives the same real-
valued input X. We find that processing X instead of rate-
coded X[t] yields higher accuracy at nearly-same energy or
computation cost.

Note, there has been recent works (Pei et al., 2019; Voelker
etal., 2020) that also portray hybrid SNN-ANN implementations.
We would like to clarify that our partly-artificial-and-partly-
spiking hybrid neural network implementation is very different
from Pei et al. (2019) and Voelker et al. (2020). In Pei
et al. (2019), the authors propose a hybrid accelerator that
can operate both an SNN and ANN. In their hybrid-mode
network implementation, the hybrid layer used “SNN-input and
ANN-output” cores to integrate SNN spikes and generate ANN
signals (high-precision intermediate membrane potentials), and
then used “ANN-input and SNN-output” cores to accumulate
these ANN signals and fire SNN spikes again. On similar
lines, the hybrid implementation proposed in Pei et al. (2019)
is completely different from our technique. In Voelker et al.
(2020), the authors smoothly interpolate between ANN (i.e.,
32-bit activities) and SNN (i.e., 1-bit activities) regimes. The
key idea is to interpret spiking neurons as one-bit quantizers
that diffuse their quantization error across future time-steps.
In other words, the entire network has neuronal activation
initialized as a temporally diffused quantizer and during the
training period, the quantizer is scaled. Both the approaches are
very different from our proposed hybrid ANN-SNN training
scheme. In our hybrid scheme, we essentially initialize a hybrid
ANN-SNN multi-layered network wherein, certain layers have
standard ReLU neuronal activation and certain layers have
IF neuronal activation that is then trained with appropriate
SNN layer unrolling for proper gradient assignment as shown
in Figure 6.

7. EXPERIMENTS

We conduct a series of experiments for each optimization
scheme, primarily, using CIFAR10 and Imagenet data on VGG
and ResNet architectures of different depths detailing the
advantages and limitation of each approach. We implemented
all SNN models in PyTorch and used the same hyperparameters
(such as, leak time constant, vy, value, input spike rate etc.)
as used in Sengupta et al. (2019), Neftci et al. (2019), Srinivasan
and Roy (2019) for conversion, surrogate gradient descent, and
STDP training, respectively. In all experiments, we measure
the accuracy, latency, energy or total compute cost, and total
parameters for a given SNN implementation and compare it
to the baseline ANN counterpart. Latency is measured as total
number of time-steps required to perform an inference for one
input. In case of ANN, latency during inference is 1, while, SNN
latency is the total number of time-steps T over which an input is
presented to the network. Note, in all our experiments, all ANNs
and SNNs are trained for different number of epochs/iterations
until maximum accuracy is achieved in each case.

The total compute cost is measured as total number of
floating point operations (FLOPS) which is roughly equivalent
to the number of multiply-and-accumulate (MAC) or dot
product operations performed per inference per input (Han
et al, 2015a,b). In case of SNN, since the computation is
performed over binary events, only accumulate (AC) operations
are required to perform the dot product (without any multiplier).
Thus, SNN /ANN FLOPS count will consider AC/MAC
operations, respectively. For a particular convolutional layer of
an ANN/SNN, with N input channels, M output channels, input
map size I x I, weight kernel size k x k and output size O x O,
total FLOPS count for ANN/SNN is

FLOPSAny = O* * Nx k>« M
FLOPSsyn = O% % N s« k> % M % Sy

(8)
)

Frontiers in Neuroscience | www.frontiersin.org

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

TABLE 1 | Energy table for 45 nm CMOS process.

Operation Energy (pJ)
32-b MULT Int 3.1
32-b ADD Int 0.1
32-b MAC Int 3.2 (Emac)
32-b AC Int 0.1 (Eac)

Note, FLOPSgyn in Equation (9) is calculated per time-step and
considers the net spiking activity (S4) that is the total number
of firing neurons per layer. In general, S4 << 1 in an SNN on
account of sparse event-driven activity, whereas, in ANNs Sy =
1. For energy calculation, we specify each MAC or AC operation
at the register transfer logic (RTL) level for 45 nm CMOS
technology (Han et al., 2015b). Considering 32-bit weight values,
the energy consumption for a 32-bit integer MAC/AC operation
(Emac> Eac) is shown in Table 1. Total inference energy E for
ANN/SNN considering FLOPS count across all N layers of a
network is defined as

N
Eann = () FLOPSoNN) * Eyiac (10)
i=1
N
Esny = () FLOPSsn) # Eac % T (11)

i=1

For SNN, the energy calculation considers the latency incurred
as the rate-coded input spike train has to be presented over
T time-steps to yield the final prediction result. Note, this
calculation is a rather rough estimate which does not take into
account memory access energy and other hardware architectural
aspects such as input-sharing or weight-sharing. Given, that
memory access energy remains same irrespective of SNN or
ANN network topology, the overall Energy-Efficiency (EE) EE =
Eann/Esny will remain unaffected with or without memory
access consideration. Finally, to show the advantage of utilizing
BackRes connections, we also compute the total number of
unique parameters (i.e., total number of weights) in a network
and calculate the compression ratio that BackRes blocks yield
over conventional feedforward blocks of similar logical depth.

8. RESULTS

8.1. Impact of BackRes Connections

First, we show the impact of incorporating BackRes Connections
for conversion based SNNs. Table2 compares the accuracy
and total # parameters across different network topologies
(described in Table3) for ANN/SNN implementations on
CIFARI10 data. For the sake of understanding, we provide the
unrolled computation graph of networks with BackRes blocks
and repeated computations in Table 3. For instance, VGG2x4
refers to a network which has two unique convolutional layers
(Convl, Conv2) where Conv2 receives a BackRes Connection
from its output and is computed 4 times before processing

TABLE 2 | Accuracy and Total # parameters for ANN and corresponding
converted SNN topologies (refer Table 3) for different latency T on CIFAR10 data.

ANN SNN SNN
Model T=1) (T = 250) (T = 2500) #Parameters
(Accuracy %)
VGG7 88.74 85.88 88.56 1.2M (1x)
VGG2x4 86.14 81.99 86.23 1.09M (1.1x)
VGG3x2-v1 87.34 83.31 87.15 1.13M (1.06x)
TABLE 3 | CIFAR10 network topologies for Conversion training.
Model Configuration BackRes
VGG7 Input-Conv1(3,64,3 x 3/1)-Conv2(64,64,3 x 3/1)-
—Conv3(64,64,3 x 3/1)- Conv4(64,64,3 x 3/1)- Not
—Conv5(64,64,3 x 3/1)-Pool(2x2/2)-Pool(2 x 2/2)-  applicable
—Pool(2 x 2/2)-FC1(2048,512)-FC2(512,10)
VGG2x4 Input-Conv1(3,64,3 x 3/1)-Conv2(64,64,3 x 3/1)-
—Conv2(64,64,3 x 3/1)-Conv2(64,64,3 x 3/1)- (Conv2]
repeated
—Conv2(64,64,3 x 3/1)-Pool2 x 2/2)-Pool2 x 2/2- 4 times
—Pool(2 x 2/2)-FC1(2048,512)-FC2(512,10)
VGG3x2-v1 Input-Conv1(3,64,3 x 3/1)-Conv2(64,64,3 x 3/1)- [Conva—
—Conv3(64,64,3 x 3/1)-Conv2(64,64,3 x 3/1)- Conv3]
—Conv3(64,64,3 x 3/1)-Pool(2 x 2/2)-Pool(2 x 2/2)-  repeated
2 times

—Pool(2 x 2/2)-FC1(2048,512)-FC2(512,10)

ConvN(l,0,kxk/s) denotes N' convolutional layer with | input channels, O output
channels, kernel of size k x k with stride s. Pool(p x p/sp) denotes average pooling layer with
pooling window size p x p and pooling stride sp. FC(X,Y) denote a fully-connected layer
with X input nodes and Y output nodes. Layers with BackRes connections and repeated
computations have been highlighted in red.

the next layer as depicted in Table 3. Similarly, VGG3x2-
vl refers to a network with three unique convolutional
layers (Convl, Conv2, Conv3) with Conv2, Conv3 computation
repeated two times in the order depicted in Table 3. Note,
VGG2x4/VGG3x2-v1 achieve the same logical depth of a 7-
unique layered (including fully connected layers) VGG7 network.

In Table 2, we observe that accuracy of ANNs with BackRes
connections suffer minimal loss (upto ~ 1 — 2% loss) to
that of the baseline ANN-VGG7 model. The corresponding
converted SNNs with BackRes connections also yield near-
accuracy. It is evident that SNNs with higher computation time
or latency T yield better accuracy. While the improvement in
total # parameters is minimal here, we observe a significant
improvement in energy efficiency [EE = E“%’Ni(lx) calculated
using Equations (10), (11)] with BackRes additions as shown
in Figure 7. Note, the EE of SNNs shown in Figure 7 is plotted
by taking the corresponding ANN topology as baseline (EE of
VGG2x4 SNN is measured with respect to VGG2x4 ANN). The
large efficiency gains observed can be attributed to the sparsity
obtained with event-driven spike-based processing as well as the
repeated computation achieved with BackRes connections. In
fact, we find that net spiking activity for a given layer decreases
over repeated computations (implying a “sparsifying effect”) with

Frontiers in Neuroscience | www.frontiersin.org

10

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al. Accurate and Efficient Spiking Networks
TABLE 5 | Imagenet network topologies for conversion training.
EANN(]-X)

— P —— i 1
W 120 Model Configuration BackRes
i 104.8x . Esun |
a 81.3x VGG16 Input-Conv1(3,64,3x3/1)-Conv2(64,64,3x3/1)-
S 80 74.9x —Pool(2 x 2/2)-Conv3(64,128,3 x 3/1)-Pool(2 x
E 60 2/2)-Conv4(128,256,3 x 3/1)- Not
b —Convb5(256,256,3 x 3/1)-Conve(256,256,3 x applicable
w40 3/1)-Pool(2 x 2/2)-Conv7(256,512,3 x 3/1)-
§ 20 6.52 10 6X ~Conv8(512,512,3 x 3/1)-Conva(512,512,3 x
Q 22X 3/1)-Conv10(512,512,3 x 3/1)-Conv11(512,512,3 x
c 0 |
w 3/1)-

VGG7 VGG2x4 VGG4x2 ~Convi2(512,512,3 x 3/1)-Convi3(512,512,3 x

3/1)-Pool(2 x 2/2)-Pool(2 x 2/2)-
m SNN(T=250) ® SNN(T=2500)
—FC1(25088,4096)-FC2(4096,1000)

FIGURE 7 | Energy-Efficiency EE results for different SNN topologies (from VGGT1x2 Input-Conv1(3,64,3 x 3/1)-Conv2(64,64,3 x 3/1)- [Conv5]&
Table 3) with/without BackRes connections trained with Conversion technique —Pool2 x 2/2)-Conv3(64,128,3 x 3/1)-Pool(2 x [Conv7-
on CIFAR10 data. The efficiency values have been denoted on top of each 2/2)-Conv4(128,256,3 x 3/1)-Conv5(256,256,3 x 3/1)- o8-
graph for clarity. Note, EE > 1 implies Eann > Esny denoting lower energy -Conv5(256,256,3 x 3/1)-Pool(2 x Conv9)
consumption with SNN implementations. 2/2)-Conv6(256,512,3 x 3/1)-Conv7(512,512,3 x 3/1)- repeated

TABLE 4 | Accuracy, Total # parameters and Energy Efficiency EE for converted
SNN topologies (refer Table 5) of latency T = 2,500 and corresponding ANN on
imagenet data.

ANN SNN EE=
Model T=1) (T = 2500) #Parameters E‘EVN“X)
SNN
[Accuracy (Top-1/Top-5%)]
70.52/ 69.96/ 123.8M
VGG1 1.97
GG16 89.39 89.01 (1x) 97ox
69.72/ 68.57/ 116.1M
3.66
VEGID2  gg 56 87.66 (1.07%) X

each unrolling step (due to increasing threshold per unrolling,
see section 4). Consequently, VGG2x4 with n 4 repeated
computation yields larger EE (~ 1.3x) than VGG3x2-v1 (n = 2).

Table 4 illustrates the Top-1/Top-5 accuracy, parameter
compression ratio and EE benefits observed with BackRes
connections on Imagenet dataset (for topologies shown
in Table5). Note, VGGI11x2 (comprising of 11 unique
convolutional or fully-connected layers) with BackRes
connections and repeated computations achieves the same
logical depth of 16 layers as that of VGG16. The accuracy loss in
VGG11x2 (SNN) is minimal ~ 1% while yielding ~ 2x greater
EE compared to VGG16 (SNN). We also find that for complex
datasets like Imagenet, lower latency of T' = 250 yields very low
accuracy with or without BackRes computations.

Next, we evaluate the benefits of adding BackRes connections
for SNNs trained with STDP. As discussed earlier, in STDP
training, the convolutional layers of a network are trained
layerwise with LIF neurons. Then, an ANN classifier is appended
to the STDP trained layers, wherein, the ANN classifier is
trained separately on the overall spiking activity collected at
the SNN layers. Table 6 shows the accuracy, # parameters
and EE benefits of SNN topologies (listed in Table7) with
respect to corresponding ANN baselines. All ANN baselines
are trained end-to-end with backpropagation and requires the

—Conv8(512,512,3 x 3/1)-Conv9(512,512,3 x 2 times
3/1)-Conv7(512,512,3 x 3/1)-Conv8(512,512,3 x 3/1)-
—Conv9(512,512,3 x 3/1)-Pool(2 x 2/2)-Pool(2 x 2/2)-

~FC1(25088,4096)-FC2(4096,1000)

Notations are same as that of Table 3. Layers with BackRes connections and repeated
computations have been highlighted in red.

TABLE 6 | Accuracy, Total # parameters and Energy Efficiency EE for
STDP-trained SNN topologies (refer Table 7) of latency T = 100 and
corresponding ANN on CIFAR10 data.

ANN SNN EEconv/EEFuI=
Model T=1) (T = 100) #Parameters EAENSNN(:IX)
(Accuracy%)
ResNet2 78.26 61.02 18.9M 1.64x/1.16x
ResNet3 80.11 51.1 28.37 M 1.81x/1.28x
ResNet2x2 79.39 63.21 28.35 M 10.56x/1.78x

EEcony considers the energy calculated only for the convolutional/pooling layers excluding
the FC layers, EEFry considers the total energy of the network including the FC layers.

entire CIFARI10 training dataset (50,000 labeled instances). On
the other hand, all SNNs requires only 5,000 instances for
training the Convolutional layers. Then, the fully-connected
classifier (comprising of FC1, FC2 layers in Table 7) appended
separately to the STDP-learnt layers are trained on the entire
CIFARI10 dataset.

From Table 6, we observe that SNN accuracy is considerably
lower than corresponding ANN accuracy. This can be attributed
to the limitation of STDP training to extract relevant features in
an unsupervised manner. In fact, deepening the network from
ResNet2 to ResNet3 causes a decline in accuracy corroborating
the results of previous works (Srinivasan and Roy, 2019).
However, adding BackRes connection in ResNet2x2 which
achieves same logical depth as ResNet3 improves the accuracy of
the network while yielding significant gains (~ 10x) in terms of
EE. For EE, we show the gains considering the full network EEp,j

Frontiers in Neuroscience | www.frontiersin.org

11

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

TABLE 7 | CIFAR10 network topologies for STDP training methodology.

Model Configuration BackRes Skip
ResNet2 Input-Conv1(3,36,3 x 3/1)-Conv2(36,36,3 x 3/1)- Not Input-to-Conv2,
—Pool(2 x 2/2)-FC1(18432,1024)-FC2(1024,10) applicable Convi-to-FC1
ResNet3 Input-Conv1(3,36,3 x 3/1)—
-Conv2(36,36,3 x 3/1)- Not Input-to-Conv2,
licabl Convi-to-FC1,
-Conv3(36,36,3 x 3/1)-Pool(2x2/2)- applicable Conva-to-FCA
-FC1(27648,1024)-FC2(1024,10)
ResNet2x2 Input-Conv1(3,36,3x3/1)-
[Conv2]
—Conv2(36,36,3x3/1)— Input-to-Conv2,
repeated
—Conv2(36,36,3x3/1)-Pool(2x 2/2)- 2 times Convi-to-FC1

—FC1(18432,1024)-FC2(1024,10)

Notations are same as that of Table 3. Layers with BackRes connections and repeated computations have been highlighted in red. Forward Residual or Skip connections between

layers of a network are denoted in blue.

TABLE 8 | Accuracy, Total, # parameters, and Energy Efficiency EE for AGD
trained SNN topologies (refer Table 9) of latency T = 25, 50, and corresponding
ANN on CIFAR10 data.

ANN SNN SNN EE=
Model =1 (T = 25) (T = 50) #Parameters Ei:x’(vT(L;)S)
(Accuracy%)
VGG5 75.86 71.92 72.77 2.21M 14.75x
VGG3x2-v2 74.99 71.07 71.97 2.18M 16.2x
VGG7 72.26 - - 2.3M -
VGG3x4 69.52 74.23 75.01 2.19M 26.44x

TABLE 9 | CIFAR10 network topologies for AGD training methodology.

Model Configuration BackRes

VGG5 Input-Conv1(3,64,3x3/1)-Conv2(64,64,3x3/1)- Not
—Pool(2x2/2)-Conva3(3,64,3x3/1)-Conv4(64,64,3x3/1)-  applicable
—Pool(2x2/2)-FC1(4096,512)-FC2(512,10)

VGG3x2-v2  Input-Conv1(3,64,3x3/1)-Conv2(64,64,3x3/1)- [Conva]
—Pool(2x2/2)-Conv3(3,64,3x3/1)-Conv3(64,64,3x3/1)-  repeated
~Pool(2x2/2)-FC1(4096,512)-FC2(512,10) 2 times

VGG7 Input-Conv1(3,64,3x3/1)-Conv2(64,64,3x3/1)- Not
—Pool(2x2/2)-Conv3(3,64,3x3/1)-Conv4(64,64,3x3/1)-  applicable
~Conv5(3,64,3x3/1)-Conv6(64,64,3x3/1)-
—Pool(2x2/2)-FC1(4096,512)-FC2(512,10)

VGG3x4 Input-Conv1(3,64,3x3/1)-Conv2(64,64,3x3/1)-
—PO0I(2x2/2)-Conv3(3,64,3x3/1)-Conva(64,64,3x3/1)-  LCOMVS]
—Conv3(3,64,3x3/1)-Conv3(64,64,3x3/1)- ;egga;:d

~Pool(2x2/2)-FC1(4096,512)-FC2(512,10)

Notations are same as that of Table 3. Layers with BackRes connections and repeated
computations have been highlighted in red.

(including spiking convolutional and ReLU FC layers), as well as,
the gain considering only the spiking convolutional layers EEc,psy.
The spiking layers on account of event-driven sparse computing
exhibit higher efficiency than the full network (i.e., EEcon, >

EEg,). Interestingly, ResNet2x2 yields ~ 10x higher efficiency
at the spiking layers which further supports the fact that BackRes
connections have a “sparsifying” effect on the intrinsic spiking
dynamics of the network. This result establishes the advantage of
BackRes connection in enabling scalability of STDP-based SNN
training methodologies toward larger logical depth while yielding
both accuracy and efficiency improvements.

For AGD training, BackRes additions yield both accuracy
and scalability related benefits. Table 8 shows the accuracy, #
parameters and EE benefits of SNN topologies (listed in Table 9)
for different latency T = 25,50 with respect to corresponding
ANN baselines. Similar to Conversion/STDP results, end-to-end
AGD training with spiking statistics (using surrogate gradient
descent) for VGG5 and VGG3x2-v2 of equivalent logical depth
as VGGS5 yields minimal accuracy loss (~ 2 — 3%) and large
EE gains (~ 15x) in comparison to corresponding ANNS.
However, for a VGG7 network with 7-layered depth, AGD
fails to train an SNN end-to-end due to vanishing forward
spike-propagation. Interestingly, a VGG3x4 network with similar
logical depth of 7-layers as VGG7 and repeated computations
not only trains well with AGD, but also yields higher accuracy
than both VGG7/VGG3x4 ANN baselines. This implies that LIF
neurons with spiking statistics have the potential of yielding more
diversified computation profile with BackRes unrolling than
ReLU neurons. In addition to accuracy and scalability benefits,
SNNs with BackRes connections yield high EE benefits as shown
in Table 8 (due to the inherent “sparsifying” effect) that point to
their suitability for low-power hardware implementations.

8.2. Impact of Stochmax

Stochmax is  essentially a  classification-performance
improvement technique that can result in improved latency
benefits. First, we show the impact of incorporating stochmax
classifier for SNNs trained with AGD. Table 10 compares the
accuracy of small VGG3 SNN trained with AGD for different
latency T. Here, the FC2 layer of VGG3 topology is implemented
as a softmax or stochmax classifier. We observe a consistent
improvement in accuracy for stochmax implementations.
In Table1l, we show the accuracy results for SNNs of

Frontiers in Neuroscience | www.frontiersin.org 12

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

TABLE 10 | Accuracy for AGD trained SNN of VGG3 topology (refer to last row)
for different latency T = 5, 10, 25 on CIFAR10 data.

Model T=5 T=10 T=25
VGG3

(StochMax) 50.4 65.24 70.2
VGG3

(SoftMax) 49.1 64.44 67.1
Vaas Input-Conv1(3,64,3x3/1)-Pool(2x2/2)

~Conv2(64,64,3x3/1)-Pool(2x2/2)—
(Topology)

FC1(4096,512)-FC2(512,10)

TABLE 11 | Accuracy and EE benefits for AGD trained SNN with stochmax
classifier on VGG5/VGG3x2-v2 topology (refer to Table 9) for different latency
T = 25,50 on CIFAR10 data.

EE= EE=
Model T=25 T =50 Eann(1x) EsnNisoftmax)
Esnn Esnn(stochmax)
(Accuracy%) (for T = 25)
VGG5 75.26 75.92 23.83x 1.62x
VGG3x2-v2 72.62 7317 31.88x 1.97x

TABLE 12 | Accuracy and EE benefits for STDP trained SNN with ConvNN
classifier (Table 13) appended to ResNet2, ResNet2x2, ResNet3 topology (refer
to Table 7) on CIFAR10 data.

ANN SNN EEconv/EEFu=
Model T=1 T =100 Equn(1x)
SNN
(Accuracy%)
ResNet2 83.5 77.92 1.64x/1.08x
ResNet3 79.85 76.52 1.81x/1.69x
ResNet2x2 83.2 80.1 10.56x/2.14x

EEcony considers the energy calculated only for the convolutional/pooling layers excluding
the FC layers, EEFr, considers the total energy of the network including the FC layers.

VGG5/VGG3x2-v2 topology with stochmax classifiers. It is
evident that stochmax improves the performance by ~ 3 — 4% as
compared to softmax implementations in Table 8. In addition to
accuracy, we also observe a larger gain in energy-efficiency with
stochmax implementations. We find that conducting end-to-end
AGD training with stochmax loss leads to sparser spiking activity
across different layers of a network as compared to softmax.
We believe this might be responsible for the efficiency gains.
Further theoretical investigation is required to understand the
role of loss optimization in a temporal processing landscape
toward decreasing the spiking activity without affecting the
gradient values. Tables 10, 11 results suggest stochmax as a
viable technique for practical applications where we need to
obtain higher accuracy and energy benefits with constrained
latency or processing time.

Inclusion of stochmax classifier in SNNs trained with
conversion/STDP training results in a slight improvement in
accuracy ~ 1 — 2% for CIFARIO data (for VGG7/ResNet3
topologies from Tables 2, 6), respectively. Since stochmax is
dissociated from the training process in both STDP/conversion,

TABLE 13 | ConvNN classifier network topologies for STDP training methodology.

Model Configuration

ConvNN

ResNet2, ResNet2x2 Input—Conv1(72,72,3x3/1)-Conv2(72,72,3x3/1)-
—Pool(2x2/2)-Conv3(72,144,3x3/1)—
—Conv4(144,144,3x3/1)-Pool(2x2/2)—

—FC1(2304,1024)-FC2(1024,10)

ConvNN

ResNet3 Input-Conv1(108,108,3x3/1)-Conv2(108,108,3x3/1)-
—Pool(2x2/2)-Conv3(108,216,3x3/1)—
—Conv4(216,216,3x3/1)-Pool(2x2/2)—

~FC1(3456,1024)-FC2(1024,10)

Notations are same as that of Table 3.

TABLE 14 | Accuracy, Total, # parameters, and Energy Efficiency EE for AGD
trained SNN topologies (refer Table 15) with hybrid RelLU/LIF neurons of latency
T = 25 and corresponding ANN on CIFAR10 data.

ANN SNN EE=
Model
odel T-1 T_25 #Parameters EAENSA’I\,(,:X)
(Accuracy%)
VGG9 83.33 84.98 5.96M 3.98x
VGG8x2 83.49 84.26 5.37M 4.1x

TABLE 15 | Network topologies for AGD training methodology with hybrid layers
and stochmax classifier at the end.

Model Configuration BackRes

VGG Input-Conv1(3,64,3x3/1)-RelLU-
—Conv2(64,64,3x3/1)-RelU-Pool(2x2/2)- Not
—Conv3(64,128,3x3/1)-LIF- applicable
—Conv4(128,128,3x3/1)-LIF-Pool(2x2/2)-
—Conv5(128,256,3x3/1)-LIF-
~Conv6(256, 256,3x3/1)-LIF-
~Conv7(256,256,3x3/1)-LIF-Pool(2x2/2)~
—FC1(4096,1024)-LIF-FC2(1024,10)

VGG8x2 Input-Conv1(3,64,3x3/1)-RelLU-
~Conv2(64,64,3x3/1)-ReLU-Pool(2x2/2)— [Conve]

repeated

—Conv3(64,128,3x3/1)-LIF- 2 times

(
~Conv4(128,128,3x3/1)-LIF-Pool(2x2/2)-
~Conv5(128,256,3x3/1)-LIF—
~Conve(256, 256,3x3/1)-LIF-
~ConvB(256,256,3x3/1)-LIF-Pool(2x2/2)~
—FC1(4096,1024)-LIF-FC2(1024,10)

Notations are same as that of Table 3.

the latency and energy efficiency results are not affected. Note, all
results shown in Tables 2-8 use softmax classifier.

8.3. Impact of Hybridization

Except for Conversion, both STDP and AGD training techniques
fail to yield high accuracy for deeper network implementations.
While BackRes connections and Stochmax classifiers improve

Frontiers in Neuroscience | www.frontiersin.org

13

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

the accuracy, an SNN still lags behind its corresponding ANN
in terms of performance. To improve the accuracy, we employ
hybridization with partially ReLU and partially LIF neurons for
SNN implementations.

For STDP, we strengthen the classifier that is appended to
the STDP trained convolutional layers to get better accuracy.
Essentially, we replace the fully-connected layers FC1, FC2 of
the topologies in Table 7 with a larger convolutional network
ConvNN (ConvNN topology description is given in Table 13).
Table 12 shows the accuracy, EE results for the STDP trained
ResNet topologies appended now with corresponding ConvNN
and compared to a similar ANN baseline (say, ResNet2 ANN
corresponds to an ANN with ResNet2 topology with FC layers
replaced by ConvNN classifier from Table 13). Strengthening
the classifier hierarchy now results in higher accuracies (~>
75%) comparable to the ANN performance of Table 6, while still
lagging behind the ANN baseline of similar topology. However,
the accuracy loss between ANN and SNN in this case reduces
quite significantly (> 20% loss in Table6 to ~ 3% loss in
Table 12). Similar to Table 6, for EE, the gains considering only
spiking layers are greater than that of the full network.

For AGD, as discussed in section 6, we hybridize our
network with initial layers comprising of ReLU and latter
layers of LIF neurons and perform end-to-end gradient descent.
Table 14 shows the accuracy and EE gain results for a VGG9,
VGG8x2 model (topology description in Table 15) with BackRes
connection trained using hybridization for CIFAR10 dara. Note,
only the first two convolutional layers Convl, Conv2 use ReLU
activation, while the remaining layers use LIF functionality. In
addition, we use a stochmax classifier at the end instead of
softmax to get better accuracy. Earlier, we saw that a 7-layered
network could not be trained with AGD (see Table 8). Inclusion
of ReLU layers now allows a deep 9-layered network to be trained
end-to-end while yielding considerable energy-efficiency gain
with slightly improved accuracy (~ 1% improvement in accuracy
in SNN) in comparison to a corresponding ANN baseline
(note, ANN baseline has ReLU activation in all layers). To have
fair comparison between ANN and SNN, ANN baselines are
trained without any batch normalization or other regularization
techniques. Including batch normalization and dropout in ANN
training yields ~ 86% accuracy that is still fairly close to
~ 85% accuracy obtained with the SNN implementations. To
calculate EE gains in hybrid SNN implementations, we consider
MAC energy for ReLU layers (Convl, Conv2 in Table 14) and
AC energy for remaining LIF layers (Conv3 — Conv7(6) in
Table 14). VGG8x2 achieves equivalent logical depth as VGG9.
Similar to earlier results, VGG8x2 yields slightly higher benefit
than VGG9 on account of the “sparsifying” effect induced by
BackRes computations.

Table 16 shows the results of a VGG13 model (topology
description in Table 17) trained with hybrid ReLU/LIF neuron
layers on Imagenet dataset learn with end-to-end gradient
descent. Interestingly, for Imagenet data, we had to use ReLU
neuronal activations both in the beginning as well as at the
end as shown in Table 17. After some trial-and-error analysis,
we found that training with more LIF neuronal layers for a
complex dataset like Imagenet did not yield good performance.

TABLE 16 | Accuracy and Energy Efficiency EE for AGD trained SNN topologies
(refer Table 17) with hybrid ReLU/LIF neurons of latency T = 10 and
corresponding ANN on Imagenet data.

ANN SNN EE =
Model T=1 T=10 Eann(1x)
- - ESNN
(Accuracy%)
Top-169.9 Top-167.6
VGG1 1.31
Ga1s Top-5 89.9 Top-5 88.23 Six

TABLE 17 | Network topologies for AGD training methodology with hybrid layers
and softmax classifier at the end for imagenet dataset.

Model Configuration BackRes

VGG13 Input-Conv1(3,64,3x3/1)-Rel.U-
—Conv2(64,64,3x3/1)-Rel.U-Pool(2x2/2)— Not
—Conv3(64,128,3x3/1)-RelLU~- applicable

(
—Conv4(128,128,3x3/1)-ReLU-Pool(2x2/2)-
—Conv5(128,256,3x3/1)-ReLU-
—Conv6(256,256,3x3/1)-ReLU-Pool(2x2/2)-
—Conv7(256, 512,3x3/1)-LIF-
—Conv8(512,512,3x3/1)-LIF-Pool(2x2/2)-
—Conv9(512,512,3x3/1)-ReLU-
—Conv10(512,512,3x3/1)-ReLU-Pool(2x2/2)-
-FC1(25088,4096)-Rel. U-FC2(4096,4096)
—-FC3(4096,1000)

Notations are same as that of Table 3.

In case of a VGGI13 network, converting the middle two layers
into spiking LIF neurons yielded iso-accuracy as that of a fully-
ReLU activation based ANN. Even with a minor portion of
the network offering sparse neuronal spiking activity, we still
observe 1.3 x improvement in EE with our hybrid model over the
standard ANN. It is also worth mentioning that the spiking LIF
neurons of the hybrid VGG13 network have a lower processing
latency of T 10. We believe that using ReLU activations
in majority of the VGG13 network enabled us to process the
spiking layers at lower latency. We can expect higher EE gains
by adding suitable backward residual connections in the spiking
layers to compensate for depth. It is evident that hybridization
incurs a natural tradeoff between number of spiking/ReLU layers,
processing latency, accuracy and energy-efficiency. Our analysis
shows that hybridization can enable end-to-end backpropagation
training for large-scale networks on complex datasets while
yielding efficiency gains. Further investigation is required to
evaluate the benefits of hybridization in large-scale setting by
varying the tradeoff parameters.

9. DISCUSSION AND CONCLUSION

With the advent of Internet of Things (IoT) and the
necessity to embed intelligence in devices that surround
us (such, smart phones, health trackers), there is a need
for novel computing solutions that offer energy benefits

Frontiers in Neuroscience | www.frontiersin.org

14

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

while vyielding competitive performance. In this regard,
SNNs driven by sparse event-driven processing hold
promise for efficient hardware implementation of real-
world applications. However, training SNNs for large-scale
tasks still remains a challenge. In this work, we outlined the
limitation of the three widely used SNN training methodologies
(Conversion, AGD training and STDP), in terms of, scalability,
latency, and accuracy, and proposed novel solutions to
overcome them.

We propose using backward residual (or BackRes)
connections to achieve logically deep SNNs with shared
network computations and features that can approach the
accuracy of fully-deep SNNs. We show that all three training
methods benefit from the BackRes connection inclusion
in the network configuration, especially, gaining in terms
of energy-efficiency (~ 10 x —100x) while yielding iso-
accuracy with that of an ANN of similar configuration. We
also find that BackRes connections induce a sparsifying effect
on overall network activity of an SNN, thereby, expending
lower energy (~ 1.8 — 3.5x lower) than an equivalent depth
full-layered SNN. In summary, BackRes connections address
the scalability limitations of an SNN that arise due to depth
incompatibility and vanishing spike-propagation of different
training techniques.

We propose using stochastic softmax (or stochmax) to
improve the prediction capability of an SNN, specifically,
for AGD training method that uses end-to-end spike-based
backpropagation. We find a significant improvement in accuracy
(~ 2 — 3%) with stochmax inclusion even for lower latency
or processing time period. Further, stochmax loss based
backpropagation results in lower spiking activity than the
conventional softmax loss. Combining the advantages of lower
latency and sparser activity, we get higher energy-efficiency
improvements (~ 1.6 — 2x) with stochmax SNNs as compared
to softmax SNNs. Conversion/STDP training do not benefit in
terms of efficiency and latency from stochmax inclusion since
the training in these cases are performed fully/partially with
ANN computations.

The third technique we propose is using a hybrid architecture
with partly-ReLU-and-partly-LIF computations in order to
improve the accuracy obtained with STDP/AGD training
methods. We find that hybridization leads to improved accuracy
at lower latency for AGD/STDP methods, even circumventing
the inadequacy of training very deep networks. The accuracies
observed for CIFAR10 (~ 80%/85%) with STDP/AGD on hybrid
SNN architectures are in fact comparable/better than ANNs of
similar configuration. We would like to note that hybridization
also offers significant energy-efficiency improvement (~ 4x)
over a fully ReLU-based ANN. In fact, using hybridization, we
trained a deep VGG13 model on Imagenet data and obtained
iso-accuracy as that of its ANN counterpart with reasonable
energy-efficiency gains. There are interesting possibilities of
performing distributed edge-cloud intelligence with such hybrid
SNN-ANN architecture where, SNN layers can be implemented
on resource-constrained edge devices and ANN layers on
the cloud.

9.1. Latency-Based Coding vs. Rate Coding
Across all SNN implementations in this work, we used rate
coding to convert pixel data of images into spike trains. However,
it is known that rate coding does not allow the network to
use spike-times precisely which can, in turn, enable an SNN
to encode more information or process information rapidly.
Supervised learning based SNNs using latency-based coding
scheme is a good way to decrease the energy consumption,
compared to the rate-coding method (Mostafa, 2017; Comsa
et al, 2019; Kheradpisheh and Masquelier, 2019; Zhou et al.,
2019). In latency-based coding, pixel intensity is represented by
the ascending order of incoming spikes, wherein higher intensity
fires an earlier spike and vice-versa. As a result, more salient
information about a feature is encoded as an earlier spike in the
corresponding neuron leading to overall sparser activity in an
SNN. Furthermore, the inference latency (or overall time steps
required to process an input) can drastically decrease to few 10
time steps with appropriate learning methods instead of the usual
50-100 time steps incurred in rate coding schemes for AGD
training (Mostafa, 2017; Comsa et al., 2019; Kheradpisheh and
Masquelier, 2019; Roy et al., 2019; Zhou et al., 2019).

Mostafa (2017) proposed a direct training based method via
backpropagation error and the networks have achieved very
high accuracy on MNIST compared to the other unsupervised
learning or conversion based SNNs. Nevertheless, the networks
proposed by Mostafa et al. have not been applied to the
more complicated dataset, such as CIFAR10. The reasons are
convolutional layers are not included and the preprocessing
method is not general. In Zhou et al. (2019), the authors
incorporate convolutional layers into the SNNs proposed by
Mostafa et al. In addition, they propose a new way to preprocess
the input data and develop a new kernel operation process
without using ReLU activation. With these new additions, Zhou
et al. present the best results obtained so far on a purely
temporal based backpropagation learning scheme for CIFAR10
(80.5%). In addition, other recent works (Comsa et al., 2019;
Kheradpisheh and Masquelier, 2019) have also shown impressive
and promising results on the use of first-to-spike latency coding
in realizing the energy-efficiency and inference latency benefits
with SNN implementations. However, the framework (including
the network architecture and learning rule used to perform
spike-based backpropagation) is very different in each work. The
inconsistencies in the implementations as well as the algorithmic
details are a slight drawback in arriving at a uniform testbed
implementation with latency-coded techniques.

Furthermore, while rate-coded schemes (specifically, with
conversion training methodology) are approaching ANN-like
competitive performance on a host of datasets (including,
Imagenet), latency-based coding still suffer from accuracy
limitations. However, we believe that latency based coding can
bring out the true advantages of SNNs (both for competitive
accuracy and higher efficiency gains) compared to ANNs. One
advantage of latency-based backpropagation and using AGD, is
that they can make use of temporal coding, so they can actually
outperform an ANN on the same architecture. We see a hint
of this in our AGD trained SNN implementation in Table 8

Frontiers in Neuroscience | www.frontiersin.org

15

June 2020 | Volume 14 | Article 653


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

(SNN implementation of VGG3x4 model has higher accuracy
(75%) than corresponding ANN (69.52%)). In the future, we will
explore the advantages of incorporating our proposed backward
residual connection, stochmax, and hybrid training schemes on
such latency coded networks and study their impact on the
scalability, latency, and accuracy limitations observed in SNNs.

9.2. Connection Between Binary ANNs and

SNNs

Binary ANNs (Courbariaux et al., 2016; Rastegari et al., 2016)
are extreme quantized form of neural networks that have
neuronal activations and weights represented as binary values.
Thus, binary ANNs have been shown to yield considerable
memory compression and energy efficiency improvements over
conventional full precisions ANNs. Thus, an obvious question
one can ask is, “How SNNs stand against binary ANNs?” In
a recent work by Lu and Sengupta (2020), the authors show
an interesting connection between binarized ANNs and SNNs
with a conversion methodology. Basically, the authors argue
that ANN-SNN conversion provides a mathematical formulation
for expressing multi-bit precision of ANN activations as binary
values over time (in the context of an SNN). The authors achieve
binary SNN models that yield near full-precision accuracies on
large-scale image recognition datasets, while utilizing similar
hardware backbone of binary neural network catered “In-
Memory”computing platforms. The fact that binarized ANNs
have also simplified accumulate operation (instead of multiply
and accumulate) similar to that of an SNN can result in lower
energy savings that one would expect in comparison to a full-
precision ANN. In Lu et al, the authors show that a binary
SNN obtained by converting a constrained ANN on CIFAR100
dataset has ~ 4 x higher computational cost (measured in terms
of number of multiply-accumulate logic operations performed)
than an XNOR-net (Rastegari et al., 2016) of similar architecture.
On the other hand, the binarized SNN yields 20% higher accuracy
(nearly similar to that of the full-precision ANN model) than
the XNOR model. It is well-known that training Binary ANNs
(Courbariaux et al., 2016), XNOR-nets (Rastegari et al., 2016)
from scratch can be prohibitive in terms of training convergence
(due to the fact that the neuronal activations are constrained
to +1 or —1 or 0). In that regard, if we would like to deploy
binarized SNNs, using a strategy similar to Lu and Sengupta
(2020) will be useful. While we will lose in terms of efficiency,
we will tradeoff the slight decremented efficiency with a large
increase in accuracy. Furthermore, in our papers context, we
conjecture that since the SNN training convergence improved

in some cases with modifications like backward residual training
and stochmax, training a Binary ANN with such modifications
can potentially give accuracy benefits. In the future, we will
investigate how binary neural networks can be used to generate
low-precision SNNs through conversion, STDP, AGD training.
In fact, training a hybrid ANN-SNN model, where the ANN
comprises of binarized weights and activations, can potentially
give us higher order efficiency gains that requires further
investigation.

Finally, SNNs are a prime candidate today toward enabling
low-powered ubiquitous intelligence. In this paper, we show
the benefit of using good practices while configuring spiking
networks to overcome their inherent training limitations, while,
gaining in terms of energy-efliciency, latency, and accuracy for
image recognition applications. In the future, we will investigate
the extension of the proposed methods for training recurrent
models for natural language or video processing tasks. Further,
conducting reinforcement learning with the above proposed
techniques to analyze the advantages that SNNs offer is another
possible future work direction.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

PP developed the main concepts, performed the simulations, and
wrote the paper. SA helped in performing the simulations. All
authors assisted in the writing of the paper.

FUNDING

This work was supported in part by C-BRIC, Center for Brain
Inspired Computing, a JUMP center sponsored by DARPA and
SRC, by the Semiconductor Research Corporation, the National
Science Foundation (Grant# 1947826), Amazon Research Award,
Intel Corporation, the Vannevar Bush Faculty Fellowship and the
U.K. Ministry of Defense under Agreement Number W911NF-
16-3-0001. The authors declare that this study received funding
from Intel Corporation. The funder was not involved in the
study design, collection, analysis, interpretation of data, the
writing of this article or the decision to submit it for publication.
This manuscript has been released as a pre-print at arXiv.org
(arXiv:1910.13931) (Panda et al., 2019).

REFERENCES Ankit, A., Sengupta, A., Panda, P., and Roy, K. (2017). “Resparc: A reconfigurable
and energy-efficient architecture with memristive crossbars for deep spiking
Abadi, M., Barham, P., Chen, J., Chen, Z, Davis, A., Dean, ], neural networks,” in Proceedings of the 54th Annual Design Automation
et al. (2016). “Tensorflow: a system for large-scale machine Conference 2017 (San Francisco, CA: ACM), 27. doi: 10.1145/3061639.3062311
learning,” in I12th $USENIX$ Symposium on Operating Systems Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long
Design ~ and  Implementation ~ ($OSDI$ ~ 16)  (Savannah,  GA), short-term memory and learning-to-learn in networks of spiking neurons,” in
265-283. Advances in Neural Information Processing Systems (Montreal, QC), 787-797.
Frontiers in Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 653


https://www.arXiv.org
https://doi.org/10.1145/3061639.3062311
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54-66.
doi: 10.1007/s11263-014-0788-3

Comsa, I. M. Potempa, K. Versari, L., Fischbacher, T. Gesmundo,
A, and Alakuijala, J. (2019). Temporal coding in spiking neural
networks with alpha synaptic function. arXiv preprint arXiv:1907.13223.
doi: 10.1109/ICASSP40776.2020.9053856

Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
Binarized neural networks: training deep neural networks with weights and
activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830.

Deng, J., Dong, W., Socher, R., Li, L-J, Li, K, and Fei-Fei, L. (2009).
“Imagenet: a large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition (Miami, FL), 248-255.
doi: 10.1109/CVPR.2009.5206848

Diehl, P. U, and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U, Neil, D., Binas, J.,, Cook, M., Liu, S.-C., and Pfeiffer, M.
(2015). “Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing, in 2015 International Joint Conference
on Neural Networks (IJCNN) (Killarney), 1-8. doi: 10.1109/IJCNN.2015.
7280696

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. (2015b). “Learning both weights and
connections for efficient neural network,” in Advances in Neural Information
Processing Systems (Montreal, QC), 1135-1143.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Las Vegas, NV), 770-778. doi: 10.1109/CVPR.
2016.90

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with lif neurons.
arXiv preprint arXiv:1510.08829.

Indiveri, G., Corradi, F., and Qiao, N. (2015). “Neuromorphic architectures
for spiking deep neural networks” in 2015 IEEE International Electron
Devices Meeting (IEDM) (Washington, DC), 4-12. doi: 10.1109/TEDM.2015.
7409623

Indiveri, G., and Horiuchi, T. K. (2011). Frontiers in neuromorphic engineering.
Front. Neurosci. 5:118. doi: 10.3389/fnins.2011.00118

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 99, 56-67. doi: 10.1016/j.neunet.2017.12.005

Kheradpisheh, S. R., and Masquelier, T. (2019). S4NN: temporal backpropagation
for spiking neural networks with one spike per neuron. arXiv preprint
arXiv:1910.09495. doi: 10.1142/50129065720500276

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., and DiCarlo, J.
J. (2018). Cornet: modeling the neural mechanisms of core object recognition.
bioRxiv [Preprint]. doi: 10.1101/408385

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.
doi: 10.1038/nature14539

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST Handwritten Digit Database.
AT&T Labs [Online]. Available online at: http://yann.lecun.com/exdb/mnist

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018a). Training deep
spiking convolutional neural networks with STDP-based unsupervised
pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.
doi: 10.3389/fnins.2018.00435

Lee, C., Sarwar, S. S, and Roy, K. (2019). Enabling spike-
based backpropagation in state-of-the-art deep neural network
architectures. arXiv preprint arXiv:1903.06379. doi: 10.3389/fnins.2020.
00119

Lee, C,, Srinivasan, G., Panda, P., and Roy, K. (2018b). Deep spiking convolutional
neural network trained with unsupervised spike timing dependent plasticity.
IEEE Trans. Cogn. Dev. Syst. 11, 384-394. doi: 10.1109/TCDS.2018.
2833071

Lee, H. B, Lee, J., Kim, S., Yang, E., and Hwang, S. J. (2018). “Dropmax: adaptive
variational softmax,” in Advances in Neural Information Processing Systems
(Montreal, QC), 919-929.

Lee, J. H., Delbruck, T. and Pfeiffer, M. (2016). Training deep spiking
neural networks using backpropagation. Front. Neurosci. 10:508.
doi: 10.3389/fnins.2016.00508

Linares-Barranco, B., Serrano-Gotarredona, T., Camu nas-Mesa, L. A., Perez-
Carrasco, J. A., Zamarre no-Ramos, C., and Masquelier, T. (2011).
On spike-timing-dependent-plasticity, memristive devices, and building a
self-learning visual cortex. Front. Neurosci. 5:26. doi: 10.3389/fnins.2011.
00026

Lu, S., and Sengupta, A. (2020). Exploring the connection between binary and
spiking neural networks. arXiv [Preprint]. arXiv:2002.10064.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive
STDP-based spike pattern learning. Neural Comput. 21, 1259-1276.
doi: 10.1162/neco.2008.06-08-804

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual
features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.
doi: 10.1371/journal.pcbi.0030031

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227-3235.
doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36,
51-63. doi: 10.1109/MSP.2019.2931595

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Panda, P., Aketi, A, and Roy, K. (2019). Towards Scalable, Efficient and
Accurate Deep Spiking Neural Networks with Backward Residual Connections,
Stochastic Softmax and Hybridization. arXiv [Preprint]. arXiv:1910.13931.

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2017). ASP: Learning
to forget with adaptive synaptic plasticity in spiking neural networks.
IEEE ]. Emerg. Select. Top. Circ. Syst. 8, 51-64. doi: 10.1109/JETCAS.2017.
2769684

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical
features in spiking deep networks for object recognition,” in 2016 International
Joint Conference on Neural Networks (ITCNN) (Vancouver, BC: IEEE), 299-306.
doi: 10.1109/IJCNN.2016.7727212

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid tianjic chip architecture. Nature 572,
106-111. doi: 10.1038/541586-019-1424-8

Pérez-Carrasco, J. A., Zamarre no-Ramos, C., Serrano-Gotarredona, T., and
Linares-Barranco, B. (2010). “On neuromorphic spiking architectures for
asynchronous STDP memristive systems,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems (Paris), 1659-1662.
doi: 10.1109/ISCAS.2010.5537484

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-
net: Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (Amsterdam: Springer), 525-542.
doi: 10.1007/978-3-319-46493-0_32

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine
intelligence ~with neuromorphic computing. Nature 575, 607-617.
doi: 10.1038/541586-019-1677-2

Sengupta, A., Banerjee, A., and Roy, K. (2016). Hybrid spintronic-cmos spiking
neural network with on-chip learning: devices, circuits, and systems. Phys. Rev.
Appl. 6:064003. doi: 10.1103/PhysRevApplied.6.064003

Sengupta, A., and Roy, K. (2017). Encoding neural and synaptic functionalities in
electron spin: a pathway to efficient neuromorphic computing. Appl. Phys. Rev.
4:041105. doi: 10.1063/1.5012763

Sengupta, A., Ye, Y., Wang, R, Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci.
13:95. doi: 10.3389/fnins.2019.00095

Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J., and Aimone, J. B. (2019).
Training deep neural networks for binary communication with the whetstone
method. Nat. Mach. Intell. 1, 86-94. doi: 10.1038/s42256-018-0015-y

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556

Frontiers in Neuroscience | www.frontiersin.org

17

June 2020 | Volume 14 | Article 653


https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/IEDM.2015.7409623
https://doi.org/10.3389/fnins.2011.00118
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1101/408385
https://doi.org/10.1038/nature14539
http://yann.lecun.com/exdb/mnist
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2011.00026
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/JETCAS.2017.2769684
https://doi.org/10.1109/IJCNN.2016.7727212
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/ISCAS.2010.5537484
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.1063/1.5012763
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1038/s42256-018-0015-y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Panda et al.

Accurate and Efficient Spiking Networks

Srinivasan, G., Panda, P., and Roy, K. (2018). STDP-based unsupervised feature
learning using convolution-over-time in spiking neural networks for energy-
efficient neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst.
14:44. doi: 10.1145/3266229

Srinivasan, G., and Roy, K. (2019). Restocnet:
binary convolutional spiking neural network for
neuromorphic computing. Front. Neurosci. 13:189. doi: 10.3389/fnins.2019.
00189

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.
(2015). “Going deeper with convolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (Boston, MA), 1-9.
doi: 10.1109/CVPR.2015.7298594

van de Burgt, Y., Lubberman, E., Fuller, E. J., Keene, S. T., Faria, G. C., Agarwal,
S., et al. (2017). A non-volatile organic electrochemical device as a low-
voltage artificial synapse for neuromorphic computing. Nat. Mater. 16:414.
doi: 10.1038/nmat4856

Voelker, A. R., Rasmussen, D., and Eliasmith, C. (2020). A spike in performance:
training hybrid-spiking neural networks with quantized activation functions.
arXiv [Preprint]. arXiv:2002.03553.

Residual  stochastic
memory-efficient

Wang, Z., Joshi, S., Savel’ev, S. E,, Jiang, H., Midya, R,, Lin, P., et al. (2017).
Memristors with diffusive dynamics as synaptic emulators for neuromorphic
computing. Nat. Mater. 16:101. doi: 10.1038/nmat4756

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do
it. Proc. IEEE 78, 1550-1560. doi: 10.1109/5.58337

Zhou, S., Chen, Y., Ye, Q, and Li, J. (2019). Direct training based spiking
convolutional neural networks for object recognition. arXiv [Preprint].
arXiv:1909.10837

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Panda, Aketi and Roy. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org

18

June 2020 | Volume 14 | Article 653


https://doi.org/10.1145/3266229
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1038/nmat4856
https://doi.org/10.1038/nmat4756
https://doi.org/10.1109/5.58337
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization
	1. Introduction
	2. Related Work, Motivation, and Contributions
	2.1. Addressing Scalability With Backward Residual Connections
	2.1.1. Our Contribution

	2.2. Addressing Latency With Stochastic Softmax (Stochmax)
	2.2.1. Our Contribution

	2.3. Addressing Accuracy With Network Hybridization
	2.3.1. Our Contribution


	3. SNN: Background and Fundamentals
	3.1. Input and Neuron Representation
	3.2. Training Methodology
	3.2.1. Conversion From ANN-to-SNN
	3.2.2. Approximate Gradient Descent (AGD)
	3.2.3. Unsupervised STDP Learning


	4. SNNs With BackRes Connections
	4.1. Conversion
	4.2. AGD Training
	4.3. STDP Training

	5. SNNs With Stochmax
	6. SNNs With Hybrid ReLU-and-LIF Neurons
	7. Experiments
	8. Results
	8.1. Impact of BackRes Connections
	8.2. Impact of Stochmax
	8.3. Impact of Hybridization

	9. Discussion and Conclusion
	9.1. Latency-Based Coding vs. Rate Coding
	9.2. Connection Between Binary ANNs and SNNs

	Data Availability Statement
	Author Contributions
	Funding
	References


