
fnins-14-00657 June 23, 2020 Time: 14:56 # 1

ORIGINAL RESEARCH
published: 23 June 2020

doi: 10.3389/fnins.2020.00657

Edited by:
Xi-Nian Zuo,

Beijing Normal University, China

Reviewed by:
Long Jiang Zhang,

Nanjing General Hospital of Nanjing
Military Command, China

Wei Liao,
University of Electronic Science
and Technology of China, China

*Correspondence:
Meiyun Wang

mywang@ha.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 09 March 2020
Accepted: 27 May 2020

Published: 23 June 2020

Citation:
Liu T, Bai Y, Ma L, Ma X, Wei W,

Zhang J, Roberts N and Wang M
(2020) Altered Effective Connectivity
of Bilateral Hippocampus in Type 2

Diabetes Mellitus.
Front. Neurosci. 14:657.

doi: 10.3389/fnins.2020.00657

Altered Effective Connectivity of
Bilateral Hippocampus in Type 2
Diabetes Mellitus
Taiyuan Liu1, Yan Bai1, Lun Ma1, Xiaoyue Ma1, Wei Wei1, Junran Zhang2, Neil Roberts3

and Meiyun Wang1*

1 Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People’s Hospital &
Henan Provincial People’s Hospital, Zhengzhou, China, 2 Huaxi MR Research Center, Department of Radiology, West China
Hospital of Sichuan University, Chengdu, China, 3 The Queen’s Medical Research Institute, University of Edinburgh,
Edinburgh, United Kingdom

Patients with type 2 diabetes mellitus (T2DM) experience cognitive deficits but the
underlying pathophysiologic mechanisms are not known. We therefore applied Granger
causality analysis of resting-state functional magnetic resonance imaging to study
the effective connectivity (EC) of the hippocampus in patients with T2DM. Eighty
six patients with T2DM and 84 matched healthy controls (HC) were recruited. The
directional EC between anatomically defined seeds in left hippocampus (LHIP) and right
hippocampus (RHIP) and other brain regions was compared between T2DM and HC
and Pearson correlation analysis was performed to determine whether alterations in EC
were related to clinical characteristics of diabetes. Compared with HC, patients with
T2DM had altered EC between LHIP and RHIP and the default mode network (DMN),
occipital cortex and cerebellum. In addition, for LHIP only duration of diabetes positively
correlated with decreased inflow from right postcentral gyrus and right parietal lobe,
glycosylated hemoglobin (HbA1c) negatively correlated with decreased inflow from right
thalamus (r = −0.255, p = 0.018) and Montreal Cognitive Assessment (MoCA) negatively
correlated with decreased inflow from left inferior parietal lobe (r = −0.206, p = 0.05).
The altered EC between hippocampus and DMN is interpreted to be related to cognitive
deficits in patients with T2DM particularly affecting memory and learning.

Keywords: type 2 diabetes mellitus (T2DM), resting-state functional magnetic resonance imaging (rs-fMRI),
Granger causality analysis (GCA), Effective Connectivity (EC), Hippocampus

INTRODUCTION

Diabetes is characterized by chronically increased peripheral insulin levels and concomitantly
reduced brain insulin activity (Stolk et al., 1997; Baker et al., 2011). Type 2 diabetes mellitus
(T2DM) is the most common form of diabetes, affecting approximately 400 million people
worldwide (Chatterjee et al., 2017). Insulin resistance in T2DM disrupts many metabolic pathways,
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including glucose metabolism, synaptic maintenance, vascular
function, tau phosphorylation, and β-amyloid regulation that
support healthy cognitive functioning (Biessels et al., 1998;
Gasparini et al., 2001; Schubert et al., 2004) and recent
longitudinal studies have shown there is an associated increased
risk of developing Alzheimer disease (AD) (Schrijvers et al.,
2010; van Himbergen et al., 2012). The distribution of insulin
receptors in the central nervous system is not uniform
(Havrankova et al., 1978) and insulin resistance may compromise
the function of specific brain regions including hippocampus,
prefrontal cortex and cingulate gyrus. However, the underlying
mechanisms have not been fully elucidated.

Multiple neuroimaging modalities such as functional
magnetic resonance imaging (fMRI), single photon emission
computed tomography (SPECT) and positron emission
tomography (PET) have been used to study cognitive functions
in patients with T2DM. Analysis of resting-state fMRI (rs-
fMRI) data can be used to study the integration of specialized
functional areas in the brain through measurement of functional
connectivity (FC) and effective connectivity (EC). Measurement
of FC reveals the functional connection between spatially distant
brain regions, wheras EC measures the flow of information and
the causal influence with Granger causality analysis (GCA) and
provides the directionality and the dynamics of information
dissemination within functionally related networks (Liao et al.,
2010; Leavitt et al., 2012; Liao et al., 2019). Previous rs-fMRI
studies in patients with T2DM have focused on measuring
alterations in spontaneous neural activity (Cui et al., 2014) and
the FC of posterior cingulate cortex (PCC; Chen et al., 2014) and
hippocampus (Zhou et al., 2010). In some studies regions of the
default mode network (DMN) such as PCC (Musen et al., 2012;
Chen et al., 2014) and hippocampus (Zhou et al., 2010) have been
used as seeds for FC analysis. However, EC studies of the directed
influence of the hippocampus on other brain regions are likely
to prove most effective for providing increased understanding of
the physiopathologic mechanism in type 2 diabetes.

The hippocampus is known to mediate learning and
different aspects of memory such as recognition memory and
episodic-like memory (Morris, 2001; Fontan-Lozano et al.,
2007). Previous MRI studies in patients with diabetes have
provided evidence to suggest that impaired cognitive function
is associated with alterations in hippocampal structure and
function (Allen et al., 2007; Zhang et al., 2008). Furthermore,
connectivity has been reported to be reduced between the
hippocampus and other brain regions, including anterior
cingulate cortex (ACC), medial temporal lobes and inferior
parietal lobe (IPL), which are all part of the brain’s so-
called default mode network (DMN) (Zhou et al., 2010).
Since memory performance depends upon the function
connectivity of multiple brain regions it has been suggested that
hippocampal anomalies in T2DM may disrupt the ascending
and descending pathways responsible for transmission and
modulation of memory signals, and explain the impaired
cognitive functions in T2DM.

The objective of the present study is to apply GCA of rs-
fMRI data to compare the EC of the bilateral hippocampus
and other brain regions in patients with T2DM relative to

HC. Seed regions in the hippocampus are defined based on an
anatomical atlas (Friston, 2009) and the hypothesis is tested that
aberrant ascending and descending pathways at the hippocampus
level may represent a physiopathologic mechanism underlying
cognition deficits in T2DM.

MATERIALS AND METHODS

Participants
This study was approved by the Research Ethics Committee
(REC) of Henan Provincial People’s Hospital and written
informed consent was provided by all participants. Eighty
six patients with diabetes aged between 39 and 75 years
and who were all right-handed were recruited together with
84 age, sex and handness-matched healthy controls (HC).
The diagnosis of diabetes was made according to World
Health Organization (WHO) 1999 criteria (American Diabetes
Association, 2018). Subjects who had a history of alcoholism,
smoking, stroke, brain injury, or other neurological or psychiatric
disease that could lead to the cognition impairment, such
as major depression, epilepsy, and Parkinson disease were
excluded together with subjects who had severe hearing or
visual impairment and any contraindication to MRI. The length
of time for which patients had been diagnosed with diabetes,
medication use, and medical history were recorded, together with
height, weight and BMI ([weight in kg]/[height in meters]2),
and arterial blood pressure was measured. Triglyceride (TR),
total cholesterol, fasting plasma glucose (FPG), glycosylated
hemoglobin (HbA1c), low density lipoprotein (LDL), and high
density lipoprotein (HDL) were measured using blood samples
collected at 7:00 am.

Data Acquisition and Spatial Processing
MR data were acquired using a 3 T MRI system (Trio Tim,
Siemens Healthineers, Erlangen, Germany) equipped with a
standard 8-channel head coil. Head motion was minimized by
the use of comfortable padding. For each subject a 3D T1-
weighted image was acquired followed by rs-fMRI data using
a gradient-echo planar imaging (EPI) sequence with voxel size
3.8 mm × 3.8 mm × 4.0 mm, TR 2,000 ms, TE 30 ms, matrix
64 × 64, Field of View (FOV) 240 mm × 240 mm, and slice
thickness of 4 mm with no gap. The acquisition time was 7 min
and 4 s. Subjects were instructed to rest quietly with their eyes
closed and to avoid thinking about a specific subject.

Data analyses was performed using SPM8 (The
Wellcome Department of Cognitive Neurology, London,
United Kingdom)1. The first five time points of the rsfMRI data
were discarded to ensure the signal had become stable and a
slice timing correction was applied to the data for the remaining
195 time points. The images were subsequently realigned to
correct for head motion and any images in which translation was
>2 mm or rotation >2◦ were excluded. Following these pre-
processing steps the mean image of the time series was spatially
normalized into standard stereotactic space by registration to

1www.fil.ion.ucl.ac.uk/spm/software/spm8
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the Montreal Neurological Institute (MNI) EPI template and
interpolated to isotropic voxels of 2 mm3 and smoothed using
an isotropic Gaussian kernel with width of 4 mm. Next using
data processing assistant for resting-state fMRI (DPARSF)
software (Chao-Gan and Yu-Feng, 2010) a band-pass filter was
applied (0.01 < f < 0.08 Hz) remove low frequency drift and
high frequency noise. Further, linear regression of the average
signals from white matter and cerebrospinal fluid (CSF) and
six head motion parameters was applied to remove spurious
variance from confounding factors not related to specific regional
correlations (Fox et al., 2005). As a low model order was used in
our GCA, the point that BOLD time series of regions of interest
(ROIs) were not low-pass filtered should be noted.

Granger Causality Analysis and
Statistical Analysis
Also using DPARSF, GCA was applied to measure the EC
between the time series of selected reference seed regions in
left hippocampus (LHIP) and right hippocampus (RHIP),
extracted using automatic anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) and the time series
of every other voxel in the brain based on a hypothesis
derived from previous studies which have reported
bilateral alterations in the structure and function of the
hippocampus in type 2 diabetes (Stankewitz et al., 2013;
Zhao et al., 2013). In particular, the REST-GCA function
in the REST toolbox of DPARSF was used to construct a
bivariate first-order coefficient-based voxelwise GCA model
(Song et al., 2011).

The GCA model is built based on the temporal elements of
regional BOLD activity and describing the causal effect of the
selected seed region (X) on every other voxel in the brain (Y)
(i.e. X to Y effect). A positive coefficient indicates that activity
in region X exerts a positive influence on activity in region Y
(i.e. positive influence) whereas a negative coefficient indicates
that the activity of region X exerts a negative influence on the
activity of region Y. The voxel-wise GCA maps generated were
normalized by transformation to z scores (Zang et al., 2012)
and two-tailed, two-sample t-tests were performed to determine
the significant differences in EC of LHIP and RHIP between
patients with type 2 diabetes and HC. A Gaussian random field
(GRF) correction was applied with voxel-level of p < 0.001
and joint cluster-level of p < 0.05. Age and sex ratio were
included as covariates.

Pearson Correlation Analysis and
Statistical Analysis
The association between the altered EC of LHIP and RHIP
and clinical variables measured for the patients with type
2 diabetes (disease duration, BMI, HbA1c, plasma glucose,
and MoCA) were analyzed by using SPSS 17.0 (SPSS Inc.,
Chicago, IL, United States). In particular, ROIs corresponding
to the brain regions which showing significantly different
(i.e. increased or decreased) GCA influences between type 2
diabetes and HC were extracted and a Pearson correlation
analysis was performed between mean GCA values within

the ROIs and the clinical characteristics with threshold
p ≤ 0.05.

RESULTS

Demographic and Clinical Data
The demographic data obtained for all the participants and
measures of clinical variables obtained for the patients with
T2DM as diagnosed by two independent clinicians are presented
in Table 1. Complete rs-fMRI datasets with no exclusions
on account of, for example, head movement were obtained
for all participants. No significant difference was found in
the demographic data between the patients with type 2
diabetes and HC groups.

Altered EC of LHIP
The results of the two-sample t-test to compare EC of left HIP in
patients with type 2 diabetes and HC are illustrated in Figure 1
and results for the ROI’s showing sigificant alterations in EC
are listed in Supplementary Table 1. In patients with type 2
diabetes compared to HC, there is significantly increased causal
inflow to LHIP from posterior lobe of left cerebellum (AAL:
Cerebelum_7b_L) and significantly decreased causal inflow to
LHIP from left precuneus (including the left parahippocampal,
left fusiform), IPL and precentral gyrus and right thalamus,
medial frontal gyrus (MFG), IPL and postcentral gyrus including
supramarginal gyrus. There are no significant differences in
outflows from LHIP.

Altered EC of RHIP
The results of the two-sample t-test to compare EC of left
HIP in patients with type 2 diabetes and HC are illustrated in
Figure 2 and results for the ROI’s showing sigificant alterations

TABLE 1 | Demographic characteristics and clinical measures.

T2DM patients
(n = 86)

Control subjects
(n = 84)

P-
value

Age (years) 54.0 ± 8.9 54.8 ± 8.5 0.52

Sex (male/female) (44/42) (42/42) 0.87

Height (cm) 167.3 ± 0.07 166.0 ± 0.07 0.25

Weight (kg) 71.8 ± 10.9 70.0 ± 10.2 0.30

BMI (kg/m2) 25.5 ± 3.0 25.3 ± 2.7 0.62

HbA1c (%) 8.1 ± 1.7 – –

Plasma glucose (mmol/L) 9.1 ± 2.7 – –

Diabetes duration(years) 8.7 ± 6.1 – –

Cholesterol (mmol/L) 4.4 ± 1.0 4.4 ± 0.7 0.79

Triglyceride (mmol/L) 2.1 ± 2.1 1.8 ± 1.1 0.27

Low density lipoprotein (mmol/L) 2.5 ± 0.8 2.7 ± 0.6 0.06

High density lipoprotein (mmol/L) 1.2 ± 0.4 1.2 ± 0.3 0.99

MoCA 25.0 ± 2.0 25.4 ± 2.0 0.19

Arterial blood pressure

Systolic BP (mmHg) 120.6 ± 6.6 119.5 ± 5.2 0.23

Diastolic BP (mmHg) 78.5 ± 5.2 78.1 ± 4.7 0.59

Data are means ± (SD).
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FIGURE 1 | Illustration of the abnormal hippocampal Granger causality analysis model in type 2 diabetes compared with healthy control. Causal inflows are shown
from the rest of the brain to left hippocampus. The node size is represented by number of voxels in the corresponding cluster in the rs-fMRI analysis. Cere,
cerebellum; HIP, hippocampus; IPL, inferior parietal gyrus; L, left; MFG, middle frontal gyrus; PCUN, precuneus; PoCG, postcentral gyrus; PreCG, precentral gyrus;
R, right; THA, thalamus.

in EC are listed in Supplementary Table 2. In patients with
type 2 diabetes compared to HC, there is significantly increased
causal inflow to RHIP from posterior lobe of right cerebellum
and right lingual gyrus and significantly decreased causal inflow
from left calcarine sulcus, post- and pre-central lobule and right
MTG. In addition, patients with type 2 diabetes compared to HC
also showed significantly increased outflow from RHIP to left
precuneus, middle temporal lobe, middle occipital lobe, middle
frontal gyrus, pre-central and post-central gyrus and significantly
decreased outflow RHIP to anterior lobe of left cerebellum and
left lingual gyrus.

Correlation With Clinical Variables
The results of Pearson correlation analyses revealed that duration
of diabetes was positively correlated with decreased inflow to
LHIP from right postcentral gyrus (r = 0.225, p = 0.038) and
right parietal lobe (r = 0.225, p = 0.039). In addition, there were
significant negative correlations between HbA1c and decreased
inflow to LHIP from right thalamus (r = −0.255, p = 0.018) and
between MoCA and decreased inflow to LHIP from left parietal
inferior (r = −0.206, p = 0.05). The other brain ROIs with altered
EC between patients with type 2 diabetes and HC showed no

significant correlation with the measurements of clinical variables
(see Supplementary Figures 1–4).

DISCUSSION

To our knowledge this is the first study to apply GCA of rs-fMRI
data and demonstrate alterations in EC of bilateral hippocampus
in patients with T2DM compared to HC. Specifically, patients
with T2DM had reduced/increased EC between LHIP and RHIP,
and the DMN, occipital cortex and cerebellum. In addition,
for LHIP only duration of diabetes positively correlated with
decreased inflow from right postcentral gyrus and right parietal
lobe, HbA1c negatively correlated with decreased inflow from
right thalamus and MoCA negatively correlated with decreased
inflow from left IPL.

The most prominent finding is perhaps the altered causal
connectivity between bilateral hippocampus and the DMN,
which most regions of DMN show decreased causal connectivity
with bilateral hippocampus. The DMN is an anatomically
separated but functionally connected network of brain structures
and regions the activity of which is suspended when a subject
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FIGURE 2 | Illustration of the abnormal hippocampal Granger causality analysis model in type 2 diabetes compared with healthy control. (A) Causal inflows from rest
of the brain to right hippocampus. (B) Causal outflows from right hippocampus to rest of brain. The node size is represented by number of voxels in the
corresponding cluster in the rs-fMRI analysis. CAL, calcarine; HIP, hippocampus; L, left; LING, lingual; MFG, middle frontal gyrus; MTG, middle temporal gyrus;
PCUN, precuneus; PoCG, postcentral gyrus; R, right.

performs a cognitive task. The core regions associated with
the brain’s DMN mainly include ventral medial prefrontal
cortex, posterior cingulate/retosplenial cortex, inferior parietal
lobule, lateral temporal cortex, dorsal medial prefrontal cortex,
and entorhinal cortex (Buckner et al., 2008). Parts of the
DMN which have widespread functional connections with the
hippocampus (Zhou et al., 2010) include ACC, PCC, MFG,
MTG, precuneus, and IPL and which are thought to play a
vital role in cognitive processing, such as episodic memory
and executive function impairments (Buckner et al., 2008).
Previous studies have shown that abnormalities in the structure
and function of MTG within DMN may underlie cognitive
impairment in T2DM (den Heijer et al., 2003; Chen et al.,
2012; Xia et al., 2013), which is plausible since MTG is a
critical node within DMN that supports verbal fluency, language
processing and speech production (Pihlajamaki et al., 2000).
medial frontal gyrus, another region of DMN, supports visual
memory consolidation processes (Wang et al., 2008) and has been
reported to have increased connectivity with the hippocampus
in patients with AD in comparison to subjects with amnestic

mild cognitive impairment (aMCI) and HC. This finding was
interpreted as suggesting that a compensatory mechanism occurs
in which increased FC of the MFG compensates for loss of
FC in other regions of the DMN (Cha et al., 2013). Several
brain regions were identified in the present study to possess
increased connectivity with the hippocampus, suggesting perhaps
that T2DM related cognitive impairment may be an early stage
of AD-related cognitive impairment. Disruption of the DMN
may be a potential mechanism whereby T2DM-related cognitive
impairment develops gradually into AD.

Interestingly, the cerebellum was also found to show altered
EC with the hippocampus bilaterally in patients with T2DM,
and most of the causal connectivity was increased. There is
convergent evidence to suggest that the cerebellum not only plays
a vital role in motor function but is also involved in cognitive,
emotional and sensory processing (Schmahmann et al., 2007;
Stoodley and Schmahmann, 2009). Previous studies (Xia et al.,
2013; Cui et al., 2014; Wang et al., 2014) reported inconsistent
Amplitude of Low Frequency Fluctuation (ALFF) values in
the cerebellum in T2DM. Xia et al. (2013) interpreted this as
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reflecting increased recruitment of additional neural resources
in the cerebellum to compensate for loss of cognitive function
in other regions. On the other hand, Bai et al. (2011) reported
increased ALFF in the posterior lobe of the cerebellum lobe in a
longitudinal study of subjects with aMCI patients. This is further
indication that cognitive impairment in patients with T2DM may
have a common mechanism to that in patients AD and which
suggestion merits further study.

The findings of increased influence of the lingual gyrus
and decreased influence of the calcarine sulcus on the HIP
in patients with T2DM is consistent with a previous study
in which it was reported that abnormal spontaneous brain
acivity of lingual gyrus and calcarine sulcus were respectively
closely correlated with impaired visual processing and visual
spatial skills in T2DM patients (Peng et al., 2016). Wang et al.
(2014) also reported finding abnormal ALFF values in brain
regions associated with visual processing, particularly in the
occipital lobe in patients with T2DM. Furthermore, in another
study Degree Centrality (DC), a common measurement of the
global connectivity of a network based on graph theory, was
reported to be decreased in lingual gyrus and other occipital
regions associated with visual function in T2DM (Cui et al.,
2016). Retinopathy and neuropathy are common symptoms of
diabetes that can cause visual and sensory impairment and it
has been suggested that T2DM may cause alterations in the
neural activity of the occipital lobe before the onset of visual
impairment (Liu et al., 2011). Altered EC of lingual gyrus and
calcarine sulcus may may be related to diabetic retinopathy and
represent a potential neuropathic mechanism causing cognitive
impairments in T2DM.

With regard to the analysis of potential correlation between
altered hippocampal EC and clinical measures, for LHIP only
duration of diabetes positively correlated with decreased inflow
from right postcentral gyrus and right parietal lobe, which may
be because of longer duration of T2DM leading to greater
late-life cognitive decline. HbA1c negatively correlated with
decreased inflow from right thalamus (r = −0.255, p = 0.018)
and MoCA negatively correlated with decreased inflow from left
IPL (r = −0.206, p = 0.05). The former finding may imply that
improvement in glycemic control in T2DM is related to improved
cognition. And the latter finding is potentially interpretable in
that the IPL supports memory processing and thus decreased
inflow from this brain region to the LHIP may contribute to poor
memory performance of patients with T2DM.

There are several limitations that should be mentioned.
Firstly, medications and other treatment that the patients
with T2DM may have received could have had an impact
on the findings that have been reported. Secondly, only the
hippocampus was selected as a seed region for investigating
pathways with altered EC. In future, the EC of more
brain regions should be analyzed in order that a more
comprehensive circuit model of cognitive impairmemt in T2DM
may be constructed. Finally, the present study has a cross-
sectional design and whether potential abnormalities of the
pathways connecting hippocampus and the cerebral cortex
are altered by disease duration and comorbidity remains
to be determined.

In our study, the decreased causal connectivity of DMN
and occipital regions with bilateral HIP may be related to
cognitive deficits in patients with T2DM particularly affecting
memory, learning and visual function, while the increasd causal
connectivity of cerebellum mainly reflect the compensation for
loss of cognitive function in other regions. In conclusion, GCA
of rs-fMRI data has revealed significantly abnormal causal inflow
and outflow to the bilateral HIP from various brain regions in
patients with T2DM and which occur prior to alterations in
the structure of these regions. The neural abnormalities were
mainly located in the DMN, occipital cortex and cerebellum,
and correlated with impairments in cognitive function. A new
approach has been applied to investigate abnormalities in brain
function in patients with T2DM and which provides enhanced
understanding of the relationship between alterations in brain
connectivity and cognitive impairment in patients with T2DM.
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