
ORIGINAL RESEARCH
published: 21 July 2020

doi: 10.3389/fnins.2020.00667

Frontiers in Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 667

Edited by:

Hesham Mostafa,

Intel, United States

Reviewed by:

Shimeng Yu,

Georgia Institute of Technology,

United States

Bernhard Vogginger,

Technische Universität Dresden,

Germany

*Correspondence:

Maryam Parsa

mparsa@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 15 January 2020

Accepted: 02 June 2020

Published: 21 July 2020

Citation:

Parsa M, Mitchell JP, Schuman CD,

Patton RM, Potok TE and Roy K

(2020) Bayesian Multi-objective

Hyperparameter Optimization for

Accurate, Fast, and Efficient Neural

Network Accelerator Design.

Front. Neurosci. 14:667.

doi: 10.3389/fnins.2020.00667

Bayesian Multi-objective
Hyperparameter Optimization for
Accurate, Fast, and Efficient Neural
Network Accelerator Design

Maryam Parsa 1,2*, John P. Mitchell 2, Catherine D. Schuman 2, Robert M. Patton 2,

Thomas E. Potok 2 and Kaushik Roy 1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 2Computational

Data Analytics, Oak Ridge National Laboratory, Oak Ridge, IN, United States

In resource-constrained environments, such as low-power edge devices and smart

sensors, deploying a fast, compact, and accurate intelligent systemwithminimum energy

is indispensable. Embedding intelligence can be achieved using neural networks on

neuromorphic hardware. Designing such networks would require determining several

inherent hyperparameters. A key challenge is to find the optimum set of hyperparameters

that might belong to the input/output encoding modules, the neural network itself, the

application, or the underlying hardware. In this work, we present a hierarchical pseudo

agent-based multi-objective Bayesian hyperparameter optimization framework (both

software and hardware) that not only maximizes the performance of the network, but

also minimizes the energy and area requirements of the corresponding neuromorphic

hardware. We validate performance of our approach (in terms of accuracy and

computation speed) on several control and classification applications on digital and

mixed-signal (memristor-based) neural accelerators. We show that the optimum set

of hyperparameters might drastically improve the performance of one application (i.e.,

52–71% for Pole-Balance), while having minimum effect on another (i.e., 50–53% for

RoboNav). In addition, we demonstrate resiliency of different input/output encoding,

training neural network, or the underlying accelerator modules in a neuromorphic system

to the changes of the hyperparameters.

Keywords: multi-objective hyperparameter optimization, Bayesian optimization, neuromorphic computing,

spiking neural networks, accurate and energy-efficient machine learning

1. INTRODUCTION

Neuromorphic systems promise a novel alternative to the standard von-Neumann architectures
that are computationally expensive for analyzing big data, and are not efficient for learning and
inference. This novel generation of computing aims at “mimicking” the human brain based on
deploying neural networks on event-driven hardware architectures. A key bottleneck in designing
such brain-inspired architectures is the complexity of co-optimizing the algorithm’s speed and
accuracy along with the hardware’s performance and energy efficiency. This complexity stems from
numerous intrinsic hyperparameters in both software and hardware that need to be optimized for
an optimum design.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00667
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00667&domain=pdf&date_stamp=2020-07-21
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mparsa@purdue.edu
https://doi.org/10.3389/fnins.2020.00667
https://www.frontiersin.org/articles/10.3389/fnins.2020.00667/full
http://loop.frontiersin.org/people/775713/overview
http://loop.frontiersin.org/people/698536/overview
http://loop.frontiersin.org/people/369467/overview
http://loop.frontiersin.org/people/603336/overview
http://loop.frontiersin.org/people/502975/overview


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

In this work we propose a novel optimization framework
built upon agent-based modeling and hierarchical Bayesian
optimization techniques to obtain the optimum set of
hyperparameters for neuromorphic system design. Bayesian
optimization is a powerful tool for finding the optimal point
of objective functions that are unknown and expensive to
evaluate (Shahriari et al., 2015). However, for problems with
more than one objective function Bayesian-only techniques are
mathematically complex, and suffer from high dimensionality
limitations in parameter-heavy models (Dai et al., 2019). Other
approaches such as Neural Architecture Search (NAS, Zoph
et al., 2018) also require massive computational resources.
These factors were the driving forces to search for alternative
algorithms to find the optimal set of hyperparameters.

Our proposed approach, Hierarchical Pseudo Agent-based
Bayesian Optimization (Hierarchical-PABO), is built upon using
a supervisor agent correlating the results of isolated Bayesian
estimations for each of the objective functions. The agent creates
an extra set of Bayesian estimator focusing only on finding the
Pareto frontier. The hierarchy of Bayesian optimizers enables
predicting the Pareto frontier for complex problems regardless
of the number of objective functions. In comparison with our
previous works in (Parsa et al., 2019a,b), H-PABO is a general
framework that covers both PABO (Parsa et al., 2019a) and
single-objective Bayesian optimization (Parsa et al., 2019b) under
its umbrella. In Parsa et al. (2019a), we introduced PABO, which
was the initial phase toward designing Hierarchical PABO. PABO
has no hierarchy of Bayesian estimators, and the supervisor
agent decides the search direction in favor of the Pareto region,
without any Bayesian estimator. By turning off the extra set
of Bayesian estimators that are used to predict the Pareto
frontier, H-PABO reduces to PABO. In Parsa et al. (2019b), we
used a single objective hyperparameter Bayesian optimization
to optimize performance of spiking neuromorphic systems in
terms of neural network’s accuracy. We showed how critical it
is to use hyperparameter optimization techniques for designing
any neuromorphic computing framework and how Bayesian
approaches can help in this regard. H-PABO reduces to a
single objective hyperparameter optimization problems when the
number of objectives functions are fixed to one.

We tested Hierarchical-PABO on both artificial neural
networks and spiking neural networks. For artificial neural
networks, we validated our approach using AlexNet (Krizhevsky
et al., 2012) and VGG19 (Simonyan and Zisserman, 2014) on
a Programmable Ultra-Efficient Memristor-based Accelerator
(PUMA, Ankit et al., 2019). For spiking neuromorphic
systems, we considered several control and classification tasks
such as the canonical pole balancing (Gomez et al., 2006),
autonomous robotic navigation (Mitchell et al., 2017), satellite
radio signal classification (Reynolds et al., 2018), and Iris
dataset classification (Dua and Graff, 2017) on both digital and
mixed-signal memristor-based accelerators as the underlying
hardware (Chakma et al., 2017; Mitchell et al., 2018; Plank
et al., 2018). Hierarchical-PABO predicts the Pareto frontier
for a three-objective (network performance, the accelerator’s
energy efficiency, and area) optimization with relatively few
evaluations. Compared to the state-of-the-art methods, our

framework is faster by at least an order of magnitude and as
effective, if not more, in finding an optimal solution. Further,
the speed and accuracy of the framework enables designers to
perform sensitivity analyses on hyperparameters to determine the
resiliency of the system to the changes of the hyperparameters.

1.1. Background and Related Work
In the era of the exigent need to design energy efficient
neuromorphic systems for resource-constrained environments
such as mobile edge devices, several approaches have been
proposed in the literature to reduce the massive energy
requirement of these systems. For artificial neural networks
(ANNs), these techniques span from simplifying models, such
as pruning and quantization (Han et al., 2015; Wen et al., 2016;
Yang et al., 2018; Zoph et al., 2018), to designing energy efficient
architectures (Jin et al., 2014; Panda et al., 2016; Parsa et al., 2017;
Wang et al., 2017), and neural architecture search (Zoph et al.,
2018). In spiking neuromorphic domain, these include different
training algorithms such as Schuman et al. (2016), Bohnstingl
et al. (2019) based on evolutionary optimization, Esser et al.
(2015, 2016) on modified backpropagation techniques, Severa
et al. (2019) as binary communication, and Rathi et al. (2020) as
a hybrid approach and then deploying these on neuromorphic
hardware such as Schmitt et al. (2017) and Koo et al. (2020).
In this section, we briefly introduce each of these methods
and continue with the added complexity of co-designing
hardware and software for artificial neural networks and spiking
neuromorphic systems. We then present the contribution of our
work (Hierarchical-PABO) and how we fill the existing gap in
a generic approach of co-designing hardware and software in
the literature.

To reduce the energy requirement of neural network
architectures, model simplification techniques proposed by Han
et al. (2015), and continued with Wen et al. (2016), Zoph et al.
(2018), and Yang et al. (2018). Each of these techniques focus
on simplifying the neural network with different approaches of
pruning, quantization, learning the connections, and leveraging
sparsity. Designing energy-efficient architectures are also well-
studied in the literature with flattened Convolutional Neural
Network (CNN) (Jin et al., 2014), factorized CNN (Wang
et al., 2017), conditional CNN (Panda et al., 2016, 2017), and
staged-conditional CNN (Parsa et al., 2017). More recently,
compact structures such as MobileNets (Howard et al., 2017)
and ShuffleNet (Zhang et al., 2018) are also introduced and
are specifically designed for mobile devices. Although both
approaches of model simplification and efficient architecture
design demonstrate promising results in reducing the energy
requirements of neural networks, they do not necessarily yield
to the optimum designs for energy efficient accelerators. This is
mainly due to the fact that they only locally search the space.
In addition, layers with more parameters do not necessarily
consume more energy (Yang et al., 2017; Dai et al., 2019). Various
techniques proposed for training spiking neural networks with
different underlying hardware, are vital steps toward efficient
neuromorphic computing for edge devices; however, each of
these approaches require several hyperparameters and their
optimum performance depend on prior knowledge on how to

Frontiers in Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

set these hyperparameters. In Parsa et al. (2020), we showed
that an optimum set of hyperparameters drastically increases the
neuromorphic system performance.

There is a very rich literature on hyperparameter optimization
and neural architecture search (NAS) techniques. Search for the
optimum set of hyperparameters studied by Genetic CNN (Xie
and Yuille, 2017), metaQNN (Baker et al., 2017), and SMBO (Liu
C. et al., 2018). These techniques are built upon using Genetic
algorithms or Bayesian optimizations. NASwas started by Google
Brain (Zoph et al., 2018) to find an optimal neural architecture
by searching for architectural building blocks on a small dataset
and then transferring the block to larger ones. NAS was a starting
point for a series of NAS-based approaches in recent years (Liu
C. et al., 2018; Liu H. et al., 2018; Pham et al., 2018). All of
these works were proposed to design a neural network with
optimum performance, regardless of the energy requirement of
the underlying neural accelerator.

Hardware-aware neural architecture designs can
be categorized in three domains of multi-layer co-
optimization (Reagen et al., 2016), hardware-aware NAS (Cai
et al., 2018; Tan et al., 2019; Wu et al., 2019), and Bayesian-
based hyperparameter optimization (Reagen et al., 2017;
Marculescu et al., 2018; Stamoulis et al., 2018). Each one of
these approaches have their pros and cons. While defining an
optimum neural architecture with energy-efficient hardware in
mind, the multi-layer co-optimization approach cannot easily be
extended to generic platforms. Hardware-aware NAS techniques
are time consuming and require substantial resources, and
Bayesian-based methods are not well-suited for parameter-heavy
models Dai et al. (2019). In Hierarchical-PABO, we propose a
novel hardware-aware approach with minimum mathematical
complexity. This framework is based on hierarchical Bayesian
optimization and agent-based modeling. Using a set of Bayesian
estimators in different levels and correlating them using a
supervisor agent, we overcome the drawbacks of exclusive
Bayesian approaches available in the literature.

1.2. Main Contributions
Wemade the following contributions:

1. A novel optimization framework based on hierarchical

Bayesian optimization and agent-based modeling, suitable

for both artificial neural networks and spiking neuromorphic

systems. With simple yet effective underlying mathematics,
Hierarchical-PABO estimates the Pareto region for multi-
objective hyperparameter optimization problems with few
evaluations.

2. One of the first techniques in the literature for co-

designing software-hardware that is not limited to the

number of objectives to optimize (network performance,

energy consumption, size, speed of inference, etc.). Based on
our knowledge, our proposed technique is one of the first
techniques in the literature that simplifies the mathematical
complexity of exclusive Bayesian approaches for multi-
objective optimization. We do this by adding a supervisor
agent and performing Bayesian optimization in different

levels. This paves the way to effectively optimize more than
two objective functions.

3. Generic framework extendable to various artificial and

spiking neural networks and the underlying digital, analog,

or mixed-signal accelerators. We tested our framework on
several classification and control applications on digital and
mixed-signal accelerators and were able to estimate the Pareto
frontier regardless of the size of the search space.

4. Superior performance in terms of accuracy and

computational speed compared to the state-of-the-art Genetic

Algorithm (GA) optimization approach (in scenarios where
GA-based optimizations were available for comparison, Deb
et al., 2002). Please see Parsa et al. (2019a) for details of this
contribution.

2. METHODOLOGY AND EXPERIMENTAL
SETUP

In order to systematically take the human knowledge out of
the loop in selecting the optimum set of hyperparameters for a
neuromorphic system (and in general any artificial intelligence-
based computing system), we chose Bayesian optimization as
the core of our approach. In this section, we first overview
the basic mathematics of Bayesian modeling and justify the use
of this technique in our proposed Hierarchical Pseudo Agent-
based Bayesian Optimization (Hierarchical-PABO) framework,
and then present the experimental setup for this approach.

2.1. An Introduction to Bayesian
Optimization
Bayesian optimization is a powerful tool for finding the optimum
point of objective functions that are unknown and expensive to
evaluate (Brochu et al., 2010). The problem of finding a global
optimizer for an unknown objective function is formulated in
Equation (1).

x∗ = argmax
x∈X

f (x) (1)

where X is the entire design space, and f is the black-box
objective function without simple closed form. As summarized
by Shahriari et al. (2015), in a sequential manner, we search
for the best location xn+1 to observe yn+1 point in order to
estimate f . After N iterations, the algorithm suggests the best
estimation of the black-box function f . This sequential approach
is based on building a prior estimation over possible objective
functions, and then iteratively re-estimating the prior model
using the observations from updating the Bayesian posterior
model. The posterior representations are the updated knowledge
on the objective function we are trying to optimize. We explore
the search space by leveraging the inherent uncertainty of the
posterior model and mathematically introducing a surrogate
model, called the acquisition function αn. The maximum point
of this function is the next candidate point to observe (xn+1)
and guides the search direction toward the true representation
of the objective function. The efficiency of Bayesian approach
to estimate the global optimizer for the expensive black-box
function with fewer evaluations lies on the ability of Bayesian

Frontiers in Neuroscience | www.frontiersin.org 3 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

technique to learn from prior belief on the problem and direct
the observations by trading off exploration and exploitation of
the design space.

In the context of neuromorphic computing, x is the
system’s hyperparameters such as inherent hyperparameters for
different input/output encoding schemes, or population size or
optimizer choice for various training techniques. Hardware-
specific hyperparameters are also another choice for parameter x.
Function f is the black-box objective function, such as accuracy
of the network, energy or area requirements of the system, and
speed of inference, for stochastic observations of y. A summary of
the Bayesian approach is illustrated in the Figure 1. See Brochu
et al., 2010; Bergstra et al., 2011; Eggensperger et al., 2013 for
detailed tutorials.

In Figure 1, we are estimating an unknown objective function,
ground truth f . We only have two observations (likelihood
model) in iteration one (red dots). We first build our prior
distribution (current belief) based on these observations using
Gaussian processes. The Gaussian distribution is shown with
mean and standard deviation, solid black line, and highlighted
dashed area, respectively. A surrogate model, acquisition
function, is estimated for this posterior distribution, which
is shown as the highlighted green function. The maximum
point of the acquisition function (green dot) is the best next
point to observe in the next iteration. As the new points are
added to the observations in different iterations, the standard
deviations, and therefore the uncertainty of estimating the
ground truth function, is reduced. Each observation requires
evaluating an unknown, expensive objective function. The ability
of the Bayesian technique in predicting this function (ground
truth in Figure 1) with few evaluations, speeds up the process
of finding the optimum set of hyperparameters with minimum
computational resources.

For configuring the Gaussian process, the covariance function
is a positive definite kernel that specifies the similarity between
points of observations. There are different methods to estimate
this kernel function based on the smoothness, noise level and
periodicity of the ground truth. In our experimental setup,
we selected the Matern kernel function with smoothness value
of 1.5. This particular kernel is selected due to the intrinsic
stochastic nature, and noise level of our problem. Once we
estimate the posterior distribution based on the likelihood model
and the prior distribution, we build an acquisition function to
guide the search direction. This acquisition function defines
whether to search the space where the uncertainty is high

(explore) or sample at locations where the model predicts high
objectives (exploit). There are different methods to calculate
this surrogate model (Kushner, 1964; Lai and Robbins, 1985;
Jones et al., 1998; Jones, 2001; Brochu et al., 2010; Bull, 2011;
Agrawal and Goyal, 2013; Hernández-Lobato et al., 2014). The
choice of the method to use directly impacts the speed of
convergence to the ground truth in Bayesian search. We chose
expected improvement approach for the acquisition function.
This selection does not impact the effectiveness or performance
of our approach; rather, it only impacts the speed of searching the
hyperparameter space and avoid trapping in local minima. More
details in selecting kernel or acquisition function can be found
in Shahriari et al. (2015).

2.2. Hierarchical-PABO
Hierarchical-PABO (Hierarchical Pseudo Agent-based Bayesian
Optimization) is an ultra-efficient Bayesian-based optimization
framework to find an optimum set of hyperparameters for
designing an accurate neural network while minimizing energy
consumption and area requirement of the underlying hardware.

Figure 2 summarizes the Hierarchical-PABO framework. We
randomly select two hyperparameter (HP) combinations from
the design space. In the first level, these current observations
are used to build Bayesian estimation posterior distributions for
each objective function separately.We then define the acquisition
function for each posterior model. The optimum point of these
acquisition functions are the best next point (HP combination)
to evaluate for their corresponding objective function. In the
second level, the supervisor agent level, the process starts
with all current observations (set of HP combinations) and
the candidate HP combination that led to the optimum value
of the acquisition functions in the previous iteration. For
these observations, we estimate an intermediate Pareto frontier
function using a Gaussian distribution. This is calculated based
on the observation points (on the Pareto front set), as well
as a score calculated based on L1-norm of these points after
being normalized. Therefore, a corresponding surrogate model
(acquisition function) for this Gaussian distribution explores
and exploits the search space with the goal of estimating the
current intermediate Pareto function. The next best observation
for this Pareto is then added to the observations for each
Bayesian estimator. With this technique, we force the Bayesian
approach to add extra observations that help in minimizing
the current intermediate Pareto function. This function is

FIGURE 1 | Summary of single objective Bayesian optimization. Reproduced with permission from Parsa et al. (2019a).

Frontiers in Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

FIGURE 2 | Hierarchical-PABO framework.

updated iteratively and moved toward the actual Pareto region
of the problem.

In Hierarchical-PABO, the Pareto Bayesian estimator in the
second level plays a vital role in correlating the Bayesian
estimators for each objective function in the first level. However,
to speed up the search process, the supervisor agent might turn
off this Pareto Bayesian estimator. If this extra Bayesian estimator
is turned off, the supervisor agent takes HP combinations
taken from optimum point of the acquisition function for each
objective and only allow those that are in favor of moving toward
the Pareto region. Please see the Supplementary Material for
Hierarchical-PABO pseudo-code.

2.3. Experimental Setup
An overview of our experimental setup is shown in Figure 3.
We test Hierarchical-PABO on several devices for various
control and classification tasks. For experiments on Artificial
Neural Networks (ANNs), we select PUMA (Ankit et al.,
2019) as the underlying hardware with two different
deep neural network architectures, AlexNet (Krizhevsky
et al., 2012) and VGG19 (Simonyan and Zisserman,
2014) on Flower17 (Nilsback and Zisserman, 2006), and
CIFAR10 (Krizhevsky, 2009) image classification dataset.

For Spiking Neural Networks (SNNs), we consider both
digital and mixed-signal hardware; DANNA2 (Mitchell et al.,
2018), and mrDANNA (Chakma et al., 2017), respectively.
Additionally, we select Pole-balance (Wieland, 1991; Gomez
et al., 2006), and RoboNav (Mitchell et al., 2017) for experiments
on control applications, and IRIS (Dua and Graff, 2017),
and Radio (Reynolds et al., 2018) dataset for classification
applications. In Figure 3, the experimental setup for ANN is
shown in red, and for SNN in blue.

In SNN domain, we utilize a modified version of the
TENNLab neuromorphic software framework (Plank et al., 2017,
2018). This platform enables studying different applications
and evaluating them on several neuromorphic processor
implementations. This capability is well-suited for the purpose
of our hyperparameter multi-objective optimization as it allows
switching applications and devices within the framework
without the need to change the software. We modify the
TENNLab framework by adding Hierarchical-PABO to its
primary underlying learning algorithm, which is Evolutionary
Optimization for Neuromorphic Systems, EONS (Schuman et al.,
2016). EONS is an evolutionary approach for designing the
network topology and parameters of an SNN for a given
application and neuromorphic hardware implementation. This

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

FIGURE 3 | Summary of the experimental setup (ANN and SNN).

evolutionary algorithm follows the same steps as a traditional
evolutionary approach. That is, EONS begins with a population
of potential solutions and evaluates each of those solutions on
the problem at hand (running the potential network solution on
the application on the hardware or a simulation of the hardware)
to get a fitness score for each solution. Then, EONS uses the
fitness scores to perform selection (preferentially selecting better
performing networks to serve as parents) and reproduction (to
produce children networks from the parents). Reproduction
includes both crossover operations (taking components from two
networks to assemble one ormore children), mutation operations
(small-scale changes such as parameter updates or adding or
deleting a neuron or synapse), and duplication. Details of the
experimental setup for both ANN and SNN are described in
this section.

2.3.1. Experimental Setup for ANN
For experiments in ANN domain, to speed up the search for
the optimum hyperparameter, we turn off the extra Bayesian
estimator block in the supervisor agent. In this case, the
supervisor agent only correlates the results of the isolated
Bayesian estimations of each objective function, and decides on
the best hyperparameter combination for the next iteration based
on the ones that might belong to the Pareto frontier. Details
of the Hierarchical-PABO when the extra Bayesian estimator in
supervisor agent is turned off is given in Parsa et al. (2019a).

As discussed in Parsa et al. (2019a), the underlying
hardware we select for our ANN experimental setup is a
programmable ultra-efficient memristor-based accelerator called
PUMA, proposed by Ankit et al. (2019). This spatial general-
purpose architecture is based on hybrid CMOS-memristor
technology that enables mapping machine learning applications
using on-chip memory only. Analog memristor crossbars,
functional units, and instruction execution pipelines are the
building blocks of PUMA’s core. Multiple cores create tiles via
a shared memory. PUMA’s nodes are several tiles connected

through an on-chip network. For large-scale executions, PUMA
nodes are linked with a chip-to-chip interconnect.

To calculate energy consumption of PUMA, we use an
abstract energy consumption model of the memristor crossbars
only. This enables evaluating the impact of hyperparameters
on the energy usage of PUMA, while isolating the benefits
of micro-architectural design. We expect lower energy usage
with less number of crossbars. Details of calculating the energy
consumption of PUMA is given in Equation (2).

Total Energy = [
∑

i

(di × di × ⌈
nci × ki × ki

xs
⌉ × ⌈

nci+1

xs
⌉)

+
∑

i

(⌈
nfi

xs
⌉ × ⌈

nfi+1

xs
⌉)]× epx (2)

In Equation (2), the total energy consumption is the summation
of number of crossbars needed for all convolution and fully
connected layers multiplied by the energy per matrix vector
multiplication operation (epx). In PUMA’s memristive crossbar
accelerator, epx is ≃44 nJ for a 16-bit (inputs and weights)
crossbar operation with crossbar size (xs) of 128 × 128. For the
ith convolution layer, di is the dimension of the output, nci is the
number of input features, and ki is the kernel size. The dimension
of the output in the convolution layer is for the inherent weight-
sharing property of these layers. For the ith fully connected layer,
nfi is the number of input features.

In the ANN’s experimental setup, we used
AlexNet (Krizhevsky et al., 2012) and VGG19 (Simonyan
and Zisserman, 2014) for the deep neural network architectures.
For details on the structures of AlexNet and VGG19 please
refer to the Supplementary Material. We performed several
case studies for different types of hyperparameters, including
the number of layers, kernel sizes, number of features to
extract in each layer, and also the values for learning rate,
momentum, and dropout. The details of the our proposed

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

TABLE 1 | Energy estimate per spike for mrDANNA.

Accumulation Fire Learning Idle

Neuron 9.81pJ 12.5pJ - 7.2pJ

Synapse 1.45pJ - 2.58pJ 0.07pJ

hyperparameter optimization technique on ANN results are
given in Parsa et al. (2019a).

2.3.2. Experimental Setup for SNN
As mentioned in section 2.2, based on the complexity of the
problem, the supervisor agent decides to keep the extra Bayesian
estimator block on or off. In SNN domain, this block is turned
on which is well-suited for the hyperparameter optimization of
spiking neuromorphic systems. In these systems, the intrinsic
HPs in different building blocks of these systems are so critical in
the final performance of the system that an additional Bayesian
optimizer is needed to find the optimum set of HPs.

The summary of the applications and neuromorphic
processors we select for SNN experimental setup is shown in
Figure 3. For the applications, we tested Hierarchical-PABO on
both control and classification tasks. Pole-balance (Wieland,
1991; Gomez et al., 2006), and RoboNav (Mitchell et al., 2017)
were the two selected control applications. Pole-balance is
a control benchmark in engineering which involves a pole
connected to a cart through a joint that allows single axis
movement. The goal of this control application is to keep the
pole from falling by moving the cart either direction. RoboNav
is an autonomous navigation system for robotic applications
and is meant to be deployed on a specific robot (Mitchell
et al., 2017). We also used the Iris (Dua and Graff, 2017) and
Radio (Reynolds et al., 2018) datasets for classification tasks. The
former is a multivariate dataset of 50 samples from each of three
species of the Iris flower, and the latter is a satellite radio signal
classification problem.

We use two different neuromorphic implementations that
are already deployed in the TENNLab framework, a fully
digital neuromorphic processor, DANNA2 (Mitchell et al.,
2018), and a memristive mixed-signal neuromorphic processor,
mrDANNA, (Chakma et al., 2017). DANNA2 is a fully
digital programmable device with integrate-and-fire neurons
and synapses, and mrDANNA is a mixed analog-digital
programmable device with metal-oxide memristors. We use
mrDANNA for the case studies where we would like to
minimize energy requirement of the underlying neuromorphic
hardware. Table 1 summarizes the energy estimate per spike
for this neuromorphic device. mrDANNA is a synchronous
neuromorphic architecture and is simulated in a discrete event
simulation. Events in the simulation include accumulations, fires,
and learning. The energy estimates for each event type are given
in Table 1 and we track howmany of each type of event occurs in
the simulation and sum up the energies. If no event is occurring
on a neuron or synapse in a clock cycle, that neuron or synapse is
“idle,” but still performing some operations that contribute to idle

cost. We use these energy estimates to estimate the overall energy
cost of running on a particular application.

3. RESULTS

To validate Hierarchical-PABO we consider different case
studies, which are summarized in Table 2. Different applications
(control and classification), architectures (AlexNet and
VGG19 for ANN, and EONS for SNN), dataset (Flower17,
CIFAR10, IRIS, Radio, and Pole-balance), and accelerators
(PUMA, DANNA2, mrDANNA) are considered with
different search space sizes. These different case studies are
chosen to demonstrate our proposed generic hyperparameter
optimization approach.

3.1. Results for ANN
Table 3 shows a summary of the selected ranges for the
hyperparameters (HPs) for eachANN case study given inTable 2.
All these cases are studied with PUMA as the underlying
hardware. Case study one is designed with a small search space of
size 192 HPs. We begin with the small search space size in order
to estimate the actual Pareto frontier of the problem with a grid
search technique and to compare the Hierarchical-PABO (H-
PABO) result with other state-of-the-art approaches. Case study
two is included to capture the effects of different types of HPs in
the analysis, and case study three is a more realistic experiment
with VGG19 as the chosen architecture on CIFAR10 dataset.

Figure 4 demonstrates results for different case studies. Each
point in this figure corresponds to a set of HPs from the ranges
given in Table 3. H-PABO search points are shown in red circles
and are the selected HP combinations that lead to defining a
Pareto frontier region. As already discussed in section 2.2, this
selection is based on exploring and exploiting the search space.
In all three case studies shown in Figure 4, the H-PABO search
not only emphasizes on the Pareto region, but also explores the
search space to avoid trapping in local minima.

In Figure 4A, H-PABO search points are compared to grid
search (shown in gray crosses), random search (blue diamonds),
and state-of-the-art NSGA-II (Deb et al., 2002) search (black
squares). H-PABO predicts the actual Pareto frontier of the
problem with only 17 evaluations (out of 192 possible HP
combinations). This result outperforms other approaches not
only in accuracy of predicting the Pareto frontier, but also
in superior computational speed. The random search results
are from 40 evaluations of HP combinations, and NSGA-II is
based on a population size of 10 with a maximum generation
of 50. In this case study, H-PABO is 92× faster than NSGA-
II in predicting the actual Pareto frontier of the problem. An
optimal design that belong to the Pareto frontier with 26% error
and 7mJ PUMA energy consumption will lead to almost 40%
decrease in energy consumption compared to a not-optimal
design with 26% error and 12mJ energy consumption. For these
two designs all hyperparameters such as dropout, learning rate,
and optimizer type are similar, except number of fully connected
layers, convolution layers, and two filter sizes. The optimal design
has two fully connected layers, and four convolution layers
with filter sizes 3 in the second and third layers. However, the

Frontiers in Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

TABLE 2 | Case studies for hierarchical-PABO.

Case study Domain Application Architecture Dataset Accelerator Search space Objective

One ANN Classification AlexNet Flower17 PUMA 192 Accuracy, Energy

Two ANN Classification AlexNet Flower17 PUMA 288 Accuracy, Energy

Three ANN Classification VGG19 CIFAR10 PUMA 3,072 Accuracy, Energy

Four SNN Control EONS Pole-Balance DANNA2 240 Accuracy

Five SNN Control EONS Pole-Balance DANNA2 54,432,000 Accuracy

Six SNN Classification EONS IRIS mrDANNA 1,458 Accuracy, Energy, Size

Seven SNN Classification EONS Radio mrDANNA 1,458 Accuracy, Energy, Size

Eight SNN Classification EONS IRIS mrDANNA 35,460 Accuracy, Energy, Size

Nine SNN Classification EONS Radio mrDANNA 35,460 Accuracy, Energy, Size

TABLE 3 | Evaluated parameters for three different case studies for ANNs.

Case study one Case study two Case study three

Dropout 0.4, 0.5 0.5 Dropout, Layer 1 0.3, 0.4

Learning Rate 0.001 0.001, 0.01 Learning Rate 0.01, 0.1

Momentum 0.85, 0.9, 0.95 - Learning Rate Decay 1e− 6, 1e− 4

Optimizer Momentum Momentum, Adam Weight Decay 0.0005, 0.05

# of FC Layers 2, 3 2, 3 Kernel Size, Layer 6 3, 5

# of Conv. Layers 4, 5 3, 4, 5 Kernel Size, Layer 7 3, 5

Kernel Size, Layer 1 5, 7 3, 5, 7 Kernel Size, Layer 8 3, 5

Kernel Size, Layer 2 3, 5 3, 5 Kernel Size, Layer 9 3, 5, 7

Kernel Size, Layer 3 3, 5 # of Features, Layer 1 64, 128

Kernel Size, Layer 4 3 3, 5 # of Features, Layer 2 128, 256

# of Features, Layer 4 256, 512

Architecture AlexNet AlexNet VGG19

Neural Accelerator PUMA PUMA PUMA

Dataset Flower17 Flower17 CIFAR10

Search Space 192 288 3072

not-optimal design has three fully connected layers, and five
convolution layers with filter sizes 5 in the second and third
layers. Further analysis on the results is given in Parsa et al.
(2019a).

For case study two given in Table 3, we show the convenience
of changing HP types within the H-PABO framework by
incorporating the choice of optimizer as an HP. In Figure 4B,C,
H-PABO estimates the Pareto region with 39 and 22 evaluations,
respectively. The complexity and predictability of the problem
upon changes of HP combinations define the speed of H-PABO
in predicting the Pareto region.

3.2. Results for SNN
Table 4 shows a summary of the selected ranges for the
hyperparameters (HPs) for case studies in SNN domain given
in Table 2. In this table, bk, pk, [ck,Ck], function, and interval
are from the input encoding module, population size, mutation
rate, and crossover rate are for EONS evolutionary-based training
algorithm, and synaptic weight, neuron threshold, and synaptic
delay belong to the underlying neuromorphic hardware. The
input encoding hyperparameters include several approaches such
as binning-based, using bk as the number of bins required for
each input values, spike-count with pk as the maximum number

of spikes to encode a single input value, charge-value with
[ck,Ck] on injecting a specific charge to fire a neuron, function
on how to map the values to spikes, and interval to define
the interval between pulses. For more details on each of these
hyperparameters please refer to Parsa et al. (2019b), Schuman
et al. (2019).

We first show the importance of hyperparameter optimization
for spiking neuromorphic systems by only focusing on single-
objective optimization (performance of the system on the
task) problem, where grid search results are already available
by Schuman et al. (2019). We then continue with Hierarchical-
PABO (H-PABO) results for a three-objective optimization
problem (performance, energy, and network size).

Single-Objective Optimization with Hierarchical-PABO (H-

PABO): While H-PABO is generally aimed for multi-objective
problems, it can easily be reduced to a single-objective
optimization by setting objective functions to one. This is the
case for case study four, where we are only optimizing a single
objective function that is the accuracy of the neural network.
The details of this case study is given in Table 4. Figure 5

shows box plot figures with interquartile ranges. The grid search
result is produced and published by Schuman et al. (2019) and
shown in Figure 5A. For each one of the 240 combinations

Frontiers in Neuroscience | www.frontiersin.org 8 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

FIGURE 4 | ANN results for multi-objective hyperparameter optimization of network performance and hardware energy requirement. (A) Case study one: HP search

space = 192, Reproduced with permission from Parsa et al. (2019a). (B) Case study two: HP search space = 288. (C) Case study three: HP search space = 3,072,

Reproduced with permission from Parsa et al. (2019a).

TABLE 4 | Evaluated parameters for case studies four to nine for SNNs.

Hyperparameters Case study four Case study five Case studies six, and seven Case studies eight, and nine

bk 1, 2, 4, 8 2, …, 8 2, 4, 8 2, 4, 8, 10, 12

pk 1, 2, 4, 8 1, …, 12 4, 8 2, 4, 8, 10, 12

[ck ,Ck ]

[0,0.5],[0,1],

[0.25,0.5], [0.25,1],

[0.5,0.5],[1,1]

[0,0.5],[0,1],

[0.25,0.5],[0.25,1],

[0.5,0.5],[1,1]

[0,1], [0.5,0.5],

[1,1]

[0,0.5],[0,1],

[0.25,0.5], [0.25,1],

[0.5,0.5],[1,1]

Function

simple,

flip-flop,

triangale

simple,flip-flop,triangale
simple,

flip-flop

simple,

flip-flop,

triangale

Interval 1 1, …, 5 0, 1 0, 1, 2

Population size 1,000
600, 800, 1,000,

1,200, 1,500, 2000
10, 100, 500 10, 100, 500, 700

Mutation rate 0.9 0.6, 0.7, 0.8, 0.9 0.2, 0.6, 0.9 0.2, 0.6, 0.9

Crossover rate 0.5 0.3, 0.4, 0.5, 0.6, 0.7 0.3, 0.5, 0.9 0.3, 0.5, 0.9

Synaptic weight [-255,255]
[-127,127],[-255, 255]

[-511, 511],[-1023, 1,023]
- -

Neuron threshold [0,1,023] 255, 511, 1023 - -

Synaptic delay 127 15, 31, 63, 127, 255 - -

Neural Accelerator DANNA2 DANNA2 mrDANNA mrDANNA

Application Pole-balance Pole-balance
six: IRIS

seven: Radio

eight: IRIS

nine: Radio

Search Space 240 54,432,000 1458 35,640

of the hyperparameters, the network accuracy is calculated
and evaluated for 100 times. In Figure 5B, we used H-PABO
for the same experiment, and with only 40 hyperparameter

combinations, each repeated for 10 times, we are able to predict
not only the exact optimum set of hyperparameter, but also
predict the same trend in the network accuracy changes for

Frontiers in Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

FIGURE 5 | H-PABO results for single-objective hyperparameter optimization (network performance, accuracy only) for case study four in Table 2. Reproduced with

permission from (Parsa et al., 2019b).

TABLE 5 | Sensitivity analysis for H-PABO single objective optimization.

HPs Experiment 1 Experiment 2 Experiment 3 Experiment 4

Input encoding HPs

bk 2 2 2 2

pk 8 12 8 8

Charge [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5]

Function Flip-flop Flip-flop Flip-flop Flip-flop

Interval 1 5 1 2

EONS HPs

Population size 1000 1500 400 1000

Mutation rate 0.9 0.9 0.9 0.9

Crossover rate 0.5 0.4 0.5 0.7

Accelerator HPs

Synp weight [−255, 255] [−127, 127] [−255, 255] -

Neuron threshold [0, 1023] [0, 1023] [0, 1023] -

Synp delay 127 255 15

Neuromorphic System Performance 52% 70.99% 50% 53%

Accelerator DANNA2 DANNA2 DANNA2 mrDANNA

Application Pole-Balance Pole-Balance RoboNav RoboNav

different hyperparameter combinations (Parsa et al., 2019b). In
this case study the optimum hyperparameter combination leads
to median value of 52%.

The hyperparameters are kept exactly similar between case
studies four and five in Table 4. However the ranges for each
hyperparameter is increased in case study five. Although all
hyperparameters are still in reasonable ranges, the search space is
drastically increased to over 54 million different hyperparameter
combination in case study five. This shows that in real problems
where different hyperparameters exist originating from different
modules of the system such as input encoding, hardware, or
the training algorithm itself, hyperparameter optimization plays
vital role in obtaining the maximum performance of the system.
We performed H-PABO to define the set of hyperparameter
that optimizes network’s accuracy and were able to increase the
median value of the accuracy to 70.99% compared to 52% in case
study four. Please refer to Parsa et al. (2019b) for more details on
single-objective hyperparameter optimization on spiking neural
networks.

In Table 5, a sensitivity analysis is performed for H-
PABO single objective optimization for different classification
applications on two different neural accelerators. These
experiments show how sensitive is pole-balance control
application to the changes of hyperparameters. If we only change
few hyperparameters (all in reasonable ranges), the resulting
accuracy will change from 52 to 70.99% (comparing experiments
1 and 2 in Table 5). Based on these experiments, RoboNav
appears to be less sensitive to changes in hyperparameters
and architectures, but more extensive experiments may be
required in order to understand the full impact on this
particular application.

Three-Objective Optimization with Hierarchical-

PABO (H-PABO): To validate H-PABO technique for
multi-objective hyperparameter optimization problems in
SNN domain, we focus on classification application with
IRIS (Dua and Graff, 2017), and Radio (Eggensperger
et al., 2013) dataset on both digital (Mitchell et al.,
2018), and mixed-signal memristive (Chakma et al., 2017)

Frontiers in Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

neuromorphic devices. The summary of the case studies six
to nine, and their corresponding HP ranges are given in
Tables 4, 2, respectively.

Figure 6 demonstrates the Hierarchical-PABO (H-PABO)
results in SNN domain on IRIS classification dataset on a mixed-
signal underlying hardware [mrDANNA, Chakma et al. (2017)].

FIGURE 6 | H-PABO results for three-objective hyperparameter optimization (network performance, hardware energy consumption, and number of synapses) for Iris

classification dataset on mrDANNA with HP search space of (A), 1458, case study six, (B) 35,640, case study eight in Table 4.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

Figure 6A shows theH-PABO results compared to grid search for
the case study six given in Table 4with 1458 different sets of HPs.
Each point in the three-dimension figure represents network
performance, hardware energy consumption, and number of
required synapses for a set of HP combination. The number
of required synapses increases as the color becomes lighter.
The grid search results show that most of the time the energy
consumption increases as the number of synapses increase (the
top left region of Figure 6A). However, we might also have a
larger network with more inhibitory synapses, for example, that
would have less activity and thus less energy than a smaller
network (top right region). The triangles are the H-PABO search
points, and as expected, all different regions of the search space
are explored with H-PABO. The H-PABO Pareto points are
shown with squares. These points are calculated once the H-
PABO search process is completed and are the H-PABO search
points that belong to the Pareto frontier. As shown in Figure 6A

this calculated Pareto frontier is within close proximity to the
actual Pareto frontier of the problem.

Figure 6B shows the H-PABO results for case study eight
in Table 4 for the HP search space of 35640 different HP
combinations. Once again, we see that all regions of the
search space are explored by the H-PABO approach, but that
the majority of the H-PABO points are evaluated are in the
region of interest and near the H-PABO Pareto front. In this
case, H-PABO was able to find well-performing networks with
desired characteristics (low energy consumption and relatively
few synapses) with significantly fewer evaluates than what would
be required for a full grid search of 35,640 points. It is also worth

noting that by optimizing over the additional HPs, the H-PABO
approach is able to find well-performing networks with better
characteristics than the networks found simply optimizing over
the smaller set of HPs (shown in Figure 6B).

Figure 7 shows the H-PABO results from Figure 6, but splits
the results into three different pairwise comparison plots, for
each case study, to show how the different objectives play off
of each other. The third objective is also shown in each plot
through the color of the squares. With these plots, we can see
the different Pareto fronts for each of the pairwise objectives.
For example, in the network performance vs. hardware energy
plots, we can see that there are trade-offs in energy usage in order
to achieve lower error (and similarly for network performance
vs. number of synapses). However, the number of synapses and
energy usage are relatively correlated, such that fewer synapses
typically corresponds to a lower energy value.

Figure 8 gives the results for case studies seven and nine, in
which the H-PABO approach is applied to HP optimization for
the Radio classification dataset on the memristive mixed-signal
system (mrDANNA). The two case studies look at the same HP
combination sets as the Iris dataset and correspond to 1458 and
35640 combinations, respectively. As we can see in the figure,
H-PABO once again explores the space of potential solutions
but is able to find a Pareto front in relatively few evaluations.
Again, similar to the result for the Iris dataset, we can see that by
expanding our HP set to the 35640 potential HP combinations,
H-PABO is able to achieve overall better performing networks
(lower error and energy and fewer synapses required), and in
general moving the Pareto front closer to the desired region.

FIGURE 7 | Comparing three-dimensional H-PABO results, pairwise for (A) case study six with search space size 1,458, (B) case study eight with search space size

35,640.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

FIGURE 8 | H-PABO results for three-objective hyperparameter optimization (network performance, hardware energy consumption, and number of synapses) for

case studies seven and nine in Table 2, Radio classification dataset on mrDANNA, (A) search space size 1,458, (B) search space size 35,640.

4. DISCUSSION AND FUTURE WORK

In this paper, we propose a novel multi-objective optimization
framework based on hierarchical Bayesian optimization and
agent-based modeling (Hierarchical-PABO). With its one of a
kind structure, and simple yet effective underlying mathematics,
we are able to predict a Pareto frontier of a multi-objective
hyperparameter optimization for both non-spiking and spiking
neural network systems with only few evaluations. This
framework paves the way to further analyze and study
sensitivity and resiliency of the system due to the changes of
the hyperparameters.

The main current limitation of Hierarchical-PABO is
scalability and ability to parallelize the approach. The goal of
Hierarchical-PABO is predicting the Pareto region for a search
space with reasonable ranges for the hyperparameters and with
only few evaluations and we do not want to compete with
all NAS-based approaches that search the entire search space
with massive computational resource requirements. However,
improving scalability of Hierarchical-PABO paves the way
for incorporating the technique in different frameworks with
multiple layers of optimization problems and hyperparameters.

For future work, we intend to fully integrate the Hierarchical-
PABO approach into the TENNLab neuromorphic framework
by Plank et al. (2018), so that it can seamlessly determine
hyperparameters for the neuromorphic framework user. Within
that framework, we also intend to apply this hyperparameter
framework to other neuromorphic implementations that
are supported and other applications, including a variety
of control applications (like those described by Plank
et al., 2019) and other classification tasks. We also plan to
apply H-PABO to determine the hyperparameters for other
spiking neural network training approaches, including
reservoir computing algorithms, and back-propagation
style approaches such as Whetstone (Severa et al., 2019)
and SLAYER (Shrestha and Orchard, 2018). To further

accelerate the optimization approach, we plan to investigate
an implementation of H-PABO for high-performance
computers, such as Oak Ridge National Laboratory’s
Summit supercomputer.

DATA AVAILABILITY STATEMENT

The following datasets used in this study can be found at:

• Flower17: http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
• CIFAR10: https://www.cs.toronto.edu/~kriz/cifar.html
• IRIS: https://archive.ics.uci.edu/ml/datasets/Iris
• Radio: https://www.deepsig.io/datasets/

All codes for Hierarchical-PABO as well as the simulation codes
for pole balance and robotic navigation used in this work are
available from the authors on request.

AUTHOR CONTRIBUTIONS

MP and KR defined the experimental setup and research
experiments for the H-PABO approach for ANN domain,
where the extra Bayesian optimizer block in the supervisor
agent is off. MP, JM, and CS formulated the experimental
setup and research experiments for the H-PABO approach
for SNN domain. MP implemented H-PABO and conducted
all of the experiments. RP and TP provided feedback and
insight into the H-PABO approach for SNN. MP took
the lead in writing the manuscript. All authors provided
critical feedback and helped shape the research, analysis
and manuscript.

FUNDING

This research was funded in part by Center for Brain Inspired
Computing Enabling Autonomous Intelligence (C-BRIC), one

Frontiers in Neuroscience | www.frontiersin.org 13 July 2020 | Volume 14 | Article 667

http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
https://www.cs.toronto.edu/~kriz/cifar.html
https://archive.ics.uci.edu/ml/datasets/Iris
https://www.deepsig.io/datasets/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, the National Science
Foundation, Intel Corporation and Vannevar Bush Faculty
Fellowship, U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under contract
number DE-AC05-00OR22725, and by the Laboratory Directed
Research and Development Program of Oak Ridge National
Laboratory. The funders were not involved in the study design,

collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00667/full#supplementary-material

REFERENCES

Agrawal, S., and Goyal, N. (2013). “Thompson sampling for contextual bandits

with linear payoffs,” in International Conference on Machine Learning

(Atlanta, GA), 127–135.

Ankit, A., Hajj, I. E., Chalamalasetti, S. R., Ndu, G., Foltin, M., Williams, R. S., et al.

(2019). “Puma: a programmable ultra-efficient memristor-based accelerator

for machine learning inference,” in Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems (Providence, RI: ACM), 715–731. doi: 10.1145/3297858.

3304049

Baker, B., Gupta, O., Raskar, R., and Naik, N. (2017). Accelerating neural

architecture search using performance prediction. arXiv [Preprint].

arXiv:1705.10823.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for hyper-

parameter optimization,” inAdvances in Neural Information Processing Systems,

eds J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K. Q. Weinberger

(Granda: Neural Information Processing Systems Foundation, Inc),

2546–2554.

Bohnstingl, T., Scherr, F., Pehle, C., Meier, K., and Maass, W. (2019).

Neuromorphic hardware learns to learn. Front. Neurosci. 13:483.

doi: 10.3389/fnins.2019.00483

Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian

optimization of expensive cost functions, with application to active

user modeling and hierarchical reinforcement learning. arXiv [Preprint].

arXiv:1012.2599.

Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. J.

Mach. Learn. Res. 12, 2879–2904. doi: 10.5555/1953048.2078198

Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: direct neural architecture search

on target task and hardware. arXiv preprint arXiv:1812.00332.

Chakma, G., Adnan, M. M., Wyer, A. R., Weiss, R., Schuman, C. D., and Rose,

G. S. (2017). Memristive mixed-signal neuromorphic systems: energy-efficient

learning at the circuit-level. IEEE J. Emerg. Select. Top. Circ. Syst. 8, 125–136.

doi: 10.1109/JETCAS.2017.2777181

Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., et al. (2019). “Chamnet:

Towards efficient network design through platform-aware model adaptation,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Long Beach, CA), 11398–11407. doi: 10.1109/CVPR.2019.01166

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6,

182–197. doi: 10.1109/4235.996017

Dua, D., and Graff, C. (2017). UCI Machine Learning Repository. University of

California, Irvine, School of Information and Computer Sciences. Available

online at: http://archive.ics.uci.edu/ml (accessed December 2019).

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., et al.

(2013). “Towards an empirical foundation for assessing Bayesian optimization

of hyperparameters,” inNIPS workshop on Bayesian Optimization in Theory and

Practice, Vol. 10, 3.

Esser, S., Merolla, P., Arthur, J., Cassidy, A., Appuswamy, R., Andreopoulos,

A., et al. (2016). Convolutional networks for fast, energy-efficient

neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–11446.

doi: 10.1073/pnas.1604850113

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems, eds C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama and R. Garnett (Montreal, QC: Neural Information

Processing Systems Foundation, Inc), 1117–1125.

Gomez, F., Schmidhuber, J., and Miikkulainen, R. (2006). “Efficient non-linear

control through neuroevolution,” in European Conference on Machine Learning

(Berlin: Springer), 654–662. doi: 10.1007/11871842_64

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems, eds C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and

R. Garnett (Montreal, QC: Neural Information Processing Systems Foundation,

Inc), 1135–1143.

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahramani, Z. (2014).

“Predictive entropy search for efficient global optimization of black-box

functions,” in Advances in Neural Information Processing Systems, eds Z.

Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger

(Montreal, QC: Neural Information Processing Systems Foundation, Inc),

918–926.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

Jin, J., Dundar, A., and Culurciello, E. (2014). Flattened convolutional

neural networks for feedforward acceleration. arXiv [Preprint]. arXiv: 1412.

5474.

Jones, D. R. (2001). A taxonomy of global optimization methods based on

response surfaces. J. Global Optimizat. 21, 345–383. doi: 10.1023/A:10127710

25575

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global

optimization of expensive black-box functions. J. Global Optimizat. 13,

455–492. doi: 10.1023/A:1008306431147

Koo, M., Srinivasan, G., Shim, Y., and Roy, K. (2020). “SBSNN: stochastic-

bits enabled binary spiking neural network with on-chip learning for

energy efficient neuromorphic computing at the edge,” in IEEE Transactions

on Circuits and Systems I: Regular Papers, ed A. James (IEEE), 1–10.

doi: 10.1109/TCSI.2020.2979826

Krizhevsky, A. (2009). Learning Multiple Layers of Features From Tiny Images.

Technical report. Citeseer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, eds F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger

(Lake Tahoe, NV: Neural Information Processing Systems Foundation, Inc),

1097–1105.

Kushner, H. J. (1964). A new method of locating the maximum point of an

arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86, 97–106.

doi: 10.1115/1.3653121

Lai, T. L., and Robbins, H. (1985). Asymptotically efficient adaptive allocation

rules. Adv. Appl. Math. 6, 4–22. doi: 10.1016/0196-8858(85)90002-8

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., et al.

(2018). “Progressive neural architecture search,” in Proceedings of the

European Conference on Computer Vision (ECCV) (Munich), 19–34.

doi: 10.1007/978-3-030-01246-5_2

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture

search. arXiv preprint arXiv:1806.09055.

Marculescu, D., Stamoulis, D., and Cai, E. (2018). “Hardware-aware machine

learning: modeling and optimization,” in Proceedings of the International

Conference on Computer-Aided Design (San Diego, CA: ACM), 137.

doi: 10.1145/3240765.3243479

Frontiers in Neuroscience | www.frontiersin.org 14 July 2020 | Volume 14 | Article 667

https://www.frontiersin.org/articles/10.3389/fnins.2020.00667/full#supplementary-material
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.3389/fnins.2019.00483
https://doi.org/10.5555/1953048.2078198
https://doi.org/10.1109/JETCAS.2017.2777181
https://doi.org/10.1109/CVPR.2019.01166
https://doi.org/10.1109/4235.996017
http://archive.ics.uci.edu/ml
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1007/11871842_64
https://doi.org/10.1023/A:1012771025575
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/TCSI.2020.2979826
https://doi.org/10.1115/1.3653121
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1145/3240765.3243479
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

Mitchell, J. P., Bruer, G., Dean, M. E., Plank, J. S., Rose, G. S., and Schuman, C. D.

(2017). “Neon: neuromorphic control for autonomous robotic navigation,” in

2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)

(Ottawa, ON: IEEE), 136–142. doi: 10.1109/IRIS.2017.8250111

Mitchell, J. P., Dean, M. E., Bruer, G. R., Plank, J. S., and Rose, G. S. (2018).

“Danna 2: dynamic adaptive neural network arrays,” in Proceedings of the

International Conference on Neuromorphic Systems (Knoxville, TN: ACM), 10.

doi: 10.1145/3229884.3229894

Nilsback, M.-E., and Zisserman, A. (2006). “A visual vocabulary for flower

classification,” in 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), Vol. 2 (New York, NY: IEEE), 1447–1454.

doi: 10.1109/CVPR.2006.42

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for energy-

efficient and enhanced pattern recognition,” in 2016 Design, Automation &

Test in Europe Conference & Exhibition (DATE) (Dresden: IEEE), 475–480.

doi: 10.3850/9783981537079_0819

Panda, P., Sengupta, A., and Roy, K. (2017). Energy-efficient and improved image

recognition with conditional deep learning. ACM J. Emerg. Technol. Comput.

Syst. 13:33. doi: 10.1145/3007192

Parsa, M., Ankit, A., Ziabari, A., and Roy, K. (2019a). “PABO: Pseudo

agent-based multi-objective bayesian hyperparameter optimization for

efficient neural accelerator design,” in 2019 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), (San Diego, CA), 1–8.

doi: 10.1109/ICCAD45719.2019.8942046

Parsa, M., Mitchell, J. P., Schuman, C. D., Patton, R. M., Potok, T. E.,

and Roy, K. (2019b). “Bayesian-based hyperparameter optimization

for spiking neuromorphic systems,” in 2019 IEEE International

Conference on Big Data (Big Data) (Los Angeles, CA: IEEE), 4472–4478.

doi: 10.1109/BigData47090.2019.9006383

Parsa, M., Panda, P., Sen, S., and Roy, K. (2017). “Staged inference

using conditional deep learning for energy efficient real-time

smart diagnosis,” in 2017 39th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society

(EMBC), (Seogwipo: IEEE), 78–81. doi: 10.1109/EMBC.2017.

8036767

Parsa, M., Schuman, C. D., Date, P., Rose, D. C., Kay, B., Mitchell, J. P., et al.

(2020). Hyperparameter optimization in binary communication networks for

neuromorphic deployment. arXiv [Preprint]. arXiv:2005.04171.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural

architecture search via parameter sharing. arXiv [Preprint]. arXiv:1802.03268.

Plank, J. S., Rizzo, C., Shahat, K., Bruer, G., Dixon, T., Goin, M., et al. (2019).

“The TENNLab suite of LIDAR-based control applications for recurrent,

spiking, neuromorphic systems,” in 44th Annual GOMACTech Conference

(Albuquerque, NM).

Plank, J. S., Rose, G. S., Dean, M. E., Schuman, C. D., and Cady,

N. C. (2017). “A unified hardware/software co-design framework for

neuromorphic computing devices and applications,” in 2017 IEEE International

Conference on Rebooting Computing (ICRC) (Washington, DC: IEEE), 1–8.

doi: 10.1109/ICRC.2017.8123655

Plank, J. S., Schuman, C. D., Bruer, G., Dean, M. E., and Rose, G. S. (2018).

The TENNlab exploratory neuromorphic computing framework. IEEE Lett.

Comput. Soc. 1, 17–20. doi: 10.1109/LOCS.2018.2885976

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep

spiking neural networks with hybrid conversion and spike timing dependent

backpropagation. arXiv [Preprint]. arXiv: 2005.01807.

Reagen, B., Hernández-Lobato, J. M., Adolf, R., Gelbart, M., Whatmough, P.,

Wei, G.-Y., et al. (2017). “A case for efficient accelerator design space

exploration via Bayesian optimization,” in 2017 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED) (Taipei: IEEE), 1–6.

doi: 10.1109/ISLPED.2017.8009208

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S. K., et al.

(2016). “Minerva: enabling low-power, highly-accurate deep neural network

accelerators,” in 2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA) (Seoul: IEEE), 267–278. doi: 10.1109/ISCA.

2016.32

Reynolds, J. J., Plank, J. S., Schuman, C. D., Bruer, G. R., Disney, A.

W., Dean, M. E., et al. (2018). 1“A comparison of neuromorphic

classification tasks,” in Proceedings of the International Conference on

Neuromorphic Systems (Knoxville, TN: ACM), 12. doi: 10.1145/3229884.

3229896

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Guettler, M., Hartel, A., et al.

(2017). “Neuromorphic hardware in the loop: training a deep spiking

network on the brainscales wafer-scale system,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AK: IEEE), 2227–2234.

doi: 10.1109/IJCNN.2017.7966125

Schuman, C. D., Plank, J. S., Bruer, G., and Anantharaj, J. (2019).

“Non-traditional input encoding schemes for spiking neuromorphic

systems,” in 2019 International Joint Conference on Neural

Networks (IJCNN) (Budapest: IEEE), 1–10. doi: 10.1109/IJCNN.2019.

8852139

Schuman, C. D., Plank, J. S., Disney, A., and Reynolds, J. (2016). “An

evolutionary optimization framework for neural networks and neuromorphic

architectures,” in 2016 International Joint Conference on Neural Networks

(IJCNN) (Vancouver, BC: IEEE), 145–154. doi: 10.1109/IJCNN.2016.

7727192

Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J., and Aimone, J. B.

(2019). Training deep neural networks for binary communication with

the whetstone method. Nat. Mach. Intell. 1:86. doi: 10.1038/s42256-018-

0015-y

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015).

Taking the human out of the loop: A review of bayesian optimization. Proc.

IEEE 104, 148–175. doi: 10.1109/JPROC.2015.2494218

Shrestha, S., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems, eds S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnet

(Montreal, QC: Neural Information Processing Systems Foundation, Inc),

1412–1421.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Stamoulis, D., Cai, E., Juan, D.-C., and Marculescu, D. (2018). “Hyperpower:

power-and memory-constrained hyper-parameter optimization for neural

networks,” in 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE) (Dresden: IEEE), 19–24. doi: 10.23919/DATE.2018.

8341973

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,

et al. (2019). “MNASNet: platform-aware neural architecture search for

mobile,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Long Beach, CA), 2820–2828. doi: 10.1109/CVPR.2019.

00293

Wang, M., Liu, B., and Foroosh, H. (2017). “Factorized convolutional

neural networks,” in Proceedings of the IEEE International Conference

on Computer Vision (Venice), 545–553. doi: 10.1109/ICCVW.

2017.71

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). “Learning structured

sparsity in deep neural networks,” in Advances in Neural Information

Processing Systems, eds D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R.

Garnett (Barcelona: Neural Information Processing Systems Foundation, Inc),

2074–2082.

Wieland, A. P. (1991). “Evolving neural network controllers for unstable

systems,” in IJCNN-91-Seattle International Joint Conference on Neural

Networks, Vol. 2 (Seattle, WA: IEEE), 667–673. doi: 10.1109/IJCNN.1991.

155416

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., et al. (2019). “FBNet:

hardware-aware efficient convnet design via differentiable neural architecture

search,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Long Beach, CA), 10734–10742. doi: 10.1109/CVPR.2019.01099

Xie, L., and Yuille, A. (2017). “Genetic CNN,” in Proceedings of the

IEEE International Conference on Computer Vision (Venice), 1379–1388.

doi: 10.1109/ICCV.2017.154

Yang, T.-J., Chen, Y.-H., and Sze, V. (2017). “Designing energy-efficient

convolutional neural networks using energy-aware pruning,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu,

HI), 5687–5695. doi: 10.1109/CVPR.2017.643

Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., et al.

(2018). “NetAdapt: platform-aware neural network adaptation for

mobile applications,” in Proceedings of the European Conference on

Frontiers in Neuroscience | www.frontiersin.org 15 July 2020 | Volume 14 | Article 667

https://doi.org/10.1109/IRIS.2017.8250111
https://doi.org/10.1145/3229884.3229894
https://doi.org/10.1109/CVPR.2006.42
https://doi.org/10.3850/9783981537079_0819
https://doi.org/10.1145/3007192
https://doi.org/10.1109/ICCAD45719.2019.8942046
https://doi.org/10.1109/BigData47090.2019.9006383
https://doi.org/10.1109/EMBC.2017.8036767
https://doi.org/10.1109/ICRC.2017.8123655
https://doi.org/10.1109/LOCS.2018.2885976
https://doi.org/10.1109/ISLPED.2017.8009208
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1145/3229884.3229896
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1109/IJCNN.2019.8852139
https://doi.org/10.1109/IJCNN.2016.7727192
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.23919/DATE.2018.8341973
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/ICCVW.2017.71
https://doi.org/10.1109/IJCNN.1991.155416
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/ICCV.2017.154
https://doi.org/10.1109/CVPR.2017.643
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Parsa et al. Hyperparameter Optimization for Neuromorphic Systems

Computer Vision (ECCV), (Munich), 285–300. doi: 10.1007/978-3-030-012

49-6_18

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). “ShuffleNet: an

extremely efficient convolutional neural network for mobile devices”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Salt Lake City, UT), 6848–6856. doi: 10.1109/CVPR.2018.

00716

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning transferable

architectures for scalable image recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),

8697–8710. doi: 10.1109/CVPR.2018.00907

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Parsa, Mitchell, Schuman, Patton, Potok and Roy. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 July 2020 | Volume 14 | Article 667

https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2018.00907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Bayesian Multi-objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neural Network Accelerator Design
	1. Introduction
	1.1. Background and Related Work
	1.2. Main Contributions

	2. Methodology and Experimental Setup
	2.1. An Introduction to Bayesian Optimization
	2.2. Hierarchical-PABO
	2.3. Experimental Setup
	2.3.1. Experimental Setup for ANN
	2.3.2. Experimental Setup for SNN


	3. Results
	3.1. Results for ANN
	3.2. Results for SNN

	4. Discussion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


