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Down syndrome (DS) is the most frequent chromosomal abnormality that causes
intellectual disability, resulting from the presence of an extra complete or segment
of chromosome 21 (HSA21). In addition, trisomy of HSA21 contributes to altered
energy metabolism that appears to be a strong determinant in the development
of pathological phenotypes associated with DS. Alterations include, among others,
mitochondrial defects, increased oxidative stress levels, impaired glucose, and lipid
metabolism, finally resulting in reduced energy production and cellular dysfunctions.
These molecular defects seem to account for a high incidence of metabolic disorders,
i.e., diabetes and/or obesity, as well as a higher risk of developing Alzheimer’s disease
(AD) in DS. A dysregulation of the insulin signaling with reduced downstream pathways
represents a common pathophysiological aspect in the development of both peripheral
and central alterations leading to diabetes/obesity and AD. This is further strengthened
by evidence showing that the molecular mechanisms responsible for such alterations
appear to be similar between peripheral organs and brain. Considering that DS subjects
are at high risk to develop either peripheral or brain metabolic defects, this review will
discuss current knowledge about the link between trisomy of HSA21 and defects of
insulin and insulin-related pathways in DS. Drawing the molecular signature underlying
these processes in DS is a key challenge to identify novel drug targets and set up
new prevention strategies aimed to reduce the impact of metabolic disorders and
cognitive decline.

Keywords: Down syndrome, metabolism, insulin, brain insulin resistance, meatbolic disroders

INTRODUCTION

Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual
disability, resulting from the presence of an extra complete or segment of chromosome 21
(HSA21). Trisomy of HSA21 is associated not only with intellectual disability but also with
several morphological and physiological features. Several regions of the HSA21 contribute to DS
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clinical manifestations, as suggested by a number of studies
performed in human bearing partial duplication (Lejeune et al.,
1959; Patterson, 2009). However, past studies mainly focused on
the “Down syndrome critical region (DSCR)” as one of the main
candidate regions considered to be responsible for the majority of
DS features as a direct consequence of down- or up-regulation of
its target (Rachidi and Lopes, 2007). The DSCR region includes
important candidate genes, such as the dual-specificity tyrosine
(Y)-phosphorylation regulated kinase 1 A (DYRK1A), involved
in brain development and learning and memory (Altafaj et al.,
2001; Park et al., 2009); the regulator of calcineurin 1 (RCAN1),
which plays a role in cell growth and immune responses but
has also a role in cognition (Dierssen et al., 2011; Mendez-
Barbero et al., 2013); the cystathionine beta-synthase (CBS),
an enzyme involved in the homocysteine/folate/transulfuration
pathways (Iacobazzi et al., 2014); and superoxide dismutase 1
(SOD1), which helps redox homeostasis (Valko et al., 2016). All
these genes have been further characterized by the phenotypic
and molecular analysis of transgenic mice expressing every single
gene separately, and collected data demonstrate many common
pathological features with the whole HSA21 genotype (Roper and
Reeves, 2006). Among other HSA21 candidates, the triplication
of some microRNAs (miRNAs), in particular miR-155 (Mashima,
2015), may further contribute to modulate target genes leading
to changes of neurochemical metabolites, mitochondrial deficits,
and other pathological conditions observed in DS individuals
(Quinones-Lombrana and Blanco, 2015). Further, experimental
evidence obtained in trisomic and monosomic mouse models
allowed identification of regions outside the DSCR that are
responsive to dosage that may contribute to defects in behavior
and cognition and other DS pathological features (Vacano et al.,
2012; Gupta et al., 2016).

The most characteristic trait of DS individuals is disturbance
of brain development associated with intellectual disability
in the presence of craniofacial abnormalities (Richtsmeier
et al., 2002). Further, the brains from DS subjects have
structural and functional deficits associated with defects in
morphogenesis, leading to significant reduced brain volume
(Haydar and Reeves, 2012).

Most DS individuals, by their 40s, develop a type of dementia
that shares many commonalities with Alzheimer’s disease (AD),
such as the deposition of senile plaques and neurofibrillary
tangles (Head et al., 2016). After the age of 50, the risk of
developing AD-like dementia rises in DS patients up to 70%.
The high incidence of the symptoms characteristic of AD in
people with DS is thought to be due to triplication of genes
already demonstrated to be involved in AD pathology, including
amyloid precursor protein (APP), beta secretase 2 (BACE2),
SOD1, and S100 calcium-binding protein B (S100B), among
others (Wiseman et al., 2015). The overexpression of APP, an
integral membrane protein that is concentrated in neuronal
synapses, and the consequent overproduction of amyloid beta
(Aβ)-peptide is considered one of the major toxic players
in the early onset of AD neuropathology in DS population
(Hartley et al., 2015; Wiseman et al., 2015). It is well-known
that Aβ overload is involved in the increased production of
reactive oxygen species (ROS), elevated oxidative stress, and

causes excitotoxicity, disturbance of cellular respiration and of
synaptic functions. Accumulation of Aβ in DS brain can be
observed as early as 8–12 years of age and increases during
the patient’s lifespan (Head et al., 2016). Moreover, dementia
features appear in DS adults in their 50s, suggesting a prodromal
phase where subtle clinical signs are undetectable, although in
young adults, worse performance in semantic verbal fluency
test and poorer communication skills are associated with higher
plasma Aβ42 concentrations and impaired communication
skills (ABAS–II) (Hoyo et al., 2015). The exact mechanisms
through which trisomy 21 causes early onset of AD-like
neuropathology and cognitive decline, however, need further
studies (Head et al., 2016).

DOWN SYNDROME AS A METABOLIC
DISEASE

Dr. Jerome Lejeune was the first to hypothesize that DS could be
considered a “metabolic disease.” This is highlighted by Caracausi
et al. (2018): “in the conference talk “Vingt Ans Après,” he
explained how the one carbon cycle could be involved in the
pathogenesis of intellectual disability in subjects who do not have
a gross anatomic defect of the brain, and he asserted: “the goal is
to figure out where a link between mental deficiency and trisomy
21 should be sought.”

To confirm the “Lejeune hypothesis,” a number of alterations
on metabolite concentrations have been observed in the blood
of individuals with DS compared with age-matched control
subjects, in particular alteration of a number of amino acids
(Caracausi et al., 2018). Specifically, in plasma from DS subjects
it has been reported to have: (i) increased levels of phenylalanine
and tyrosine; (ii) reduced levels of histidine, lysine, tyrosine,
phenylalanine, leucine, isoleucine, and tryptophan; (iii) higher
levels of leucine, isoleucine, cysteine, and phenylalanine at an age
vulnerable to Alzheimer’s changes; (iv) decreased concentration
of serine at any age; and (v) increased lysine concentration in
patients above 10 years old, possibly associated to accelerated
aging, as reviewed in Caracausi et al. (2018). A recent study
also evidenced changes in the levels of metabolites involved in
the methylation cycle, including cysteine, cystathionine, choline,
and dimethylglycine. Mass spectrometry analysis reported a
significant increase of the concentrations of these amino acids
in DS plasma (Obeid et al., 2012) as well as the levels
of S-adenosylhomocysteine and S-adenosylmethionine (Obeid
et al., 2012), though a previous study showed to be decreased
(Pogribna et al., 2001).

The levels of these metabolites seem to be strongly associated
with triplication of CBS (Skovierova et al., 2016). As recently
reported, overexpression of CBS is responsible for reduced
homocysteine levels together with reduced mitochondrial
function, as indicated by accumulation of Krebs cycle
intermediaries in DS human dermal fibroblasts (Panagaki
et al., 2019). In particular, Szabo et al. showed that increased
production of H2S is responsible for mitochondrial deficits, in
particular by inhibiting complex IV (Panagaki et al., 2019). These
results confirmed that both cytosolic and mitochondrial CBS
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protein levels, as well as H2S cellular levels, are markedly elevated
in DS fibroblasts. Extracellular flux analysis of DS cells showed
a significant impairment of mitochondrial complexes activities
and oxygen consumption, and of ATP generation, which also
affected proliferation rate. The specific activity of Complex IV
was found to be significantly inhibited in DS cells. Interestingly,
the inhibition of CBS by aminooxyacetate (AOAA), which
interferes with the pyridoxal phosphate in the catalytic site,
restored Complex IV activity and ameliorated mitochondrial
electron transport and cell proliferation. Similar effects were
also obtained by CBS normalization by siRNA (Panagaki
et al., 2019). Moreover, increased urinary thiosulfate [a stable
degradation product of hydrogen sulfide (H2S)] and circulating
sulfhemoglobin (addition of H2S to hemoglobin) levels have
already been detected in subjects with DS (Szabo, 2020).

Formimidoyltransferase cyclodeaminase (FTCD) is another
gene located on the long arm of HSA21, which encodes an
enzyme that participates in histidine and folate metabolism,
both essential for purine, pyrimidines, and amino acids
biosynthesis. In addition, aberrant metabolism of adenosine,
homocysteine, and folate was also observed in DS (Patterson,
2009; Gross et al., 2019).

Among key regulatory metabolic enzymes, HSA21 also
encodes for phosphofructokinase (PFK), a regulatory enzyme
in glycolysis as it catalyzes the phosphorylation of fructose-
6-phospate to fructose-1, 6-bisphosphate (Uyeda, 1979).
Interestingly, transgenic mice that overexpress PFK liver
type (Tg- PFKL) showed alteration in glucose metabolism
as indexed by increased metabolic flux in brain and reduced
clearance from blood (Peled-Kamar et al., 1998). The increased
glucose utilization in the brain of Tg-PFKL mice is similar
to the observed faster glucose metabolism in young DS adult
brain that likely contributes to cognitive disabilities. Further,
a previous report showed that PFK specific activity is twofold
higher in the brains of embryonic Tg-PFKL mice (Elson
et al., 1994), suggesting that aberrant glucose metabolism is
already pronounced in developmental period and that this early
dysmetabolism may contribute to learning disabilities. These
age-dependent changes of gene expression further complicate
the “gene-dosage effects” hypothesis of trisomy 21, contributing
to the multifaceted aberrant metabolism observed at different
ages (Pelleri et al., 2018).

Furthermore, DS subjects are characterized by an impaired
lipid metabolism, although this aspect has been less investigated.
Published studies report that DS children show higher levels
of circulating cholesterol, low-density lipoproteins (LDL), and
triglycerides with respect to age-matched controls (Zamorano
et al., 1991; Adelekan et al., 2012; Buonuomo et al., 2019).
Less favorable lipid profile in DS would be responsible for
their increased risk of developing cerebrovascular events (Sobey
et al., 2015; Buonuomo et al., 2019) or overweight/obesity
(van Gameren-Oosterom et al., 2012; Buonuomo et al., 2019).
Whether these alterations are due to a specific overexpressed gene
on HSA21 is not known yet.

In the brain, a lipidomic study performed by Yu et al.
(2018) reported altered lipid profile in prefrontal cortex
samples collected from five DS (>60 years) individuals

with respect to matched controls. Of 542 identified lipids,
around 350 were reduced while the others were increased
in DS frontal cortex (Yu et al., 2018). In particular, reduced
levels of glycerophosphoethanolamines along with reduced
glycerophospholipid metabolism were observed in DS
(Yu et al., 2018). Furthermore, the ratio of cholesterol
to phospholipid concentration, phosphatidylcholine, and
phosphatidylethanolamine levels were all reduced in DS frontal
cortex (Yu et al., 2018). These alterations were suggested to result
from an impaired endocannabinoid signaling pathway in DS (Yu
et al., 2018). In addition, in a very recent study, Hwang et al.
(2019) demonstrated that DS fibroblast were characterized by
reduced levels of sphingosine derivatives called long chain bases
(LCBs), which seem to be responsible for nuclear membrane
alterations associated with accelerated aging process in DS.
Lower LCBs result from increased conversion to ceramide due to
the activity of ceramide synthase (Hwang et al., 2019).

As a whole, the picture that emerges from these studies
unravels a pathological metabolic phenotype of DS contributed
by a number of different genes. Within this scenario, defects of
mitochondrial function contribute to a general loss of cellular
functions, most of which strictly depend on ATP availability
(Coskun and Busciglio, 2012; Butterfield et al., 2014b; Valenti
et al., 2018).

In catabolic tissues, mitochondria are the key organelles
responsible for energy production that sustains a plethora
of intracellular functions, which as a whole approximately
consume about 90% of oxygen to generate ATP through
oxidative phosphorylation (OXPHOS) (Rolfe and Brown,
1997). Mitochondria also participate in the oxidation, by ß-
oxidation and Krebs cycle, of major macromolecules into key
intermediates (metabolites) including pyruvate, fatty acids, and
amino acids, which are sources of reducing equivalents, NADH,
and/or FADH2.

A growing number of studies also demonstrated that loss
of mitochondrial structure and function, which is associated
with increased ROS production, contributes to DS pathological
phenotypes (Valenti et al., 2018). This is not only the case
for DS, but also other neurodevelopmental disorders such as
Rett’s syndrome and autism (Valenti et al., 2014), as well as
neurodegenerative diseases including Alzheimer’s disease and
Parkinson’s disease (Johri and Beal, 2012).

Reduced rate of energy metabolism due to mitochondrial
dysfunction significantly impairs neuronal functions, as well
as neuronal development and survival (Mattson et al., 2008).
Indeed, ATP production and redox homeostasis in brain
mitochondria are essential to sustain neural developmental
processes including cellular proliferation and differentiation,
axonal and dendritic growth, and generation of synaptic
spine and pre-synaptic compartments (Mattson et al., 2008).
Mitochondrial deficits in DS is mainly the result of reduced
efficiency to produce ATP through OXPHOS, together with
decreased respiratory capacity and disruption of membrane
potential and mitochondrial dynamics. These mitochondrial
abnormalities have been observed in all DS cell types from
peripheral to CNS cells, as reviewed in Valenti et al. (2018).
Thus, mitochondrial dysfunction is considered an inherent
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feature of DS, associated with increased oxidative stress
(Perluigi and Butterfield, 2012).

Vacca et al. analyzed mitochondrial function in fibroblasts
and lymphoblastoid cells from DS subjects and found deficits
in the OXPHOS system at multiple levels such as the complex
I activity, the ATP synthase, the ADP/ATP translocator, and the
adenylate kinase enzyme, ultimately leading to significant energy
deficit and increased ROS production in mitochondria (Valenti
et al., 2010, 2011). A severe bioenergetic deficit was also found
in neural progenitor cells (NPCs) isolated from the hippocampus
of Ts65Dn mice, a commonly used DS murine model, in which
a deficit in cell proliferation was observed (Valenti et al., 2016).
The reduced OXPHOS rate in DS could be associated with
impairment of mitochondrial biogenesis, as observed in NPCs
(Valenti et al., 2016), and in skin fibroblasts (Piccoli et al.,
2013). Defects of mitochondrial biogenesis is the result of
reduced mtDNA content as well as reduced levels of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial
transcription factor A (TFAM) (Valenti et al., 2016).

Several bioactive compounds display protective effects on
mitochondrial signaling pathways, mitochondrial biogenesis, and
respiration (Valenti et al., 2018). Both natural and synthetic
compounds show the ability to dampen mitochondrial deficit and
ROS overload in DS, and are likely to be promising therapeutic
strategies to ameliorate DS pathological phenotypes (Valenti
et al., 2018). Among possible candidates, recent studies show the
protective effect of epigallocatechin gallate (EGCG), the major
catechin in green tea, to induce neuronal plasticity (Martinez
Cue and Dierssen, 2020) and mitochondrial function (Valenti
et al., 2016), leading to cognitive rehabilitation in young adult DS
(De La Torre et al., 2016).

PERIPHERAL AND BRAIN ALTERATIONS
IN DS: A LOOK INTO THE METABOLIC
DEFECTS ASSOCIATED WITH
DYSFUNCTIONS OF INSULIN
SIGNALING PATHWAY

Among the metabolic alterations observed in DS subjects,
dysfunctions of insulin signaling and related pathways are
of interest. Although insulin or proteins belonging to the
insulin signaling pathway are not encoded by genes located
on HSA21, insulin signaling is at the crossroad among a
number of intracellular events driving cell metabolism in
terms of glucose, fatty acids, and proteins synthesis/utilization
(Haeusler et al., 2018).

The frequency of metabolic diseases associated with defects of
insulin and insulin-related pathways develop with high frequency
in DS subjects. Furthermore, over the past few years, it has
become clear that insulin also has profound effects in the central
nervous system, where it regulates key processes such as energy
homeostasis and neuronal functions (Arnold et al., 2018).

In the next sections, we summarize the accumulating evidence
on peripheral and brain defects of insulin signaling and related

pathway in DS. Current findings along with pathogenic factors
and consequence in terms of disturbances are discussed.

PERIPHERAL METABOLIC
ALTERATIONS IN DS AND POSSIBLE
GENETIC LINKS

Obesity and subsequent metabolic disorders show higher
prevalence in adult population with DS compared to individuals
without DS. Among the weight-related and metabolic
disorders present in DS individuals, glycemic dysregulation
presents involving impaired fasting glucose, diabetes mellitus,
dyslipidemia, and metabolic syndrome. DS individuals have
higher body mass index (BMI) and body fat percentage
(%BF) compared to age- and sex-matched persons without DS
(Gonzalez-Aguero et al., 2011; Loveday et al., 2012; Gutierrez-
Hervas et al., 2020). Interestingly, sex dimorphism appears in
the DS population, being the BMI, %BF, and the proportion that
is overweight is higher in females (Bell and Bhate, 1992; Slevin
et al., 2014). The prevalence of childhood-onset autoimmune
diabetes in the DS population is more than fourfold that of the
general population. This increased prevalence of type 1 diabetes
(T1D) could arise from the trisomy of genes on chromosome
21 (Bergholdt et al., 2006; Johnson et al., 2019). Type 2 diabetes
mellitus (T2DM) occurs at an increased frequency at a relatively
early age in DS subjects (Alexander et al., 2016). Furthermore,
DS subjects show an increased rate of non-alcoholic fatty liver
disease (NAFLD), which is closely associated with insulin
resistance (Williams et al., 2011; Loomba et al., 2012).

Among the hormonal regulators of fat accumulation and
energy balance, leptin levels in plasma correlate with adiposity in
the general population but also in DS children and adolescents
(Magni et al., 2004; Yahia et al., 2012). DS fetuses (Radunovic
et al., 2003), adolescents (Gutierrez-Hervas et al., 2020), and
adults (Proto et al., 2007) show lower leptin levels as compared to
matched controls without DS. However, others have found that
DS individuals had higher leptin levels compared to unaffected
siblings (Proto et al., 2007; Magge et al., 2008). Inherent genetic
basis for increased leptin resistance could explain the cases
of hyperleptinemia not accompanied by hyperinsulinemia in
individuals with DS (Tenneti et al., 2017).

However, an inherent difficulty of human studies when trying
to extract conclusions of metabolic features in different cohorts
is the existence of confounding factors such a lifestyle and
regional nutrition habits and preferences. Animal models provide
a suitable alternative to investigate the impact of the HSA21 genes
on the metabolic alterations in DS controlling for environmental
factors. Recently, we investigated the effect of the trisomy in
the metabolic-inflammatory axis and their relation with energy
expenditure, energy intake, and fat accumulation in Ts65Dn mice,
a partial trisomy DS model (Fructuoso et al., 2018; Figure 1).
Ts65Dn mice presented increased fat mass and energy intake,
along with increased leptin levels compared to WT (Fructuoso
et al., 2018; Figure 1). Even so, Ts65Dn mice consumed more
calories, suggesting that leptin would be ineffective in controlling
the satiety. As compared to WT, Ts65Dn mice present lower levels
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FIGURE 1 | Diabetes-like phenotypes described in DS mouse models and cell cultures. Ts65Dn mice show increased food intake and body fat as compared to WT
littermates. In this DS model, as compared to WT mice, leptin levels are also increased along with increased levels of molecules related to immune activation, such
as galectine-3 and HSPA72. Leptin is an inhibitor of insulin, and in Ts65Dn (but also in Dp16 mice and in pancreatic islets from DS fetuses), insulin levels in plasma or
secreted insulin are lower as compared to non-DS conditions. Both Ts65Dn and Dp16 models presented high plasmatic glucose levels, which has been
mechanistically attributed to the triplication of RCAN1. In cell cultures, it has been shown that fetal T21 islets have fragmented mitochondria and present abnormal
intracellular accumulation of pro-insulin and islet amyloid polypeptide (IAPP). The results illustrated came from Helguera et al. (2013), Peiris et al. (2016), and
Fructuoso et al. (2018).

of ghrelin in plasma, which in the general population has been
associated with obesity (Buss et al., 2014). Ts65Dn mice also show
increased glucose-stimulated response of the adipokine resistin
and increase of plasma galectin-3 and HSP72 (Fructuoso et al.,
2018; Figure 1), which are associated with autoimmunity (Krause
et al., 2014; De Oliveira et al., 2015). Recently, higher levels of
C-reactive protein (CRP), C3, and C4 complement factors have
been reported in DS adolescents (Gutierrez-Hervas et al., 2020).
Overall, the existing data support the idea of DS as a case of an
impaired metabolic-inflammatory axis.

There is also a higher prevalence of diabetes in DS individuals
compared to the general population (Anwar et al., 1998;
Bergholdt et al., 2006). Fetal human pancreatic cells from
DS fetuses show β-cell mitochondrial dysfunction, low ATP
levels, and drastic decreased of their basal insulin secretion
in comparison with cells from general population (Helguera
et al., 2013). Polymorphisms of class II HLA genes located in
chromosome 6 seem to be the major genetic factor of T1D in the
general population (Jacobi et al., 2020). Interestingly, increased
frequency of usual major TD1 risk allele of class II HLA has been
described in DS individuals (Bergholdt et al., 2006). Studies that
are more recent confirm that permanent neonatal diabetes in DS

could have an autoimmune origin but are not HLA-associated
(Johnson et al., 2019). Several known proteins encoded by HSA21
such as BACE2 (Esterhazy et al., 2011), RCAN1 (Peiris et al.,
2016; Seo et al., 2019), and DYRK1A (Rachdi et al., 2014a), are
expressed in peripheral organs and have been shown to be related
to diabetes phenotypes. Therefore, besides the HLA region of
chromosome 6, chromosome 21 may contain also candidate
genes which overdose and may contribute to the metabolic
disruptions, thus conferring increased TD1 risk in DS.

Supporting this idea, it has been shown that hyperglycemia
is presented in Ts65Dn and Dp16 DS mouse models but not
in Tc1 and Ts1Rhr mice (Peiris et al., 2016; Fructuoso et al.,
2018), allowing the dissection of the region of chromosome
21 containing genes related to hyperglycemia (Figure 1). More
specifically, this phenotype has been attributed to RCAN1,
since transgenic mice overexpressing the human RCAN1-1
isoform present age-dependent hyperglycemia, impaired glucose
tolerance, hypoinsulinemia, reduced β-cell secretion, reduced
β-cell number, decreased insulin granule filling, and reduced
mitochondria size in β-cell along with an aberrant mitochondrial
reactive oxygen species production (Peiris et al., 2012). Moreover,
overexpression of RCAN in mouse islets induced β-cell
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mitochondrial dysfunction and reduced ATP production, which
may cause the inhibition of insulin secretion (Peiris et al., 2016).

Recently, it has been shown that a single extra copy of
RCAN1 in the mouse could also cause insulin resistance
and pyruvate intolerance, probably though GSK3β or
NIK regulation by increasing hepatic glucose production
and expression of gluconeogenic genes (Seo et al., 2019).
Impaired insulin secretion has also been attributed to the
overexpression of another HSA21 gene, BACE2. BACE2 gain-
of-function experiments in INS1E cell cultures decreased
cell proliferation and insulin secretion, along with increased
mitochondrial metabolism and ROS levels (Alcarraz-Vizan
et al., 2015). Conversely, loss of function experiments
improved insulin secretory response in rat pancreatic β-cells
(Alcarraz-Vizan et al., 2015).

Pharmacological inhibition of DYRK1A in both mice and
human cells leads to proliferation of β-cell (Wang et al., 2015;
Belgardt and Lammert, 2016) and improves glycemic control in
mice (Liu et al., 2020).Dyrk1A is highly expressed and induces the
expression and nuclear accumulation of p27Kip1 in the adipose
tissue and pancreas (Rachdi et al., 2014b). Mice overexpressing
Dyrk1A showed increased β-cell mass and improved glucose
homeostasis (Rachdi et al., 2014a), probably mediated by
p27Kip1 since it acts as a negative regulator of proliferation
via the inhibition of cyclin-CDK activity (Lloyd et al., 1999).
Moreover, mice overexpressing Dyrk1A are characterized by
reduced fat mass, increased Thr(P) (356)-GSK3β in the white
adipose tissue, and downregulation of adipogenic proteins (Song
et al., 2015). This could be explained in part because DYRK1A
specifically inhibits GSK3β (Song et al., 2015), a transcription
factor associated with adiposity and obesity (Pearce et al., 2004).
Accordingly, Dyrk1A haploinsufficiency in mice produces severe
glucose intolerance, reduced β-cell mass, and decreased β-cell
proliferation (Rachdi et al., 2014b).

The existing data suggest that the sole overexpression of
DYRK1A does not reproduce peripheral phenotypes associated
to obesity, such as fat accumulation and insulin deficiency,
in DS humans. However, only Dyrk1A overexpression might
be relevant for feeding behavior and energy balance, since
transgenic mice exhibit increased food intake (Hong et al., 2012).
Hypothalamic nuclei expressed the neuropeptide Y (NPY), an
orexigenic neuropeptide that promotes food intake (Spiegelman
and Flier, 2001). Dyrk1A expression can be modulated by
NPY through the PKA-CREB up-stream pathway, which in
turn activates a positive feedback loop where Sir2-dFOXO
induces NPY gene expression (Hong et al., 2012). In fact, the
hypothalamus of Dyrk1A-overexpressing mice display reduced
FOXO acetylation and increased NPY expression (Hong et al.,
2012). Considering that Dyrk1A is triplicated in DS, the
reinforced positive NPY feedback mediated by Dyrk1A could
contribute to the increased energy intake observed DS models
and obesity in DS (Fructuoso et al., 2018).

Other HSA21 encoded proteins, such as ADAMTS1, APP,
GABPA, HSPA13, LIPI, NRIP1, and hsa-mir-99a, have also been
associated with obesity. Specifically, in Genome Wide Association
Studies (GWAS), Kunej and collaborators describe in the general
population a genetic association between quantitative traits loci

(QTL) for body weight (BW276_H) and these seven loci located
in the HSA21 (Kunej et al., 2013).

Certainly, besides the overexpression of coding and
non-coding regions of the HSA21, genes located in other
chromosomes whose expression is dysregulated could also take
part in the DS phenotypes. This genome-wide transcriptional
deregulation could be due to epigenetic modifications. In trisomy
21 discordant twins as well as the Ts65Dn/WT mouse cells, the
chromatin modifications produced by nuclear compartments of
T21 cells affect the overall (Letourneau et al., 2014; Antonarakis,
2017). Alternatively, it could also be a result of the sole presence
of extra DNA material in the nucleus that may favor specific
gene-regulatory programs independently of the sequence
(Letourneau et al., 2014). In fact, chromosomal contacts maps
allow the inference of loci associated with BMI as shown
for reciprocal duplication carriers of the distal 16p11.2 that
predisposes to a highly penetrant form of obesity (Loviglio
et al., 2017). More recently, Espeso and coworkers showed
inter- and intra-chromosomal contacts linking SCZ and BMI
risk sequences (Espeso-Gil et al., 2020). Those present massive
enrichment for brain-specific expression quantitative trait loci
related to adipogenesis and lipid regulation, dopaminergic
neurogenesis and neuronal connectivity, and reward- and
addiction-related pathways (Espeso-Gil et al., 2020).

Finally, besides obesity, DS populations show the endocrine
condition of hypothyroidism, mainly as subclinical hypofunction
(Graber et al., 2012; Lavigne et al., 2017). This endocrine
abnormality may contribute to the increased fat accumulation in
DS people because the activation of gene pathways controlling
thermogenesis, glucose homeostasis, and fat oxidation can
be modulated by thyroid hormones (Mullur et al., 2014).
Interestingly, medullary thymocytes from DS patients show
altered the mRNA levels of the autoimmune regulator (AIRE)
gene, sited on HSA21, resulting in the consequent deregulated
expression of INSULIN and CHRNA1genes (Gimenez-Barcons
et al., 2014). Dyrk1A could affect early thyroid morphogenesis
through the up-regulation of transcription factors (Nkx2–
1, Foxe1, and Pax8) relevant for this embryonic process.
Consequently, Dyrk1A-overexpressing mice show significantly
thicker but less functional thyroids, as shown by the lower T4
hormone excretion and the tendency to have increased plasma
TSH (Kariyawasam et al., 2015).

BRAIN INSULIN RESISTANCE: A KEY
METABOLIC ALTERATION IN AGING
AND NEURODEGENERATION

Brain represents only ∼2% of body weight but has a high
metabolic demand compared to other tissues. Among brain cells,
neurons require a lot of energy to support signaling (Magistretti
and Allaman, 2018) and most of this energy is produced through
glucose oxidative metabolism (Magistretti and Allaman, 2018).
While glucose uptake and metabolism are finely regulated by
insulin in peripheral tissues/organs, the brain was thought to be
not affected by insulin in terms of glucose uptake (Arnold et al.,
2018; Nakabeppu, 2019).
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Recent advances in the comprehension of brain functions
highlighted that the actions of insulin are more pronounced
in the central nervous system than previously thought. Insulin
plays a major role in the regulation of gene expression and
cellular metabolism, both events that sustain neuronal activity
and synaptic plasticity mechanisms (Arnold et al., 2018).
Alterations of brain insulin signaling have been associated with
a higher risk of developing age-related cognitive decline and
neurodegenerative diseases (Butterfield et al., 2014a; Arnold et al.,
2018). In particular, among altered processes identified to precede
the appearance of frank symptoms and neuropathology in AD,
brain insulin resistance greatly contributes to the long preclinical
period during which often only subtle symptoms are evident
(Stanley et al., 2016).

Insulin resistance is generally defined as an insufficient
response to insulin by target cells (Konner and Bruning, 2012;
Butterfield et al., 2014a) and represents a central feature of
metabolic disorders, including T2DM and obesity (Lazar, 2005;
Kahn et al., 2006; Bluher, 2016; Lin et al., 2016). This lack of
response might be due to downregulation of insulin receptors
(IR) or defective activation of the insulin signaling cascade.
All the research-based evidence collected so far suggests that
the molecular mechanisms responsible for the development of
systemic and brain insulin resistance are quite similar (Butterfield
et al., 2014a; Verdile et al., 2015). Indeed, a significant overlap
in risk, comorbidity, and pathophysiological mechanisms exists
across AD and T2DM or obesity (Butterfield et al., 2014a; Verdile
et al., 2015; Arnold et al., 2018). For that reason, AD was defined
as “diabetes of the brain,” or type 3 diabetes (Arnold et al., 2018;
De La Monte, 2019).

Thus, insulin resistance is central to our understanding
of shared features between AD and metabolic disorders. It
was reported that more than hyperglycemia (which is a
peculiar condition of diabetes) and associated effects, the
insulin resistance phenomenon by itself plays a crucial role
during the preclinical stage of AD (Morris et al., 2014,
2016; Arnold et al., 2018). This is mainly due to the
role of insulin in regulating brain functions (Arnold et al.,
2018). In the brains of healthy individuals, insulin signaling
activation has been shown to be involved in several pathways
including: (1) improvement of neurite outgrowth, (2) releasing
and uptake of catecholamine, (3) regulation of trafficking
of ligand-gated ion channels, (4) expression and localization
of GABA, N-methyl-D-aspartate (NMDA) and α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors,
and (5) modulation of synaptic plasticity [long-term potentiation
(LTP) and long-term depression (LTD)]. Furthermore, insulin
plays a role in the development and maintenance of excitatory
synapses and promotes dendritic spine formation and excitatory
synapse development. Finally, by inhibiting apoptosis, insulin
promotes neuronal survival. Importantly, development of brain
insulin resistance impairs all these functions (Arnold et al., 2018).

Mechanisms identified to prompt the development of brain
insulin resistance (Figure 2) include, among the others: reduced
insulin transport across the blood brain barrier (BBB) (Craft
et al., 1998; Sartorius et al., 2015; Rhea et al., 2020), uncontrolled
activation of inflammatory processes (Bomfim et al., 2012;

Lourenco et al., 2013), increased Aβ oligomers (Lourenco et al.,
2013; Seixas Da Silva et al., 2017), increased oxidative stress levels
(Butterfield et al., 2014a; Barone et al., 2016; Maciejczyk et al.,
2019; Sharma et al., 2019), aberrant activation of the mammalian
target of rapamycin (mTOR) (Carlson et al., 2004; Caccamo et al.,
2010, 2011; Bove et al., 2011; Copps and White, 2012; Oddo, 2012;
Perluigi et al., 2014; Tramutola et al., 2015; Barone et al., 2016),
impaired function of biliverdin reductase-A (BVR-A) (Barone
et al., 2016, 2019; Triani et al., 2018; Sharma et al., 2019), and
fatty acids dysmetabolism (Spinelli et al., 2017; Banks et al., 2018;
Melo et al., 2020).

From a molecular point of view, the activation of insulin
signaling requires the binding of insulin to IR, which auto-
phosphorylates and promotes the phosphorylation of the insulin
receptor substrate 1 (IRS1) on specific Tyr residues (e.g.,
612 and 632). Once activated, IRS1 works as scaffold protein
driving the activation of the two main arms of the insulin
signaling pathway: (1) the phosphatidylinositol 3-kinase/3-
phosphoinositide-dependent protein kinase 1/protein kinase B
(PI3K/PDK1/Akt) and (2) the mitogen-activated protein kinase
(MAPK) pathways (White, 2003; Figure 2). Instead, development
of insulin resistance (both in the brain and peripheral tissues)
occurs following the inhibitory phosphorylation of IRS1 on
specific serine residues (307, 312, 636), which preclude IRS1 to
interact with IR. As result, cells become insensitive to the action of
insulin since the pathway cannot be activated downstream from
IR/IRS1 axis (Figure 2).

Studies performed in human and mouse models of AD
highlighted the role of inflammation and in particular the
inflammatory cytokine tumor necrosis factor alpha (TNF-
α), which leads to the activation of specific kinases [i.e.,
Jun N-terminal kinase (JNK), I kappa B kinase (IKK), and
protein kinase R (PKR)] (Bomfim et al., 2012; Lourenco et al.,
2013) and endoplasmic reticulum (ER) stress (PKR-mediated
phosphorylation of eIF2α) (Lourenco et al., 2013) responsible
for IRS1 inhibition (Figure 2). Elevated TNF-α seems to be
a consequence of the brain accumulation and the impact of
Aβ oligomers, which were demonstrated to induce brain IRS1
inhibition through a mechanism involving either reduced IR
exposure at the plasma membrane (Zhao et al., 2008; De Felice
et al., 2009; Forny-Germano et al., 2014) or increased ER stress via
PKR (Lourenco et al., 2013) in AD (Figure 2). These molecular
events promote synapses loss and memory impairment (De
Felice et al., 2009; Talbot et al., 2012; Barone et al., 2019).
Rise of inflammation seems to be a condition sufficient but not
necessary during the development of IR, since disruption of
inflammatory pathways, e.g., by JNK deletion, did not attenuate
the pathological features of the early stage of peripheral insulin
resistance (Lee et al., 2011).

This aspect is quite fascinating because it means that other
mechanisms could be responsible for the early alterations of
insulin signaling pathway. In particular, our group highlighted
the role of BVR-A as regulator of insulin signaling (Barone et al.,
2011a,b, 2016, 2019; Di Domenico et al., 2013b; Triani et al., 2018;
Cimini et al., 2019; Sharma et al., 2019; Figure 2). Impairment of
BVR-A and accumulation of markers of insulin resistance were
observed in AD subjects (Barone et al., 2011a,b; Di Domenico
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FIGURE 2 | Schematic representation of insulin signaling with highlighted in red pathways found to promote brain insulin resistance in AD and DS. Under
physiological conditions, the activation of insulin signaling requires the binding of insulin to the insulin receptor (IR), which auto-phosphorylates on Tyr residues (e.g.,
Tyr1158/1162/1163) and promotes the receptor tyrosine kinase-mediated phosphorylation of its substrate (IRS1) on specific Tyr residues (e.g., 632). In parallel, IR
phosphorylates BVR-A on specific Tyr residues and activates BVR-A to function as Ser/Thr/Tyr kinase. Then, as part of a regulatory loop, BVR-A phosphorylates
IRS1 on inhibitory Ser residues (Ser307/312/616) to avoid IRS1 aberrant activation in response to IR. Once activated, IRS1 works as a scaffold protein, driving the
activation of the two main harms of the insulin signaling: (1) the MAPK pathway (ERK1/2) mainly involved in gene transcription and (2) the PI3K/Akt axis that is critical
for linking upstream effectors (IR and IRS1) with downstream proteins mediating insulin neurotrophic outcomes. Activation of the PI3K/Akt axis is regulated by the
phosphatase PTEN, which reduces PIP3 levels required for Akt activation as well as for increasing the expression of PKCζ. Akt promotes the phosphorylation of
several targets, among which are: (1) GSK3β (on Ser9, inhibitory site), which has a role energy production; (2) mTOR (on Ser2448, activating site), which regulates
protein synthesis and autophagy; and (3) AS160 (on Thr642, activating site). This latter, together with PKCζ, is responsible for the translocation of GLUT4-containing
vesicles to the plasma membrane to mediate glucose uptake. Furthermore, Akt stimulates the upregulation of HKII, which is a pivotal enzyme involved in glucose
metabolism and thus energy production. During the development of brain insulin resistance, a dysregulation of a number of these proteins was observed. In
particular, brain insulin resistance phenomenon is characterized by key events such as reduced IR protein levels and/or increased IRS1 inhibitory phosphorylation
levels (e.g., Ser307, Ser636), that are responsible for the uncoupling between IR and IRS1. As result, despite insulin binding to IR, IR-mediated activation of IRS1
does not occur. Downstream from IRS1, the aberrant activation of the PI3K/Akt/mTOR axis was observed. This event promotes the uncontrolled activation of mTOR
able to phosphorylate IRS1 on inhibitory sites. Moreover, brain insulin resistance was associated with increased Aβ production, which was in turn responsible for IR
internalization and thus reduced IR protein available at the plasma membrane to bind insulin. Furthermore, increased inflammatory processes promote a rise of TNFα

levels, which favors the activation of stress-induced kinases (i.e., JNK, IKK, PKR) and ER stress, which are all events known to favor IRS1 inhibition. Finally, many of
the above described pathways are associated with increased oxidative stress levels, which further contribute to IRS1 inhibition and thus insulin signaling
deregulation. Red plain lines/arrows: increased during AD and DS; red dotted lines/arrows: reduced during AD and DS.

et al., 2012). Loss of BVR-A leads to the hyper-activation of
IRS1 without a concomitant activation of Akt downstream from
IRS1 in animal model of AD (Triani et al., 2018; Sharma et al.,
2019) as well as in vitro (Miralem et al., 2016; Sharma et al.,
2019), suggesting an overall uncoupling among the proteins
responsible for insulin action within the cells. In addition, these
alterations were associated with increased Tau phosphorylation
and Aβ production (Triani et al., 2018; Sharma et al., 2019).
Intriguingly, the ability to overcome brain insulin resistance
requires sufficient expression of key proteins, including BVR-A
(Barone et al., 2019).

Furthermore, several studies report about the overactivation
of the PI3K/Akt/mTOR pathway that occurs during the early
phases of AD (Pei et al., 2008; Caccamo et al., 2010; Tramutola
et al., 2015), leading to impaired glucose metabolism, defects
in energy production, and aberrant regulation of protein

synthesis and degradation (Oddo, 2012; Tramutola et al., 2015;
Di Domenico et al., 2017). In AD, brain insulin resistance
is sustained by overactivation of the PI3K/Akt/mTOR axis,
which inhibits IRS1 through a negative feedback mechanism
(Tramutola et al., 2015; Figure 2). Aberrant mTOR activation is
associated with increased AD neuropathological markers both in
humans and animal models of the pathology (Caccamo et al.,
2010, 2011; Orr et al., 2014; Tramutola et al., 2015; Barone
et al., 2016, 2019; Triani et al., 2018). In addition, chronic
mTOR overactivation has been linked to increased inflammatory
process (Liu et al., 2016; Paschoal et al., 2017) and oxidative
stress levels (Tramutola et al., 2016; Figure 2). Interestingly,
rapamycin (a well-known mTOR inhibitor) (Caccamo et al.,
2010; Spilman et al., 2010) mitigates AD pathology and cognitive
dysfunctions in mice fed with an insulin resistance-inducing diet
(Orr et al., 2014).
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Notwithstanding metabolic disorders that might accelerate the
risk to develop brain insulin resistance, recent studies highlight
that brain insulin resistance can occur independently from
peripheral alterations both during aging and in AD. Decreased
insulin levels and reduced binding of insulin to insulin receptors
were reported in the cortex of elderly individuals without
dementia (Frolich et al., 1998).

Furthermore, reduced insulin signaling activation was
observed in the brain of AD subjects without T2DM (Rivera
et al., 2005; Steen et al., 2005; Moloney et al., 2010; Talbot et al.,
2012; Tramutola et al., 2015). In two independent cohorts of
post-mortem brains samples collected from AD or mild cognitive
impairment (MCI) subjects, consistent defects in the basal levels
and/or activation of proteins belonging to insulin signaling were
described (Talbot et al., 2012). These alterations were positively
associated Aβ and tau levels while they were negatively correlated
with scores of cognitive and memory tasks (Talbot et al., 2012).
Interestingly, the associations remained significant even after
controlling for Aβ and Tau lesions, suggesting that brain insulin
resistance contributed independently to the observed cognitive
impairment (Talbot et al., 2012).

BRAIN INSULIN RESISTANCE IS A
FEATURE OF DOWN SYNDROME

DS brains share many common neuropathological features with
AD, including brain insulin resistance (Tramutola et al., 2020).
Interestingly, our group highlighted for the first time that
markers of brain insulin resistance are evident in DS brains even
before the development of AD pathology (Tramutola et al., 2020),
suggesting that these alterations might support the mechanisms
associated with intellectual disability as well as the early onset of
AD in people with DS (Lott and Head, 2019).

Causes for brain insulin resistance development in DS could
be various, considering that DS phenotype shows both peripheral
and brain alterations that would trigger the impairment of
the brain insulin signaling pathway. The peripheral alterations
presented above in this review suggest that DS subjects
might be potentially more susceptible to developing brain
insulin resistance than other children. Indeed, growing evidence
highlight the role of metabolic defects as a risk factor for cognitive
impairments also in DS (Caracausi et al., 2018; Head et al., 2018;
Vacca et al., 2019).

With regard to brain alterations, accumulation of toxic
catabolites (Caracausi et al., 2018; Gross et al., 2019) or
dysfunction of key metabolic pathways were identified as
crucial determinants triggering neuronal dyshomeostasis and
neurodegeneration in DS (Head et al., 2018; Lott and Head, 2019;
Vacca et al., 2019).

Interestingly, DS brains present all the alterations described
in the previous section that are known to be associated
with the development of brain insulin resistance. DS brain is
characterized by significant increased Aβ oligomers production
and Aβ accumulation (Nistor et al., 2007; Cenini et al., 2012;
Lott and Head, 2019) along with a pro-inflammatory state
(Nistor et al., 2007; Wilcock et al., 2015; Lott and Head, 2019).

Inflammation occurs early in life (Wierzba-Bobrowicz et al.,
1999) with increased glial activation (Wilcock, 2012; Wilcock
et al., 2015) and prominent levels of pro-inflammatory cytokines
in serum from both adults (Convertini et al., 2016; Iulita et al.,
2016) and children (Zhang et al., 2017). These neurotoxic events
are associated with defect of autophagy process (Ahmed et al.,
2013; Perluigi et al., 2014; Colacurcio et al., 2018; Bordi et al.,
2019). In that regard, we reported about the hyperactivation
of the PI3K/Akt axis along with aberrant mTOR activation in
the frontal cortex of both DS and DS individuals who develop
AD pathology (DSAD) with respect to age-matched controls
(Perluigi et al., 2014). Moreover, increased oxidative stress levels
leading to protein and lipid oxidative damage accumulation were
observed (Perluigi et al., 2011; Cenini et al., 2012; Di Domenico
et al., 2013a, 2014; Tramutola et al., 2016; Barone et al., 2018).
In addition, impairment of BVR-A was found in both human
and mouse brain (Di Domenico et al., 2015). Last but not least,
induction of ER stress with increased PKR activation and eIF2
phosphorylation of have been observed in humans and Ts65Dn
mouse model of DS (Lanzillotta et al., 2018; Zhu et al., 2019).

These lines of evidence strongly suggest that brain insulin
resistance can develop also in DS. Indeed, in a recent paper,
Tramutola et al. (2020) reported about reduced IR protein levels
and increased IRS1 inhibition in DS brains, even before the
development of AD pathology. From a molecular point of view,
reduced sensitivity to the effects of insulin in DS brains is
associated with an overall impairment of the insulin signaling
pathway mainly characterized by: (1) reduced phosphatase and
tensin homolog (PTEN) activation, which drives the observed
increased Akt activation in young DS; (2) loss of Akt-mediated
inhibition of glycogen synthase kinase-3 beta (GSK3β), which
results in more active GSK3β in young DS; (3) reduced protein
kinase C zeta (PKCζ) protein levels, which account for reduced
translocation of GLUT4 to the plasma membrane and thus
reduced insulin-mediated glucose uptake in the brain; and
(4) reduced glucose metabolism due to reduced hexokinase
II protein levels as well as reduced mitochondrial complexes
levels in young DS (Tramutola et al., 2020; Figure 3). From a
pathological point of view, these alterations were associated with
increased APP cleavage products and elevation of TNFα levels
(Tramutola et al., 2020).

In light of the role of the insulin signaling pathway in
regulating synaptic plasticity and cognitive functions, alterations
of proteins belonging to the insulin signaling but not APP
cleavage products or TNFα levels were significantly associated
with reduced synaptic proteins levels, i.e., syntaxin and
postsynaptic density 95 (PSD95), in DS with respect to age-
matched control (Tramutola et al., 2020). Of note, reduced levels
of syntaxin and PSD95 proteins also were associated with reduced
mitochondrial complexes levels in DS (Tramutola et al., 2020),
thus highlighting the tight link existing among defects of insulin
signaling pathway, mitochondrial alterations, and mechanisms
regulating synaptic plasticity in DS.

As reported by our group, intranasal rapamycin (a well-known
mTOR inhibitor; Guertin and Sabatini, 2009) administration
to Ts65Dn mice promoted neuroprotective effects including
reduced AD pathological hallmarks (Aβ and Tau levels), reduced
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FIGURE 3 | Shared alterations between young DS and AD brain. Proteins of
the insulin signaling pathway found to be dysregulated both in young DS (<40
years) and AD brain. These alterations occur quite early and even before the
development of AD pathology in DS brain, thus representing a risk factor for
AD development in DS. With regards to GSK3β the loss of Akt-mediated
inhibition was observed (Tramutola et al., 2020). Considering that GSK3β is a
constitutively activated kinase, reduced inhibitory processes might favor its
aberrant activation in young DS.

oxidative stress levels, and increased synaptic proteins levels and
amelioration of cognitive functions (Tramutola et al., 2018; Di
Domenico et al., 2019). Interestingly, rapamycin was effective
in reducing IRS1 inhibition while downstream from IRS1-
increased PTEN activation and promoted the normalization of
the Akt/GSKβ axis activation in the hippocampus of Ts65Dn mice
(Tramutola et al., 2018). Hence, these results further support the
hypothesis that cognitive deficits in DS might be mediated by the
dysfunction of insulin signaling in the brain. By taking in mind
that mTOR is activated in response to insulin while hyperactive
(aberrant) mTOR promotes IRS1 inhibition (Copps and White,
2012), observations collected with regard to the use of rapamycin
spurs the necessity to better understand whether hyperactivation
of mTOR results from the dysfunction of the insulin signaling
pathway or is a primary cause of the observed impairment of
the pathway in DS. Notwithstanding, it appears clear that all
the observed defects are already evident in young DS individuals
(Perluigi et al., 2014; Tramutola et al., 2020), thus representing
a risk factor for the development of AD pathology with age.
Actually, improving brain insulin signaling activation represents
a promising therapeutic strategy to rescue cognitive functions in
AD (Arnold et al., 2018; Batista et al., 2018; Barone et al., 2019;
Zhang et al., 2020).

CONCLUSION

DS subjects represent a unique population that needs to be
carefully followed during the entire course of their life. One
of the main defects caused by trisomy of HSA21 is metabolic
defect. Indeed, DS individuals show a pattern of metabolic
defects that contribute to increase the risk of developing chronic

diseases such as diabetes or AD-like dementia. This is a crucial
aspect considering that metabolic diseases characterized by
insulin resistance, such as obesity and diabetes, are associated
with a progressive cognitive decline as well as with a risk
of developing dementia in the general population. Keeping
this in mind, cognitive decline occurs in DS because their
genetic background could be further aggravated by the onset of
metabolic disorders, which could in turn foster the development
of AD in DS patients. Despite knowledge concerning the
molecular mechanisms potentially involved in the progression of
peripheral and brain metabolic disorders in DS, early alterations
are still unknown and require further investigations. Indeed,
identifying these alterations during their initial stage could
have the advantage of being caught early enough to stop/delay
their progression. In this picture, defects of insulin signaling
seem to occur early in life at both peripheral and brain levels
and persist with aging in DS. Furthermore, at the cellular
level, the dysfunction of insulin signaling pathway crosses with
dysfunctions of proteins encoded by genes on HSA21 (e.g.,
Dyrk1A, RCAN, and APP), thus contributing to worsening a pre-
existing condition defined on a genetic background. This aspect
is fascinating especially in light of the role of insulin signaling
pathway in regulating energy metabolism.

While collected results about metabolic defects are uncovering
novel aspects associated with DS condition, the field is quite
challenging, particularly with regard to brain alterations. The
genetic background makes DS a quite complex condition and
it is unthinkable that a single treatment could be enough to
rescue genetic-driven defects. However, what we can do is to
try to improve brain alterations, particularly treating AD in DS
or even preventing/delaying AD progression in DS. Indeed, to
our knowledge, no therapeutic strategies are available, despite
this representing a big issue even in light of the fact that life
expectancy is increased in DS. Thus, future research should
focus on the identification of altered mechanisms that can be
improved through the use of available drugs. Brain insulin
resistance could be one of these molecular pathways, and we
have examples of successful strategies especially in AD. Intranasal
insulin administration has been proved to ameliorate cognitive
decline in AD subjects and the effects are even better when insulin
is administered in the early stages of the pathology (e.g., MCI)
(Craft et al., 2012, 2017; Claxton et al., 2013, 2015). Furthermore,
the use of antidiabetic drugs including metformin and GLP1
mimetics showed promising results in animal models of AD
(Jha et al., 2017; Holscher, 2018). Moreover, considering that
insulin signaling activation regulates mitochondrial functions
(Butterfield et al., 2014a; Abad et al., 2019; Wardelmann et al.,
2019) and that mitochondria are dysfunctional in DS (Mollo
et al., 2020), it is conceivable to think rescuing insulin signaling
activation in DS would be beneficial also with respect to
mitochondrial performances. Metformin, a well-known drugs
used to treat insulin resistance, was effective in recovering
mitochondrial structure and functions in trisomic cells (Izzo
et al., 2018). Furthermore, several drugs including insulin,
metformin, and incretin mimetics have shown to improve insulin
resistance and mitochondrial functions in vitro and are currently
under evaluation for their beneficial effects in neurodegenerative
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diseases and aging process in humans (reviewed in Jha et al., 2017;
Holscher, 2018; Lee et al., 2018).

In conclusion, drawing the molecular signature underlying
alterations of insulin signaling in DS is a key challenge to
identifying novel drug targets and set-up new prevention
strategies aimed to reduce metabolic disorders as well as their
impact on cognitive decline in DS.
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