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This study proposes a hybrid method to control dynamic time-varying plants that

comprises a neural network controller and a cerebellar model articulation controller

(CMAC). The neural-network controller reduces the range and quantity of the input. The

cerebellar-model articulation controller is the main controller and is used to compute

the final control output. The parameters for the structure of the proposed network are

adjusted using adaptive laws, which are derived using the steepest-descent gradient

approach and back-propagation algorithm. The Lyapunov stability theory is applied to

guarantee system convergence. By using the proposed combination architecture, the

designed CMAC structure is reduced, and it makes it easy to design the network size

and the initial membership functions. Finally, numerical-simulation results demonstrate

the effectiveness of the proposed method.

Keywords: neural network, cerebellar model articulation controller, time-varying plants, non-linear system,

adaptive control

INTRODUCTION

Nowadays, the control of non-linear systems is a topic that continues to attract many researchers
because of its widespread applications. In many practical cases, the challenge of this topic is that
its mathematical model is poorly known or uncertain (Liu et al., 2011). Furthermore, non-linear
systems are susceptible to internal and external disturbances (Li et al., 2018). Therefore, in recent
years, some studies have used neural networks (NNs) to approximate non-linear functions (Zhou
and Zhang, 2015; Han, 2018). Some studies combined a neural network and other methods to
achieve better control performance, such as proportional-integral-derivative (PID) NNs, fuzzy
NNs, and sliding mode NNs (Zou et al., 2011; Zhou and Zhang, 2015; Lin and Le, 2017a; Zhao et al.,
2018; Wang et al., 2019). Neural networks enable large-scale concurrent computing, processing,
and adaptive weight adjustment, and they are simple and convenient (Prieto et al., 2016). Recently,
many studies use NNs to address control problems, system identification and prediction problems.
In 2013, Li et al. developed an optical-interference pattern-sensing method and neural-network
classification for pretesting gap mura on thin-film transistor liquid crystal displays (Li et al., 2013).
In 2017, Sun and Pan developed a reliable neural-network to control non-affine non-linear systems
(Sun and Pan, 2017). In 2018, Wang et al. presented a memristor-based artificial neural network to
predict house prices (Wang et al., 2018). However, neural networks require a considerable amount
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of computational resources, there is the risk of overfitting, and
the architecture must be defined (Tu, 1996).

The concept of a cerebellar-model articulation controller
(CMAC) was first proposed by Albus (1975). It is a type of
neural network that uses a model of the mammalian cerebellum
(associative memory). It addresses the problems of fast-growing
size and the learning difficulties that are inherent to current
neural networks. Several studies showed that, for applications
that require online learning, CMACs perform better than simple
neural networks (Lin and Chen, 2009; Guan et al., 2019). Since
CMACs have a non-fully connected perceptron-like associative-
memory network with overlapping receptive fields, they have fast
learning performance, and its computation is simple. Contrarily,
neural networks have a fully connected perceptron; therefore, all
weights are updated during each learning cycle, so the learning
capacity for a neural network is essentially global in nature and
slow (Lin and Chen, 2009). The main advantages of CMACs over
NNs, MLPs, and RBFNs are fast learning, simple computation,
and good generalization capability (Lin et al., 2013). Recent
studies have proposed some modified CMACs, such as function-
link, self-organizing, and type-2 fuzzy CMACs that have better
performance. In 2016, Lin et al. proposed a type-2 fuzzy CMAC
for an adaptive filter (Lin et al., 2016). In 2017, Lin and Le
used a wavelet CMAC to control non-linear systems (Lin and
Le, 2017b). In 2018, Tsao et al. proposed the use of a deep
CMAC for an adaptive noise-cancellation system (Tsao et al.,
2018). A conventional CMAC also has some disadvantages, such
as it is difficult to determine a suitable network size and to
select the initial membership functions (MFs) to achieve the best
performance (Lin and Chen, 2009). It is particularly difficult
when the network has many inputs, and each input has a
large range.

This study proposes a new method with a structure that
includes a neural network connected in series with a CMAC.
All inputs to the neural network reduce quantity and range.
The outputs for the NN feed into the CMAC to compute the
final outputs. This proposed network structure is referred to as
a hybrid neural-network–CMAC (HNNCMAC). It is used to
control dynamic time-varying plants. The motivation behind a
cascade of two architectures was to allow for the inputs into the
CMAC structure to be small, avoiding the difficulty in selecting
a suitable network size and the initial membership functions. In
the CMAC structure, the number of neurons in receptive-field
spaces is increasing exponentially by the number of neurons in
input space. Our proposed HNNCMAC controller using the NN
to reduce the inputs for the CMAC, and then the structure of
the modified CMAC in our proposed network will be smaller
than the conventional CMAC. It is more effective when the
number of inputs is large. In comparison with previous modified
CMAC neural networks, as in Lin and Le (2017b) and Lin et al.
(2018a,b), the proposed HNNCMAC has some advantages, such
as small CMAC structure, and ease in designing network size
and initial membership functions. The main contributions of this
study are: (1) the successful design of an adaptive HNNCMAC
system for the control of non-linear dynamic time-varying plants;
(2) adaptive laws are derived using the steepest-descent gradient
approach and a back-propagation algorithm; (3) input range

and quantity in the proposed CMAC could be reduced by the
NN pre-controller; (4) the stability of the proposed method is
guaranteed by Lyapunov analysis; and (5) the method could be
used for non-linear control problems, as proven by the results of
numerical simulations.

The remaining sections of the paper are organized as follows.
The design of the HNNCMAC is presented in section Methods.
Section 3 presents the simulation results for controlling the
dynamic time-varying plant. Section 4 provides the discussion.
Finally, the conclusion is given in Section 5.

METHODS

HNNCMAC Structure
The structure of hybrid NNCMAC includes a neural network
that is connected in series with a CMAC. The NN reduces the
range and the quantity of the input, and the output from the NN
becomes the input for the CMAC to compute the final control
output. Figure 1 shows the structure of HNNCMAC, which
has seven spaces: input, hidden NN, output NN, association,
receptive, weight-memory, and final-output spaces. These are
described below.

(1) Input space I: There is no computation in this space.
Input data from the dataset are fed into this space and directly
transferred to the next space.

(2) Hidden NN space A: each node in this space
performs a multiplication between vector input

I =
[
I1, I2, . . . , Inl

]T
and hidden NN weight matrix

h =




h1
h2
...

hna


 =




h11, h12, . . . , h1nl
h21, h22, . . . , h2nl
...

. . .
...

hna1, hna2, . . . , hnanl


; after that, they are

added with a bias α =
[
α1,α2, . . . ,αna

]T
, where na is the

number of nodes in the hidden NN space and nl is the number
of nodes in the input space; hal is the connecting weight from the
ath, a = 1, ..., na, neuron in space A to the lth, l = 1, ..., nl neuron
in space I.

For example, in this space, the output from the xth node is
derived as

Aa =
[
ha1, ha2, . . . , hanl

]



I1
I2
. . .

Inl


 + αx (1)

where αa is the bias of the x
th neuron.

Then, the output from this space is expressed as A =[
A1,A2, . . . ,Ana

]T
.

(3) Output NN space B: This is the output from the neural-
network space and it is the input for the CMAC. This layer
performs a multiplication between the vector in the previous

layer A =
[
A1,A2, . . . ,Ana

]T
and output NN weight matrix
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FIGURE 1 | Hybrid neural-network–cerebellar-model articulation-controller structure.

v =




v1
v2
...
vni


 =




v11, v12, . . . , v1na
v21, v22, . . . , v2na
...

. . .
...

vni1, vni2, . . . , vnina


; then, it adds to a bias

b =
[
b1, b2, . . . , bni

]T
. To limit the input range for the CMAC,

the final result in this space is a tangent sigmoid function. The
output for the ith node is

Bi = tansig(netBi ) =
enetBi − e−netBi

enetBi + e−netBi
fori = 1, 2, . . . , ni (2)

where netBi =
[
vi1, vi2, . . . , vina

]



A1

A2

. . .

Ana


 + bi; via is the

connecting weight from the ith, i = 1, ..., ni, neuron in space B
to the ath neuron in space A.

The output for this space is expressed as B =[
B1,B2, . . . ,Bni

]T
.

(4) Association space F: In this space, several elements are
accumulated as a block. The membership grades in each block
are calculated using input variables Bi from the previous space
and the Gaussian MFs.

fijk = exp


−

(
Bi −mijk

σijk

)2

 for j = 1, 2, . . . , nj and

k = 1, 2, . . . , nk (3)

where mijk is the mean; σijk is the variance of the kth block in

the jth layer that corresponds to the ith input variable; nj is the

number of layers; and nk is the number of blocks. Therefore, the
output from this space is the vector association.

(5) Receptive-field space φ : This layer performs the mapping
that relates each location of F to generate the receptive-
field vector:

φ =
[
φ11, ...,φ1nk , ...,φnj1, ..., φnjnk

]T
∈ ℜnjnk

where

φjk =

ni∏

i=1

fijk(Bi) (4)

The mechanism for mapping 2D input is shown in Figure 2.
(6) Weight-memory space W: Each element of φ is mapped

with a specific adjustable value forW that is expressed as

wjkq =




w111, . . . ,w1nk1, ...,wnj11, ...,wnjnk1

w112, ...,w1nk2, ...,wnj12, ...,wnjnk2

...
. . .

...
w11nq , ...,w1nknq , ...,wnj1nq , ...,wnjnknq




T

∈ ℜnjnknq (5)

where wjkq is the connecting weight for the qth, q = 1, ..., nq,
final output and the receptive-field space for the jth layer and
kth block.

(7) Final output space O: This space performs the product
operation of receptive-field space φ and weight-memory space
W to obtain the final output for the HNNCMAC, which is
expressed as

u
q
HNNCMAC = oq = wTφ =

nj∑

j=1

nk∑

k=1

wjkqφjk (6)
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FIGURE 2 | CMAC mapping with Gaussian membership function.

The initial parameters for the HNNCMAC are chosen randomly
and updated by some adaptive laws, which are derived
using the steepest-descent gradient approach and a back-
propagation algorithm, as described in the following section.
The computational complexity using the Big-O notation is Big-

O = O(T∗[max(p1, p2, . . . , pnj ) +

nj∏
j=1

pj+nlnina]), where T is

the running time, pj is the number of membership functions in
association space.

HNNCMAC Parameters—Learning
Algorithm
The scheme for the HNNCMAC system is shown in Figure 3.
The goal of control system is to generate control signal
ûHNNCMAC (t), which forces the output of dynamic time-varying
plant y (t) to track reference signal yd (t). The flowchart of the
HNNCMAC system is shown in Figure 4, in which input range
and quantity in the proposed CMAC could be reduced by the NN
pre-controller. Therefore, it can reduce the number of neurons
in receptive-field spaces and the weight-memory space; then, the
structure of CMAC can be significantly reduced.

The high-order sliding mode from Manceur et al. (2012) and
Zheng et al. (2014) is used to improve the performance of the
control system

s (t) =

n−1∑

l=0

(n− 1)!

l!
(
n− l− 1

)
!

(
∂

∂t

)n−l−1

λle

= e(n−1) + (n− 1) λe(n−2) +
(n− 1) (n− 2)

2
λ2e(n−3)

. . . + λn−1e (7)

where λ and n are the slope and the order of the sliding surface,
respectively. Both λ and n are positive constants. Tracking error
e (t) is defined as:

e (t) = yd (t) − y (t) ∈ ℜ (8)

where yd and y are reference signal and system
output, respectively.

Taking the derivative of Equation (7)

ṡ (t) = e(n) + (n− 1) λe(n−1) +
(n− 1) (n− 2)

2
λ2e(n−2)

. . . + λn−1e

= e(n) + KTe (9)

where K =

[
(n− 1) λ, (n−1)(n−2)

2 λ2, ..., λn−1
]T

∈ ℜn−1 is the

positive gain vector and e (t) =
[
e(n−1) (t) , e(n−2) (t) , ..., ė (t)

]T
∈

ℜn is the tracking error vector.
If the values for n and λ correspond to the coefficients of a

Hurwitz polynomial, then lim
k→∞

e (t) = 0.

The structure of the HNNCMAC has seven variables that
are updated as: wjkq,mijk, σijk, bi, via,αa and hal. The Lyapunov

cost function is chosen as V(t) = 1
2 s

2 (t), so V̇(t) =

s (t) ṡ (t). An online learning gradient descent algorithm was
used to minimize V̇(t). Therefore, online tuning laws for the
HNNCMAC parameters are given by the following equations:

ŵjkq

(
k+ 1

)
= ŵjkq

(
k
)
+ 1ŵjkq (10)

m̂ijk

(
k+ 1

)
= m̂ijk

(
k
)
+ 1m̂ijk (11)

σ̂ijk
(
k+ 1

)
= σ̂ijk

(
k
)
+ 1σ̂ijk (12)

b̂i
(
k+ 1

)
= b̂i

(
k
)
+ 1̂bi (13)

v̂ia
(
k+ 1

)
= v̂ia

(
k
)
+ 1v̂ia (14)

α̂a

(
k+ 1

)
= α̂a

(
k
)
+ 1α̂a (15)

ĥal
(
k+ 1

)
= ĥal

(
k
)
+ 1ĥal (16)

where ŵjkq, m̂ijk, σ̂ijk, b̂i, v̂ia, α̂a, ĥal are the estimation of the
optimal values for parameters wjkq,mijk, σijk, bi, via,αa, hal; and

1ŵjkq,1m̂ijk,1σ̂ijk,1b̂i,1v̂ia,1α̂a,1ĥal are the estimation of
the optimal values for 1wjkq,1mijk,1σijk,1bi,1via,1αa,1hal.

The updating term in Equations (10–16) is obtained by back-
propagation by using the following chain rules:

1ŵjkq = −η̂w
∂V̇(t)

∂ŵjkq
= −η̂w

∂V̇(t)

∂û
q
HNNCMAC

∂û
q
HNNCMAC

∂ŵjkq
= η̂ws(t)φ̂jk

(17)

1m̂ijk = −η̂m
∂V̇(t)

∂m̂ijk
= −η̂m

∂V̇(t)

∂ û
q
HNNCMAC

∂ û
q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂m̂ijk

= −η̂ms (t) ŵjkqφ̂jk

2(Bi − m̂ijk)

σ̂ 2
ijk

(18)
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FIGURE 3 | Scheme for HNNCMAC system.

FIGURE 4 | Flowchart of HNNCMAC system.
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1σ̂ijk = −η̂σ

∂V̇(t)

∂σ̂ijk
= −η̂σ

∂V̇(t)

∂ û
q
HNNCMAC

∂ û
q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂σ̂ijk

= −η̂σ s (t) ŵjkqφ̂jk

2(Bi − m̂ijk)
2

σ̂ 3
ijk

(19)

1b̂i = −η̂b
∂V̇(t)

∂ b̂i

= −η̂b
∂V̇(t)

∂ û
q
HNNCMAC

nj∑

j=1

nk∑

k=1

(
∂ û

q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂Bi

∂Bi

∂netBi

∂netBi

∂ b̂i

)

= η̂bs (t)

nj∑

j=1

nk∑

k=1

(
ŵjkqφ̂jk

2(Bi − m̂ijk)

σ̂ 2
ijk

(
1− B2i

)
)

(20)

1v̂ia = −η̂v
∂V̇(t)

∂ v̂ia

= −η̂v
∂V̇(t)

∂ û
q
HNNCMAC

nj∑

j=1

nk∑

k=1

(
∂ û

q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂Bi

∂Bi

∂netBi

∂netBi
∂ v̂ia

)

= η̂vs (t)

nj∑

j=1

nk∑

k=1

(
ŵjkqφ̂jk

2(Bi − m̂ijk)

σ̂ 2
ijk

(
1− B2i

)
Ai

)
(21)

1α̂a = −η̂a
∂V̇(t)

∂α̂a

= −η̂a
∂V̇(t)

∂û
q
HNNCMAC

nj∑

j=1

nk∑

k=1

(
∂û

q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂Bi

∂Bi

∂netBi

)

((
ni∑

i=1

∂netBi
∂Aa

)
∂Aa

∂α̂a

)

= η̂as (t)

nj∑

j=1

nk∑

k=1

(
ŵjkqφ̂jk

2(Bi − m̂ijk)

σ̂ 2
ijk

(
1− B2i

)
(

ni∑

i=1

via

))

(22)

1ĥal = −η̂h
∂V̇(t)

∂ ĥal

= −η̂h
∂V̇(t)

∂û
q
HNNCMAC

nj∑

j=1

nk∑

k=1

(
∂û

q
HNNCMAC

∂φ̂jk

∂φ̂jk

∂fijk

∂fijk

∂Bi

∂Bi

∂netBi

)

((
ni∑

i=1

∂netBi
∂Aa

)
∂Aa

∂ ĥal

)

= η̂hs (t)

nj∑

j=1

nk∑

k=1

(
ŵjkqφ̂jk

2(Bi − m̂ijk)

σ̂ 2
ijk

(
1− B2i

)
(

ni∑

i=1

via

)
Il

)

(23)

where η̂m, η̂σ , η̂b, η̂v, η̂a, η̂h are the positive learning rates for the
adaptive laws.

Using this online tuning parameter, the HNNCMAC can
adjust the parameters online to achieve desired performance.

Proof of the algorithm convergence:
The Lyapunov cost function is defined as

V(t) =
1

2
s2 (t) (24)

Therefore, the rate of change for Equation (24) is

1 V(t) = V(t + 1)− V(t) =
1

2

[
s2(t + 1)− s2(t)

]
(25)

By using the Taylor expansion, the difference in the sliding
hyperplane is

s(t + 1) = s(t)+ 1s(t) ∼= s(t)+

[
∂s(t)

∂ŵjkq

]
1ŵjkq (26)

From Equation (17), it can be seen that

∂s(t)

∂ŵjkq
= −φ̂jk , ξ (27)

By using Equations (27) and (17), Equation (26) is rewritten as

s(t + 1) = s(t)− ξ
(
η̂ws(t)ξ

)
= s(t)

[
1− η̂wξ 2

]
(28)

By using Equation (28), Equation (25) is rewritten as

1V(t) =
1

2
s2(t)

[(
1− ηwξ 2

)2
− 1

]

=
1

2
s2(t)

[(
η̂wξ 2

)2
− 2η̂wξ 2

]

=
1

2
η̂ws

2(t)ξ 2
(
η̂wξ 2 − 2

)
(29)

From Equation (29), if the learning rate η̂w is 0 < η̂w < 2
ξ2
,

then term 1 V(t) is negative, and Lyapunov function V(t) >

0. Therefore, the convergence of the system is guaranteed by
Lyapunov stability. A similar method is used to prove the stability
of learning rates η̂m, η̂σ , η̂b, η̂v, η̂a, η̂h.

SIMULATION OF RESULTS

In this section, the performance of the proposed HNNCMAC
is investigated. Three examples in control of the dynamic time-
varying plants are considered. The dynamic time-varying plants
are the plants that contain the parameters varying with time.

Example 1: Controlling a dynamic time-varying plant
borrowed from Narendra and Parthasarathy (1990) and Abiyev
and Kaynak (2010), which is described by the difference equation

y (t) = f
[
y(t − 1), y(t − 2)

]
+ u (t) + ε(t)+ 1y(t) (30)

where u(t) is the control signal from the proposed HNNCMAC;
y(t), y(t-1), and y(t-2) are measurable plant output, one-
step delayed plant output, and two-step delayed plant output,
respectively; ε(t) = 0.1 sin(π t) and 1y(t) = 0.1y(t), respectively,
denote the external disturbances and the system uncertainties;
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FIGURE 5 | Comparison of system outputs between proposed HNNCMAC

and other control methods for Example 1.

f
[
y(t − 1), y(t − 2)

]
is the previous plant output function, which

is given as f
[
y(t − 1), y(t − 2)

]
=

y(t−1)y(t−2)(y(t−1)+2.5)(
1+y(t−1)2+y(t−2)2

)

The desired trajectory signal yd (t) is given as

yd(t) =





10, 0 < t ≤ 50
15, 50 < t ≤ 100
10, 100 < t ≤ 150
15, t > 150

(31)

The desired trajectory signal and the system outputs for the
dynamic time-varying plant are shown in Figure 5. Control
signals and tracking errors are shown in Figures 6, 7, respectively.
These results show that the HNNCMAC allows a time-varying
plant to follow a specified trajectory signal. In terms of the
performance of the control system, Table 1 shows a comparison
of the root mean square error (RMSE) for the proposed method
and other methods.

Example 2: Controlling a dynamic time-varying plant
borrowed from Zhang et al. (1998) and Abiyev and Kaynak
(2010), which is described by the difference equation

y (t) = f
[
y(t − 1), y(t − 2)

]
+ b0 (t) u (t) + ε(t)+ 1y(t) (32)

where u(t) is the control signal from the proposed HNNCMAC;
y(t), y(t-1), and y(t-2) are measurable plant output, one-
step delayed plant output, and two-step delayed plant output,
respectively; ε(t) = 0.1 sin(π t) and 1y(t) = 0.1y(t), respectively,
denote the external disturbances and the system uncertainties;
f
[
y(t − 1), y(t − 2)

]
is the previous plant output function,

which is given as f
[
y(t − 1), y(t − 2)

]
= b1 (t) y (t − 1) +

b2 (t) y (t − 2); b0 (t), b1 (t), and b2 (t) are the time-varying

function, which are given as b0 (t) = − t2

1+a1(t)t+a2(t)t2
; b1 (t) =

2+a1(t)t
1+a1(t)t+a2(t)t2

; b2 (t) = − 1
1+a1(t)t+a2(t)t2

; a1 (t) and a2 (t) are the

FIGURE 6 | Comparision of control signals between proposed HNNCMAC

and other control methods for Example 1.

FIGURE 7 | Comparison of tracking errors between proposed HNNCMAC

and other control methods for Example 1.

time-varying plant parameters, which are given as

a1 (t) =
0.1t

t + 1
; a2(t) =





0.3, 0 ≤ t < 40
0.1, 40 ≤ t < 60
0.6, 60 ≤ t < 85
0.3, t > 85

(33)

The desired trajectory signal is given as

yd(t) =





10, 0 < t ≤ 25
15, 25 < t ≤ 50
10, 50 < t ≤ 75
15, t > 75

(34)

Figure 8 shows the change in the time-varying parameters. The
desired trajectory signal and the outputs for the dynamic time-
varying plant are shown in Figure 9. Control signals and tracking
errors are shown in Figures 10, 11, respectively. Simulation
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TABLE 1 | Comparison results in root mean square error (RMSE) of control time-varying systems.

Control method Computation time (s) Example 1 Example 2 Example 3

(Square)

Example 3

(Sinusoidal)

MPNN 0.0158 0.1878 0.8679 1.7629 0.4901

Conventional CMAC 0.0327 0.1692 0.8407 1.7141 0.4552

T2TSKFNS 0.0416 0.1469 0.7395 N N

IT2PCMAC 0.0382 0.1408 0.7683 1.5297 0.4225

HNNCMAC (proposed controller) 0.0254 0.1215 0.6708 1.1644 0.3498

N: the articles did not show those results. Note: MPNN, multilayer perceptron neural network; T2TSKFNS, Takagi–Sugeno–Kang fuzzy neural system; IT2PCMAC, interval type-2

Petri CMAC.

FIGURE 8 | Change of time-varying parameters a1 and a2.

FIGURE 9 | Comparison of system outputs between proposed HNNCMAC

and other control methods for Example 2.

results showed that the HNNCMAC allows a time-varying plant
to follow the reference signal, even if there are abrupt changes in
parameters a1 and a2. Table 1 shows a comparison of the RMSE
for the proposed method and other methods.

Example 3: Controlling a dynamic time-varying plant to
follow variable frequency signals.

This example uses the same dynamic time-varying plant that
is described in Example 2. The desired trajectory signal is the

FIGURE 10 | Comparision of control signals between proposed HNNCMAC

and other control methods for Example 2.

FIGURE 11 | Comparison of tracking errors between proposed HNNCMAC

and other control methods for Example 2.

variable frequency signal:

yd1(t) = 5 ∗ square(2π tkt) (35)
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and

yd2(t) = 5 ∗ sin(2π tkt) (36)

where square and sin are the square function and the sinusoidal
function, respectively, and kt is the parameter for changing the
signal frequency, which changes by time as follows:

kt(t) =





0.1, 0 ≤ t < 40
0.5, 40 ≤ t < 60
0.75, 60 ≤ t < 85
1.0, t > 85

(37)

By using the square signal with varying frequency in Equation
(35) as the desired trajectory, the reference signal and the system
outputs for the time-varying plant are shown in Figure 12.
The control signals and tracking errors for this case are shown
in Figures 13, 14, respectively. Figure 15 shows the reference
signals and system outputs for the time-varying plant when the
desired trajectory is the sinusoidal signal with varying frequency
in Equation (36). The control signals are plotted in Figure 16,

and the tracking errors are plotted in Figure 17. Simulation
results for the sinusoidal function reference showed that, at the
beginning of the control process, the proposed controller could
control the system well, but as frequency increases with time,
as well as when the time-varying plant parameters suddenly
change, the tracking error also rises due to the controller needing
time to adapt to these changes. As shown in Figures 7, 11,
14, 17, there were some rapid variation errors at the time the
reference signals or the time-varying plant parameters suddenly
changed. However, our proposed controller showed better ability
to adapt to these changes, and the tracking error using our
proposed HNNCMAC could quickly converge better than other
control methods can. The external disturbances and the system
uncertainties in this case are chosen as ε(t) = 0.8 sin(π t) and
1y(t) = 0.3y(t), respectively. A comparison of the RMSE for the
following variable-frequency signal is shown in Table 1.

DISCUSSIONS

For this control problems, the HNNCMAC structure had three
neurons in the input space, 10 neurons in the hidden space,

FIGURE 12 | Comparison of system outputs between proposed HNNCMAC and other control methods for square signal reference with varying frequency.

FIGURE 13 | Comparision of control signals between proposed HNNCMAC and other control methods for square signal reference with varying frequency.
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FIGURE 14 | Comparison of tracking errors between proposed HNNCMAC and other control methods for square signal reference with varying frequency.

FIGURE 15 | Comparison of system outputs between proposed HNNCMAC and other control methods for sinusoidal signal reference with varying frequency.

FIGURE 16 | Comparision of control signals between proposed HNNCMAC and other control methods for sinusoidal signal reference with varying frequency.

and two neurons in output space NN. The association space
had two layers, each of which with five Gaussian membership
functions. The input for the HNNCMAC control system was
the output from the sliding hyperplane, its one-step delayed,
and its derivatives, s (t), s (t − 1), and ṡ (t). Term s (t − 1) is
used to obtain more information about the time-varying plants.
The initial parameters for the Gaussian function were m11k =

m21k = m31k = [−0.5 − 0.3 0 0.3 0.5], m12k = m22k =

m32k = [−0.45 − 0.35 − 0.5 0.25 0.45 ], and σijk = 0.4.
The parameters for the sliding surface were n = 3 and λ =

0.2. All learning rates were 0.01, and sampling time was 0.01 s.
Using the adaptation laws in Equations (10–23), the controller
parameters can be updated online to adapt to the changes in
the control system. The examples have demonstrated that our
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FIGURE 17 | Comparison of tracking errors between proposed HNNCMAC

and other control methods for sinusoidal signal reference with

varying frequency.

proposed controller can address well the external disturbances
and the system uncertainties. The convergence of our proposed
controller is guaranteed by Lyapunov stability analysis approach
in Equation (29). The average RMSE for all examples between the
proposed HNNCMAC, the multilayer perceptron NN (MPNN),
the conventional CMAC, the interval type-2 Petri CMAC
(IT2PCMAC) (Le et al., 2019), and the type-2 Takagi–Sugeno–
Kang fuzzy neural system (T2TSKFNS) (Abiyev and Kaynak,
2010) are shown in Table 1. It is obvious that the proposed
controller was using the NN to reduce the inputs for the CMAC;
then, the structure of the modified CMAC in our proposed
network would be smaller than that of a conventional CMAC. It is
more effective when the number of inputs is large. Table 1 shows
that the proposed controller has a small computation time than
a conventional CMAC, due to our modified CMAC structure
was using the NN pre-controller to reduce the computation
complexity of the CMAC. Moreover, the NN output used the
tangent sigmoid function to limit the output from [−1 1].
Therefore, it is easy to design the network size and the initial
membership functions in our modified CMAC controller. As
shown in Table 1, the proposed HNNCMAC algorithm could
achieve better control performance with the smallest RMSE
than other controllers could. In Appendix A, Tables A–D show
analysis of the difference between our proposed controller and
other controllers using the t-Test statistical approach. In all
examples, statistical results showed that the P-value was lower
than the alpha level (α = 0.05). Thus, we can conclude that
the RMSE results of our proposed controller had statistically
significant difference with other controllers. Therefore, the
superiority of the proposed controller was illustrated. Some
real-world applications, which have large inputs, can apply
this proposed network to reduce the network structure such
as medical diagnosis problems, classification problems, image

processing problems, etc. Choosing the parameters for the sliding
surface affects much of the control performance. This study used
the try-and-error approach to obtain suitable parameters. Further
studies should investigate the estimation method to estimate
these parameters to achieve better control performance.

CONCLUSIONS

This paper proposed an HNNCMAC that is used to control a
non-linear dynamic time-varying plant. The main contributions
of this study are that it demonstrated a method to control a non-
linear dynamic time-varying plant; the HNNCMAC structure
uses adaptive laws to adjust parameters online; input range
and quantity in the proposed CMAC can be reduced by the
NN pre-controller, and it makes it easy to design network size
and initial membership functions; the stability of the proposed
method is guaranteed by Lyapunov analysis and the numerical-
simulation results for controlling a time-varying plant, showing
the superiority of the proposed method over existing methods.
Moreover, our proposed controller is simple to design and
implement, and can be applied to other fields such as system
identification, classification, and prediction. Our future work will
apply the optimal algorithm to optimize parameters in the sliding
surface and learning rates in adaptive laws to achieve better
control performance.
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