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The steady-state visually evoked potential (SSVEP) has been widely used in

brain-computer interfaces (BCIs). Many studies have proved that the Multivariate

synchronization index (MSI) is an efficient method for recognizing the frequency

components in SSVEP-based BCIs. Despite its success, the recognition accuracy has

not been satisfactory because the simplified pre-constructed sine-cosine waves lack

abundant features from the real electroencephalogram (EEG) data. Recent advances in

addressing this issue have achieved a significant improvement in recognition accuracy

by using individual calibration data. In this study, a new extension based on inter- and

intra-subject template signals is introduced to improve the performance of the standard

MSI method. Through template transfer, inter-subject similarity and variability are

employed to enhance the robustness of SSVEP recognition. Additionally, most existed

methods for SSVEP recognition utilize a fixed time window (TW) to perform frequency

domain analysis, which limits the information transfer rate (ITR) of BCIs. For addressing

this problem, a novel adaptive threshold strategy is integrated into the extension of

MSI, which uses a dynamic window to extract the temporal features of SSVEPs

and recognizes the stimulus frequency based on a pre-set threshold. The pre-set

threshold contributes to obtaining an appropriate and shorter signal length for frequency

recognition and filtering ignored-invalid trials. The proposed method is evaluated on a

12-class SSVEP dataset recorded from 10 subjects, and the result shows that this

achieves higher recognition accuracy and information transfer rate when compared

with the CCA, MSI, Multi-set CCA, and Individual Template-based CCA. This paper

demonstrates that the proposed method is a promising approach for developing

high-speed BCIs.

Keywords: brain-computer interface (BCI), steady-state visually evoked potentials (SSVEP), inter- and

intra-subject template-based multivariate synchronization index, transfer learning, adaptive threshold
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1. INTRODUCTION

The Brain-Computer Interfaces (BCIs) provide humans with
a direct communication and control channel between human
brains and external devices by utilizing brain signals produced
along the cerebral cortex within the brain to directly control
external devices without the aid of muscular movements
(Dornhege et al., 2007; Faller et al., 2010). People with disabilities,
such as limb loss, spinal cord injury, and amyotrophic lateral
sclerosis, can draw support from BCIs to assist with the activities
involved in daily life. Further research is being conducted
on developing the EEG-Based Brain-Computer Interfaces due
to its non-invasive nature, high temporal resolution, ease of
acquisition, and beneficial cost-effectiveness (Nicolas-Alonso and
Gomez-Gil, 2012; Al-Hudhud, 2016).

In recent years, several specific brain activity patterns,
including Slow Cortical Potentials (SCPs), P300 evoked
potentials, Steady-State Visually Evoked Potentials (SSVEPs),
Event-Related Desynchronization (ERD), and Synchronization
(ERS), have been investigated extensively, as these have served
as the source of stimulation signals for BCI control (Zhang
et al., 2014b). Among these, the SSVEP paradigm has become
a promising option in BCI applications due to its high signal-
to-noise ratio (SNR), high information transfer rate (ITR),
reliability, and design flexibility (Bin et al., 2009; Zhu et al., 2010;
Bakardjian et al., 2011). The SSVEP-BCIs rely on oscillatory
responses occurring in the occipital and the occipito-parietal
cortex that are elicited from a stimulus flickering at a specific
frequency (Vu et al., 2016; Georgiadis et al., 2018). While people
focus attention on a visual stimulation at a fixed frequency,
such as flashing lights or flickering icons on a computer screen,
the SSVEP signals can be observed at the same fundamental
frequency as the stimulation and also at higher harmonics
of the driving stimulus (Muller-Putz and Pfurtscheller, 2007;
Bakardjian et al., 2010; Zhang Z. et al., 2018). Hence, the
SSVEP signals are the inherent response of the brain, and the
SSVEP-based BCI systems required minimal to no training
(Bin et al., 2009).

In the past few decades, many studies have revealed that

the SSVEP pattern is effective for BCI control, and various
SSVEP-based brain-computer interface (BCI) systems have

been proposed by numerous laboratories and research groups
(Poryzala and Materka, 2014). It has been verified that four
driving rates in an evoked potential interface system are

distinguishable (Skidmore and Hill, 1991). In the study, the
stimulation frequency was set at 35.050, 23.367, 17.525, and
14.020 Hz, and it was found that the responses corresponding to
the stimulation frequencies were generated during the analysis.
The SSVEP-based BCI system with high transfer rates was
also used to help operators input phone numbers (Cheng
et al., 2002) in which four buttons flickering at different
frequencies represented the four directions. The operators could
move the cursor in different directions to the target position
by gazing at these buttons. Finally, eight of the 13 subjects
completed the task where subjects were asked to select the
correct number on the telephone keypad to input phone
numbers with the help of the SSVEP-based BCI system. In

another work, a new dual-frequency-SSVEP for BCI systems
was developed that could increase the number of selections
through different combinations of four frequencies, i.e., 16.4,
17.5, 19.1, and 20.2 Hz (Shyu et al., 2010). The result indicated
that this dual-frequency approach was effective for an SSVEP
BCI system.

Previous studies for SSVEP recognition focused on the
amplitude and spatial distribution of SSVEP responses (Zhang
et al., 2013a; Norcia et al., 2015). However, these traditional
methods using single-channel EEG data [e.g., Power spectral
density analysis (PSDA)] are sensitive to noise and require a long
period of recognition time to improve the accuracy of the results.
Moreover, these SSVEP recognition techniques cannot detect
and identify harmonic stimulation frequencies (Zhang et al.,
2011, 2015). Therefore, many advancedmultichannel approaches
have been developed to enhance the recognition performance of
SSVEPs. For frequency recognition, the Canonical Correlation
Analysis (CCA) algorithm was first introduced to find the
correlation between the multichannel EEG data and reference
signals consisting of sin-cosine waves at each of the target
frequencies (Lin et al., 2006). Recent work has already
validated that the CCA method could achieve better recognition
performance than the traditional power spectral density analysis
(Zhang et al., 2014c). Until now, there have been many methods
proposed to improve recognition accuracy further by optimizing
the pre-constructed sine-cosine reference signals, such as
Multiway Canonical Correlation Analysis (MCCA) (Zhang
et al., 2011), L1-regularized Multiway Canonical Correlation
(L1-MCCA) (Zhang et al., 2013b), and Multi-set Canonical
Correlation Analysis (Multi-set CCA) (Zhang et al., 2014c)—all
proposed as multiway extensions of standard CCA. Although
the sine-cosine reference signals usually perform well for specific
frequency components recognition, the simplified single or
multiple frequency signals are incapable of exactly representing
the complex neural responses, which are collaboratively created
by several neural populations in the visual cortex rather than a
single signal source. Recently, researchers constructed a laminar
microcircuits model consisting of two visual areas (V1 and V2)
to imitate the dynamics of neuronal population response in
the visual cortex, which revealed the modulation mechanism
of the SSVEP, confirming the hypothesis (Zhou et al., 2013;
Yang et al., 2019). Beside this, the new spatial filtering method,
known as Minimum Energy Combination (MEC), found a linear
combination of multichannel signals, which reduces the number
of channels, to minimize the noise energy (Friman et al., 2007;
Nan et al., 2011). Nakanishi et al. used multiple spatial filters to
remove the EEG background artifacts, enhance discriminability
and SNR of the signals (Nakanishi et al., 2017). Zhang et al.
introduced the Correlated Component Analysis (CORCA) to
find linear combinations of electrodes across subjects and
maximize correlation between them (Zhang et al., 2018a,b).
Recently, the Multivariate Synchronization Index (MSI) (Zhang
et al., 2014b) has attracted attention as a novel feature extraction
method, which calculates the synchronization index between
the multichannel EEG data and the pre-constructed reference
signals, showing better recognition performance than both
CCA and MEC.
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Although previous studies have demonstrated that the MSI
method is an efficient method for frequency component
recognition, the temporal features of the EEG signals have not
been explored yet. The analysis of Global Field Power highlighted
time periods results in the most robust performance (Jrad and
Congedo, 2012), showing the importance of time domain analysis
for recognizing the specific frequency in SSVEPs. Recent research
has also confirmed that considering temporal information of
EEG signals can improve the performance of the algorithm,
such as the temporal local structure of the signals (Wang and
Zheng, 2008), the time-delayed copy (Lemm et al., 2005), and
certain temporal features (Jrad and Congedo, 2012). To address
this issue, Zhang et al. proposed a temporally local MSI (TMSI)
method, which explicitly considers the time-local information of
the EEG signal, further improving the accuracy of the recognition
algorithm for SSVEP-Based BCIs (Zhang et al., 2016). The time
delay embedding method has also been employed to extend MSI
(known as EMSI), further enhancing the performance of SSVEP,
which combined the first-order time-delayed version of EEG
data during the calculation of the synchronous index (Zhang
et al., 2017). Zhang combined adaptive TWL selection strategy
with the MSI method, which is superior to fixed TWL in SSVEP
recognition (Zhang et al., 2014a).

In the present study, the reference signals of sine-cosine
waves are replaced with inter-subject and intra-subject template
signals. The intra-subject template signals, also termed as
the individual template signals, are obtained by averaging
multichannel EEG data of the individual training dataset
and provided more abundant subject-specific and inter-trial
information for correlation analysis. It has been shown that
the CCA based on the individual template signals significantly
outperforms the standard CCA (Bin et al., 2011; Nan et al., 2011).
Additionally, the inter-subject template signals are obtained by
averaging the partial trials selected from other subjects. Recent
studies have demonstrated inter-subject similarity in neural
responses occurs because subjects are instructed to perform
a specific task over time (Saha and Baumert, 2019). Yuan
et al. presented transfer template-based canonical correlation
analysis (tt-CCA) to enhance the detection of SSVEPs by
exploiting inter-subject information (Yuan et al., 2015).
Several studies attempted to apply session-to-session and
inter-subject transfer to simplify the training procedure
(Nakanishi et al., 2016; Waytowich et al., 2016). This paper
proposes an efficient way for transfer learning to improve
SSVEP-based BCIs performance. After this, an expanding
time window over time is used to extract temporal features of
SSVEP, and the stimulus frequency is recognized based on the
pre-set threshold. Dynamic window recognition algorithms are
often integrated into other algorithms to adaptively control
the recognition time while maintaining a high accuracy, which
significantly improves the information transfer rate (ITR),
and adaptability of systems to different individuals (Zhang
et al., 2014a; Cao et al., 2015; Yang et al., 2018). In the method
presented in this paper, the pre-set threshold obtained from
the training dataset of individual subjects makes the algorithm
shutdown at the appropriate data length and filters the potentially
invalid trial resulted from attention lapses (Russell et al., 2016)

or the reaction times of subjects considered to be too long. It has
been reported that attention lapses may lead to an increase of
reaction times and the number of incorrect responses because
irrelevant information cannot be effectively suppressed, shifting
attention to irrelevant visual stimuli (Ko et al., 2017; Wang et al.,
2018). The novel extension of multivariate synchronization
index method is verified with an SSVEP dataset involving 10
healthy subjects and compared to the CCA, standard MSI,
Multi-set CCA, and Individual Template-based CCA. The
results in this paper show that the proposed method significantly
enhances the individual recognition performance of SSVEP
frequency, resulting in an improvement in overall accuracy and
the information transfer rate.

2. METHODS

2.1. The Standard Multivariate
Synchronization Index
The MSI method aims to estimate the synchronization between
the multichannel EEG data and the reference signals for
frequency detection. Let X ∈ R

N1×M denote the multivariate
EEG signals and Y ∈ R

N2×M denote the reference signal, which
is constructed as follows:

Y =




sin(2π fit)
cos(2π fit)

...
sin(2πNhfit)
cos(2πNhfit)



, t =

1

Fs
,
2

Fs
, . . . ,

M

Fs
(1)

where Nh denotes the number of harmonics, Fs is the sampling
rate. N1 and N2 are the number of channels, respectively, and
M is the number of samples. X and Y are normalized to have
zero mean and unit variance without loss of generality. The
covariance matrix of concatenation of X and Y can subsequently
be calculated as

C =
(
C11 C12

C21 C22

)
(2)

where

C11 =
1

M
XXT (3)

C22 =
1

M
YYT (4)

C12 =
1

M
XYT = CT

21 (5)

Because both the autocorrelation and cross-correlation of matrix
C, which is calculated from the concatenation of X and
Y , could influence the synchronization computing, a linear
transformation is employed:

U =


C
− 1

2
11 0

0 C
− 1

2
22


 (6)
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Then, the transformed correlation matrix can be described
as follows:

R = UCUT (7)

Assume λ1, λ2, . . . , λP are the eigenvalues of matrix R. Then, the
normalized eigenvalues are represented by

λ′i =
λi∑P
i=1 λi

=
λi

tr(R)
(8)

where P = N1 + N2. Finally, the synchronization index
between two multivariate signals can be calculated using the
following formula:

S = 1+
∑P

i=1 λ′i log(λ
′
i)

log(P)
(9)

Based on the formula (9), the synchronization index of each
frequency fi(i = 1, . . . ,K) used in SSVEP-based BCI can be
calculated. The target frequency ft can now be computed by
the formula.

ft = max
fi

Si, i = 1, . . . ,K (10)

2.2. Inter- and Intra-subject
Template-Based Multivariate
Synchronization Index (IIST-MSI)
We propose a variant version of multivariate synchronization
index based on transferred inter- and intra-subject template
signals. Considering χi,h ∈ R

Nc×Nt , which is the h-th trial
from the individual training set corresponding to the stimulus
frequency fi, an individual template signal Yi ∈ R

Nc×Nt is
obtained by averaging training trials as

Yi =
1

Nn

Nn∑

h=1
χi,h (11)

where Nc, Nt , and Nn are the numbers of channels, samples, and
trials, respectively. For structuring the transferred inter-subject
templates, the core issue is how to pick up credible trials. We
propose a threshold policy for supervised adaptation of trials.
Assume χp,i,h ∈ R

Nc×Nt is the h-th trial recorded from the subject
p corresponding to the stimulus frequency fi. The confidence of
this trial is defined as

Cp,i,h =
Sp,i,h

1
K

∑K
k=1 Sp,k,h

(12)

where K is the number of stimulus frequencies, Sp,i,h is
the multivariate synchronization index between EEG signals
and the sine-cosine reference signals at the labeled stimulus
frequency fi, and Sp,k,h is the multivariate synchronization index
between EEG signals and the sine-cosine reference signals at the
stimulus frequency fk. Only high-confidence trials are selected

for transfer learning, and the threshold function for confidence
is formulated as

f (Cp,i,h) =





1, Cp,i,h > 1+ ln(
Nt

Fs
),

−1, otherwise.

(13)

where Fs is the sampling rate. Suppose Ap,i is a set composed of
high-confidence trials belonging to subject p, and the initial set is
the empty set (Ap,i = ∅). The trial selection procedure establishes
an iterator to loop over all trials corresponding to the stimulus
frequency fi and pick up high-confidence trials:

Ap,i ←
{
Ap,i ∪ {χp,i,h}, f (Cp,i,h) > 0,

Ap,i, otherwise.
(14)

If P is the set of ideal subjects used for templates, the inter-
subject template is obtained by averaging high-confidence trials
across subjects:

Y∗i =
1

|P|
∑

p∈P

1

|Ap,i|
∑

χp,i,h∈Ap,i

χp,i,h (15)

Then, the sine-cosine reference signals of the standard MSI
can be replaced by the inter- and intra-subject template signals.
The multivariate synchronization index S∗i and Si between the
inter- and intra-subject template signals and the test trial can
be calculated with the formula (2–9), respectively. Finally, a
sum-of-squares γi based the multivariate synchronization index
represents the final detection score for the stimulus frequency fi:

γi = (Si)
2 + (S∗i )

2 (16)

The target frequency ft can be recognized by the formula:

ft = max
fi

γi, i = 1, . . . ,K (17)

2.3. Dynamic Window-Based Adaptive
Threshold (AT) Strategy
In order to exploit the temporal features of EEG signal, a dynamic
window approach is incorporated into the IIST-MSI method. In a
trial where the EEG data is continuously received, the inter- and
intra-subject template-based multivariate synchronization index
of a small initial time window (ITW) corresponding to each
stimulus frequency can be first computed. The probability ratio
r1,i of the stimulus frequency fi can be then defined as

r1,i =
√

γ1,i
1
K

∑K
k=1
√

γ1,k
(18)

where K is the number of stimulus frequencies. The probability
ratio reflects the confidence of each stimulus frequency. When
the probability ratio of each stimulus frequency is less than the
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FIGURE 1 | The flowchart of the IIST-MSI-AT method for SSVEP frequency recognition. χ1,χ2, . . . ,χK , and χP,1,χP,2, . . . ,χP,K denote the individual training dataset

and that of other selected subjects corresponding to the stimulus frequency f1, f2, . . . , fK , respectively. Y
∗
1 ,Y

∗
2 , . . . ,Y

∗
K , and Y1,Y2, . . . ,YK are the inter- and

intra-subject templates. Then the synchronization index and the probability ratio of each frequency can be calculated. The probability ratio of each frequency is

multiplied, and the result is compared with the threshold. When the threshold is exceeded, the SSVEP frequency can be recognized by the formula (20).

pre-set threshold, it indicates that the current data length is not
enough to make a reasonable decision, so the algorithm requires
more data. A time window increment (TWI) is appended to the
last data segment, and the algorithm recalculates the probability
ratio of this new data segment corresponding to each stimulus
frequency. A joint probability of the new data segment and the
last data segment can then be computed. After m subsequences,
the joint probability Ji of the stimulus frequency fi is calculated as:

Ji ← Ji × rm,i (19)

where the initial value is set as Ji ← r1,i. The threshold Tc

serves as the cut-off condition for this method. To paraphrase,
ifmax{J1, . . . , JK} < Tc, the iterative process is continued. When
all EEG signals are depleted, and max{J1, . . . , JK} still is less than
Tc, the trial is regarded as an invalid trial. Once the method
reaches the threshold Tc, the target stimulus frequency ft can be
computed as follows:

ft = max
fi

Ji, i = 1, . . . ,K (20)

where K is the number of stimulus frequencies used
in SSVEP-based BCI. Figure 1 illustrates the frequency
recognition method.

2.4. Contrast Method
For validating effectiveness for frequency recognition in
SSVEPs, the classification performance of the proposed method
is compared with various algorithms, including Canonical
Correlation Analysis (CCA), the standard Multivariate
Synchronization Index (MSI), Multi-set CCA, and Individual
Template-based CCA.

2.4.1. Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a multivariable
statistical technique used to reveal the underlying correlation
between two multidimensional variables (Hardoon et al., 2004).
Given two sets of random variables X ∈ R

N1×M , Y ∈ R
N2×M .

Their linear combinations can be define as x̃ = wTX and
ỹ = vTX, respectively. The CCAmethod is aimed at finding a pair
of vectors w ∈ R

N1×1 and v ∈ R
N2×1, such that the correlation

between x̃ and ỹ is maximized. In other words, the following
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optimization problem is solved:

ρ = max
w,v

E
[
x̃̃y

]
√
E

[
x̃2

]
E

[
ỹ2

] =
wTXYTv

wTXXTwvTYYTv
(21)

The maximum canonical correlation between the canonical
variates x̃ and ỹ is the maximum of ρ. Assume X represents
a multichannel EEG data, and Y is the reference signal
constructed according to the formula (1). The maximum
canonical correlation of each frequency fi(i = 1, . . . ,K) can thus
be calculated. Then, the target frequency ft can be recognized by
the formula.

ft = max
fi

ρi, i = 1, . . . ,K (22)

2.4.2. Multi-Set Canonical Correlation Analysis
Multi-set canonical correlation analysis (Multi-set CCA) is
developed as an extension of CCA to analyze linear relationships
between multiple sets of features. In order to improve the
classification accuracy of SSVEPs, The Multi-set CCA method
is implemented to optimize the reference signal, and the pre-
constructed sine-cosine waves, by learning from the joint spatial
filtering of training sets of EEG signals (Zhang et al., 2014c).

Assume the h-th training trial of EEG signals corresponding
to the stimulus frequency fi is χi,h ∈ R

Nc×Ns , and the spatial
filters used to extract common features of training sets are
w1, . . . ,wn. To maximize the sum of the pairwise correlation
between multiple sets of training data, the optimization problem
of Multi-set CCA is presented as follows:

w̃i,1, . . . , w̃i,n = argmax
w1 ,...,wn

n∑

h1 6=h2

wT
h1

χi,h1χ
T
i,h2

wh2

subject to
1

n

n∑

h1=1
wT
h1

χi,h1χ
T
i,h1

wh1 = 1

(23)

The objective function can then be transformed into
the following generalized eigenvalue problem with the
Lagrange multipliers:

(Ri − Si)w = ρSiw (24)

where

Ri =




χi,1χ
T
i,1 . . . χi,1χ

T
i,n

...
. . .

...

χi,nχ
T
i,1 . . . χi,nχ

T
i,n


 ,

Si =




χi,1χ
T
i,1 . . . 0

...
. . .

...

0 . . . χi,nχ
T
i,n


 ,

w =



w1

...
wn




After obtaining the multiple linear transforms w1, . . . ,wn and
utilizing the joint spatial filtering z̃i,h = w̃T

i,hχi,h, the optimized
reference signal is constructed as

Zn = [z̃Ti,1, z̃
T
i,2, . . . , z̃

T
i,n]

T (25)

Next, the maximum canonical correlation between the test data
and the optimized reference signal can be calculated using CCA,
and the target stimulus frequency ft can be recognized with the
formula (22).

2.4.3. Individual Template Based CCA
To explore temporal features of EEG signals, the Individual
Template-based CCA (IT-CCA) approach was proposed for
SSVEP detection (Bin et al., 2011). For each stimulus frequency
fi, the individual template signal Yi ∈ R

Nc×Nt is obtained by
averaging training trials using the formula (11). The CCA process
can then be used to calculate the maximum canonical correlation
between the test data and the individual template signal, and
the target stimulus frequency ft can be recognized with the
formula (22).

2.5. Experiment and Data
To validate our proposed method, a 12-class joint frequency-
phase modulated SSVEP dataset from Nakanishi et al. (2015) is
used, which contains ten healthy subjects (nine males and one
female, the average age being 28 years old), each having 15 trials
corresponding to all 12 stimulus frequencies. In their experiment,
the 12-target stimuli were presented on an LCD screen with a
60 Hz refresh rate. These stimuli were placed in a 4 × 3 matrix
regarded as a virtual keypad, as shown in Figure 2A, and tagged
with different frequencies ranging from 9.25 to 14.75 Hz and
phases ranging from 0 to 1.5π , as shown in Figure 2B.

When conducting this experiment, the subjects were seated on
a comfortable chair within a dim room, with their eyes 60 cm
away from the LCD screen. The visual stimuli were presented
by the stimulus program in random order. At the beginning
of a trial, a red square emerged at the position of the target
stimulus for 1 s, which indicated that the subjects should shift
their gaze to the target. Afterward, all stimuli started to flicker
simultaneously and the subjects were required to stare at the
visual stimuli for 4 s. At the same time, EEG signals were recorded
with eight electrodes placed over the occipital area with reference
to the CMS electrode close to Cz. In this experiment, each subject
completed 15 trials corresponding to all 12 targets.

Considering that visual stimulation emerged at the 15th
millisecond, the data epochs were extracted from 0.15 to 4.15
s. Each epoch was band-pass filtered from 6 to 80 Hz with an
infinite impulse response (IIR) filter and was then used as the
input for recognition algorithms.

To determine ideal subjects used for templates, we selected
subjects in descending order of the MSI accuracy. For adaptive
threshold strategy, the initial time window ITW and the time
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FIGURE 2 | Stimulus design of the 12-target BCI system. (A) The user interface of the virtual keypad. (B) Frequency and phase values for each target.

window increment TWI were set to 0.5 s. The threshold Tc took
values from a range (d ≤ 1s: ranging from 1 to 2 with an interval
of 0.05; 1s < d ≤ 2s: ranging from 1 to 4 with an interval of
0.1; 2s < d ≤ 3s: ranging from 3 to 8 with an interval of 0.2;
and 3s < d ≤ 4s: ranging from 3 to 16 with an interval of
0.4). The number of harmonics pre-defined for reference signals
was 3 uniquely. During the process of performing parameter
optimization, the combination of parameters would be discarded
once the proportion of invalid trials was more than 20%. In
the end, an optimum set of parameters was obtained by tuning
the parameters to reach maximum recognition accuracy on the
training dataset, and the optimal parameters were then applied
to frequency recognition of the test dataset.

2.6. Evaluation Methods
The classification accuracy is estimated using three-fold cross-
validation to evaluate the proposed method. The sample dataset
is divided into the training set for choosing the optimal parameter
(i.e., the threshold Tc) and test set for estimating the performance
of the model for frequency recognition. The accuracy is defined
as the percentage of valid trials classified correctly. Thus, the
classification accuracy is calculated as follows:

acc =
1

3

3∑

i=1

Pi

Ni
× 100% (26)

where Pi is the number of valid trials correctly classified and Ni is
the number of valid trials from the i-th fold.
In addition to the classification accuracy, the information transfer
rate (ITR) is adopted to evaluate the communication capacity of
the BCI system (Wolpaw et al., 2002):

B = logN + P log P + (1− P) log
1− P

N − 1
(27)

ITR = B× 60/T (28)

where P denotes the classification accuracy, N is the number of
possible selections, and T is the average time required to select
a command. Here, the ITR is calculated using different values of
T (Target gazing time: 0.5 to 4.0 s with an interval of 0.5 s; Gaze
shifting time: 1 s).

3. RESULTS

Since the number of subjects used for transfer |P| plays an
important role in the IIST-MSI method, we explore the effects
of varying |P| on the recognition performance firstly. As a special
case, the individual template-based MSI (IT-MSI) is the same as
the IIST-MSI with |P| = 0. Figure 3 shows the averaged accuracy
and ITR obtained by the IIST-MSI with the |P| varying from 0 to
6 and TWs from 0.5 to 4 s. When TW is <1 s, the method only
using the individual template performs better than that using
the combined inter- and intra-subject templates. When TW is
more than 2 s, the result is the contrary. For |P| = 4, the IIST-
MSI achieved the best recognition performance. In the following
analysis, the performance of the IIST-MSI with fixed |P| = 4 is
compared with that of other methods.

Figure 4 depicts the averaged SSVEP recognition accuracy of
ten subjects derived by CCA, MSI, Multi-set CCA, IT-CCA, IT-
MSI and IIST-MSI with different data epochs lengths, ranging
from 0.5 to 4 s, which shows that the recognition accuracy of
subject 2 and 7 is significantly improved by the IIST-MSI. The
one-way repeated-measure ANOVA results show that there is a
statistically significant difference in the accuracy between these
methods under the data length ranging from 0.5 to 3 s [d = 0.5 s:
F(5, 45) = 29.402, p < 0.001; d = 1s: F(5, 45) = 52.036, p < 0.001;
d = 1.5s: F(5, 45) = 11.894, p < 0.001; d = 2s: F(5, 45) = 5.269,
p < 0.01; d = 2.5s: F(5, 45) = 3.395, p < 0.05; d = 3s: F(5, 45) =
2.592, p < 0.05; d = 3.5s: F(5, 45) = 1.819, 0.1 < p; and d = 4s:
F(5, 45) = 1.396, 0.1 < p]. For a more intuitive comparison of
these methods, Figures 5A,B depict the averaged accuracy and
the ITR across all subjects with different data lengths from 0.5
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FIGURE 3 | Performance comparison of IIST-MSI with various |P|. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths from 0.5 to 4

s. Error bars show standard errors.

FIGURE 4 | Averaged SSVEP recognition accuracies of 10 subjects derived by CCA, MSI, Multi-set CCA, IT-CCA, IT-MSI, and IIST-MSI, with different length of data

epochs from 0.5 to 4 s.

to 4 s. In terms of the mean classification accuracies of all ten
subjects, from 1 to 4 s, the IIST-MSI method achieves a higher
accuracy than the other methods.

To investigate the superiority of adaptive threshold strategy,
the IIST-MSI using adaptive threshold (IIST-MSI-AT) is

compared with the basic IIST-MSI. Figure 6 depicts the mean
detection accuracy and ITR for the basic and the combined
version of IIST-MSI method. The paired-sample t-test shows
there are no statistical differences in the accuracy between them,
but there are significant differences in the ITR from 1.5 to 4 s.
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FIGURE 5 | Performance comparison between IIST-MSI and other methods. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths

from 0.5 to 4 s. Error bars show standard errors. The asterisk indicates the statistically significant differences (*p < 0.05; **p <0.01; ***p <0.001).

FIGURE 6 | Performance comparison between IIST-MSI and IIST-MSI-AT. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths from

0.5 to 4 s. Error bars show standard errors. The asterisk indicates the statistically significant differences (paired t-tests, *p < 0.05; **p <0.01; ***p <0.001).

The experimental result coincides with the expectation that the
dynamic window algorithm can adaptively determine the shorter
time window, while maintaining high accuracy. Hence the IIST-
MSI-AT method significantly outperformed the other methods
in terms of ITR. The highest ITR obtained by the IIST-MSI-AT
method is 53.08± 3.65 bits/min.

Table 1 presents the recognition accuracy and ITR obtained
by CCA, MSI, Multi-set CCA, IT-CCA, and IIST-MSI-AT
for each subject with a 4 s data length. Here, the accuracy
of CCA, MSI, Multi-set CCA, and IT-CCA are the average

values computed over 180 trials for each subject. The accuracy
of IIST-MSI-AT is described as the average accuracy of
the test set in a three-fold cross-validation as formulated
in the equation (26). For the epoch length of 4 s, the
IIST-MSI-AT method gets the highest accuracy (99.23 ±
0.29%),which achieves an increase of 5.62% compared to CCA
(93.61 ± 3.48%), 6.06% compared to MSI (93.17 ± 3.82%),
2.90% compared to Multi-set CCA (96.33 ± 1.84%), and
2.34% compared to IT-CCA (96.89 ± 2.02%). These results
demonstrate that the proposed method is a promising way to

Frontiers in Neuroscience | www.frontiersin.org 9 September 2020 | Volume 14 | Article 717

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. IIST-MSI Using Adaptive Threshold

TABLE 1 | Classification accuracy (%) and ITR (bits/min) of CCA, MSI, Multi-set CCA, IT-CCA, and IIST-MSI-AT for each subject with 4s data length.

Subject
CCA MSI Multi-set CCA IT-CCA IIST-MSI-AT

Accuracy ITR Accuracy ITR Accuracy ITR Accuracy ITR Accuracy ITR

S1 72.22 14.74 70.55 14.07 93.89 25.30 99.44 29.25 98.83 35.12

S2 71.11 14.29 67.78 13.00 84.44 20.16 91.11 23.66 99.32 33.38

S3 97.78 27.90 100.00 29.82 100.00 29.82 100.00 29.82 100.00 52.99

S4 99.44 29.25 99.44 29.25 100.00 29.82 100.00 29.82 100.00 53.04

S5 98.33 28.32 98.33 28.32 100.00 29.82 100.00 29.82 98.89 43.77

S6 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 57.53

S7 100.00 29.82 100.00 29.82 86.11 20.99 79.44 17.81 97.19 38.43

S8 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 55.91

S9 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 51.51

S10 97.22 27.5 95.56 26.36 98.89 28.77 98.89 28.77 98.11 34.17

Mean ± STD 93.61 ± 3.48 26.13 ± 1.85 93.17 ± 3.82 26.01 ± 2.00 96.33 ± 1.84 27.41±1.16 96.89 ± 2.02 27.84 ± 1.2 99.23 ± 0.29 45.58 ± 2.89

develop more high-performance SSVEP-based brain-computer
interface systems.

4. DISCUSSION

The most recent state-of-the-art methods for SSVEP recognition
use the individual calibration data as the template of correlation
analysis and significantly improve the detection performance
(Nakanishi et al., 2015). The individual templates can accumulate
the frequency components while maintaining the phase
information and, conversely, reduce the effect of the background
EEG artifacts. Furthermore, it contributes to improving the
individual adaptability of methods, as the individual templates
can learn spontaneous EEG signals from calibration data.
However, the training data collection process may be time-
consuming. The visual fatigue and attention lapses make the
training data not perfect enough for every subject. For addressing
this problem, inter-subject transfer learning is exploited to
provide inter-subject similarity and variability for enhancing
target recognition in SSVEP-based BCIs. For each subject, the
frequency components of SSVEPs induced by a specific target
frequency are similar, but the visual latencies in the visual
system are various. According to the superposition principle,
the averaged inter-subject transferred templates can contain the
same frequency and little phase differences (Yuan et al., 2015).
Based on this, this study replaces the commonly used sine-cosine
reference signals with the inter- and intra-subject templates
for improving adaptability and robustness of the MSI method.
Indeed, the experimental results show that the detection accuracy
of a few individuals is obviously improved.

On the other hand, this paper employs a dynamic time
window to explore the temporal features of SSVEP signals
neglected by the standard MSI method and a pre-set threshold
to determine when to stop the algorithm, which can balance
the recognition accuracy and data length. Hence, the proposed
method can significantly improve the information transmission
rate, which is critical to the development of high-speed BCIs.
Considering the limited reliability of short data, the threshold

not only acts as the stopping condition but assists in filtering
these invalid trials to avoid wrong commands. Accordingly, the
method will improve the effectiveness of the dry-electrode based
BCI system with a low signal-to-noise ratio by filtering invalid
trials, which can avoid mistakes and ensure the stability of BCI.

5. CONCLUSION

In this paper, we introduce a novel method based on the inter-
and intra-subject template and adaptive threshold strategy to
enhance the detection of SSVEPs for high-speed BCIs. The
experimental results on ten subjects indicate that our approach
obtains higher recognition accuracy and ITR than the CCA,
MSI, Multi-set CCA, and Individual Template-based CCA. The
results remind us that the inter-subject template transfer and the
threshold search based on other methods could further improve
the performance of BCIs, which will be investigated in our
future work.
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