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The mechanistic target of rapamycin protein complex, mTORC1, has received attention
in recent years for its role in aging and neurodegenerative diseases, such as
Alzheimer’s disease. Numerous excellent reviews have been written on the pathways
and drug targeting of this keystone regulator of metabolism. However, none have
specifically highlighted several important nuances of mTOR regulation as relates
to neurodegeneration. Herein, we focus on six such nuances/open questions: (1)
“Antagonistic pleiotropy” – Should we weigh the beneficial anabolic functions of
mTORC1 against its harmful inhibition of autophagy? (2) “Early/late-stage specificity” –
Does the relative importance of these neuroprotective/neurotoxic actions change as a
disease progresses? (3) “Regional specificity” – Does mTOR signaling respond differently
to the same interventions in different brain regions? (4) “Disease specificity” – Could
the same intervention to inhibit mTORC1 help in one disease and cause harm in
another disease? (5) “Personalized therapy” – Might genetically-informed personalized
therapies that inhibit particular nodes in the mTORC1 regulatory network be more
effective than generalized therapies? (6) “Lifestyle interventions” – Could specific
diets, micronutrients, or exercise alter mTORC1 signaling to prevent or improve the
progression neurodegenerative diseases? This manuscript is devoted to discussing
recent research findings that offer insights into these gaps in the literature, with the
aim of inspiring further inquiry.
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Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease, Akt, protein kinase B; ALS, Amyotrophic Lateral Sclerosis; AMPK,
AMP-activated protein kinase; APN, adiponectin; BAD, Bcl2 associated agonist of cell death; CREB, cAMP response element-
binding protein; C9orf72; chromosome 9 open reading frame 72; Deptor, domain-containing mTOR-interacting protein;
FTD, frontotemporal dementia; HD, Huntington’s disease; IRS, insulin receptor substrate; mGluR5, metabotropic glutamate
receptor type 5; mLST8, mammalian lethal with SEC13 protein 8; MPP+, 1-methyl-4-phenylpyridinium; MS, multiple
sclerosis; mTOR, mechanistic target of rapamycin; PD, Parkinson’s disease; PDK-1, phosphoinositide-dependent kinase-1;
PI3K, phosphoinositide 3-kinase; PPAR; peroxisome proliferator-activated receptor; PRAS40, proline-rich Akt substrate of
40 kDa; PTEN, phosphatase and tensin homolog; p70S6K1, p70 ribosomal S6 protein kinase 1; Raptor, regulatory-associated
protein of mTOR; Rheb, Ras homolog enriched in brain protein; SMCR8, Smith-Magenis syndrome chromosome region 8;
TFEB, transcription factor EB; TSC1/2, Tuberous sclerosis protein-complex; UBQLN2/4, ubiquilin genes; ULK1, Unc-51-like
kinase 1; 4E-BP1, 4E-binding protein-1; 6-OHDA, 6-hydroxydopamine.
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INTRODUCTION

Neurodegenerative diseases are an accelerating pandemic. The
burden of Alzheimer disease (AD) alone is staggering and
climbing at a precipitous rate. 5.8 million Americans over the age
of 65 suffer from AD, a number that is expected to triple to 13.8
million by 2050 (Alzheimer’s Association, 2020). AD is not alone
in its ascent. Parkinson’s disease (PD), the second most common
form of neurodegeneration, is increasing in prevalence at a
similarly alarming rate (Rocca, 2018). As there are currently no
effective long-term treatments for these diseases, new therapies
are desperately needed. One potential molecular target of such
therapies is the mechanistic target of rapamycin complex 1
(mTORC1), a nutrient sensor and metabolic regulator heavily
implicated in the process of aging (Sharp and Strong, 2010;
Papadopoli et al., 2019; Heras-Sandoval et al., 2020).

While this manuscript will be primarily devoted to discussing
and gaps in the literature surrounding mTORC1, a succinct
overview of mTOR signaling and regulation is warranted
as a preface to this discussion and is depicted in Figure 1
[For a more comprehensive overview, Heras-Sandoval et al.
(2020) recently published an excellent review on mTOR
signaling, regulation, and drug-targeting]. mTORC1 is
composed of the proteins mTOR kinase and its regulator
protein, Raptor, as well as mLST8, PRAS40, and Deptor.
Its primary function is to sense intracellular nutrient status
and extracellular trophic factors [including, but not exclusive
to insulin, shown in Figure 1 as an example], integrate
these signals, and ultimately regulate the balance between
cells’ anabolic and catabolic processes. Specifically, mTORC1
is a positive regulator of protein synthesis and negative
regulator of autophagy.

mTORC1 itself is regulated positively by insulin-signaling and
negatively by AMPK. Insulin/Akt signaling inhibits the protein
complex, TSC1/2, which itself prevents the conversion of the
mTORC1 activator, Rheb, into its active GTP-bound form (Inoki
et al., 2002; Hers et al., 2011). Insulin/Akt signaling turns off
TSC1/2, thereby activating Rheb and mTORC1. By contrast,
AMP-activated protein kinase (AMPK) activates TSC1/2 (Inoki
et al., 2003) and directly inhibits mTORC1 by phosphorylating
Raptor (Gwinn et al., 2008). In brief, the respective growth and
preservation functions of insulin and AMPK align with their
respective stimulatory and inhibitory regulations of mTORC1.

mTORC1 promotes protein synthesis by phosphorylating
and activating the downstream targets, 4E-BP1 and p70S6K1,
which directly promote the initiation and elongation phases of
translation (Graber et al., 2013). Critically, mTORC1-mediated
anabolic signaling promotes the development of neuronal
synapses (Dwyer and Duman, 2013, in part, by responding to
established neuronal growth factors like BDNF; Takei et al.,
2004) and inhibits apoptosis (Chen et al., 2010; Chong et al.,
2013). Through these two mechanisms, mTORC1 activity has the
potential to promote learning and memory and protect against
neurodegeneration. Correspondingly, excessive inhibition of
mTORC1 can impair learning and memory and permit neuronal
death (Blundell et al., 2008; Belelovsky et al., 2009; Gafford et al.,
2011; Jobim et al., 2012; Graber et al., 2013).

Despite these potentially positive functions of mTORC1
signaling in the brain, far more attention has been paid
to its negative regulation of autophagy, an intracellular
recycling process essential to maintaining neuronal integrity
and protecting against neurodegenerative diseases (Oddo,
2012; Sarkar, 2013; Heras-Sandoval et al., 2020). mTORC1
inhibits autophagy at multiple levels, including the inhibitory
phosphorylation of ULK1 and transcription factor EB (TFEB),
which respectively initiate autophagy and promote the
lysosomal biogenesis required to break down the contents
of autophagosomes (Kim et al., 2011; Napolitano et al., 2018).

Importantly, multiple independent human post-mortem
studies confirm levels of phosphorylated mTOR and its
downstream targets are elevated in the AD brain as compared
to those of controls (An et al., 2003; Li et al., 2004, 2005;
Griffin et al., 2005). Dysregulated autophagy is also a hallmark
of multiple neurodegenerative conditions (Fujikake et al., 2018),
which is not surprising because autophagy is required to prevent
the accumulation of toxic intracellular protein aggregates that
contribute to neurodegenerative diseases, such as amyloid-β
(Aβ) (Nixon, 2007; Nilsson et al., 2013; Yang et al., 2014),
phospho-tau (Hamano et al., 2008; Kruger et al., 2012; Wang
and Mandelkow, 2012), α-synuclein (Webb et al., 2003; Lee
et al., 2004; Xilouri et al., 2016), and mutant huntingtin (Martin
et al., 2015). Autophagy is also required to recycle mitochondria
and prevent mitochondrial dysfunction (Chakravorty et al.,
2019; Li et al., 2019a), another hallmark of neurodegenerative
diseases, and one which can further lead to the pathologies of
oxidative stress and inflammation (Lopez-Armada et al., 2013;
Norwitz et al., 2019a,b). Given these data and the clinical burden
of neurodegenerative disease, it’s reasonable that translational
research generally focuses on the inhibition of mTOR (and
promotion of autophagy), rather than on its activation.

ANTAGONISTIC PLEIOTROPY

“Antagonistic pleiotropy” is a term typically used to refer to an
evolutionary tradeoff between fitness in an organism’s early life
at the expense of health later in life (Schmeisser and Parker,
2019). An example of antagonistic pleiotropy is the ApoE4 allele,
the leading genetic risk factor of AD (Yamazaki et al., 2019).
This allele sensitizes the immune system and protected ancestral
humans from infections that compromised reproductive fitness
and cognition (Vasunilashorn et al., 2011; Trumble et al.,
2017). Further relevant to modern contexts, ApoE4 is associated
with accelerated neurodevelopment (Wright et al., 2003) and
improved memory during youth (Mondadori et al., 2007).

Another example of possible antagonistic pleiotropy in
neurodegenerative disease is that of adiponectin (APN), a
hormone secreted by adipose tissue. APN has broad beneficial
functions on metabolism, including stimulating neurogenesis,
and is generally thought to be neuroprotective (Zhang et al.,
2011, 2016). On the other hand, APN can induce astrocyte
mediated neuroinflammation (Wan et al., 2014), oxidative
stress (Fujimoto et al., 2010), and plasma levels of APN
are correlated with the severity of cognitive decline and Aβ
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FIGURE 1 | mTORC1 pathway and regulation. mTORC1 is activated by insulin. Insulin/Akt signaling inhibits TSC1/2, thereby permitting the activation of the
GTP-binding protein, Rheb. Rheb is the proximal activator of mTORC1. AMPK inhibits mTORC1 activity through indirect and direct mechanisms, phosphorylating
TSC1/2 and the Raptor regulatory component of mTORC1. (Other trophic factors and pathways beyond insulin/Akt and AMPK, not shown for simplicity, also
regulate mTORC1). mTORC1 downstream targets include proteins involved the mRNA translation, 4E-BP1 and p70S6K1, and those involved in autophagy, such as
the initiator of autophagy, ULK1, and the master regulator of lysosomal biogenesis, TFEB. By regulating the activity of these and other proteins, mTORC1 promotes
protein synthesis, which is required for synaptogenesis, learning, and memory, but can also impair autophagy, leading to mitochondrial dysfunction and neurotoxic
protein aggregation (Aβ, phospho-tau, α-synuclein, etc.). Black arrows and red lines respectively represent positive and negative regulation.

accumulation (Wennberg et al., 2016). [Waragai et al. (2020)
provide a comprehensive overview of antagonistic pleiotropy
with regards to APN].

Hashimoto et al. (2018) have even proposed that
amyloidogenic proteins, including Aβ in AD and α-synuclein
in PD, might exhibit antagonistic pleiotropy. They hypothesize
that the heterogeneity of amyloidogenic aggregates reflects
the heterogeneity of metabolic stressors to which the human
brain is exposed, and that specific amyloidogenic aggregates

may serve to “precondition” the brain against future toxic
exposures (Hashimoto et al., 2018). In effect, Aβ and α-synuclein
could serve, in youth, as adaptive hormetic stressors. [As an
aside, the Aβ/α-synuclein antagonistic pleiotropy hypothesis is
intertwined with the “evolvability hypothesis” of amyloidogenic
proteins, which is beyond the scope of this piece and reviewed
by Hashimoto et al. (2018)].

The moral of these examples – ApoE4, APN, and
Aβ/α-synuclein – is that the trade of better health and
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cognition during youth, at the expense of cognition during non-
reproductive years, was evolutionarily judicious. Furthermore,
each these examples would not have been specifically mentioned
if they did not plausibly involve mTORC1. With respect to ApoE4,
mTORC1 activates pathways that promote synaptogenesis and
neuronal development, which would benefit cognition during
youth at the expense of decreased autophagy and increased risk
of accumulating mitochondrial damage and neurotoxic protein
aggregates over time, as in the case of ApoE4 (Wright et al.,
2003; Mondadori et al., 2007). Indeed, the ApoE4 genotype is
associated with elevated mTOR signaling (Li et al., 2019b). APN
has been shown to induce oxidative stress in an mTORC1-
dependent manner by modulating both insulin and AMPK
signaling (Fujimoto et al., 2010; Figure 1). And, of course,
mTORC1 activity is assumed to be culpable for dysfunctional
autophagy and accumulation of neurotoxic protein aggregates in
neurodegenerative diseases, as noted in the introduction. Thus,
mTORC1 may be a keystone player of antagonistic pleiotropy in
neurodegenerative disease.

Consideration of antagonistic pleiotropy is important for
evaluating the preventative value of inhibiting mTORC1 prior
to the development of symptoms. No doubt, it’s important
to prevent the development of the pathologies underlying
neurodegenerative diseases, which are established decades before
symptoms develop (Braak et al., 2003; Dickson et al., 2010;
Hoglund et al., 2017). But when and by how much? During mid-
life, should one strive for mTORC1 inhibition, or value activating
mTORC1 in a cyclic manner in order to build neural networks
and increase her/his cognitive reserve, thus protecting against
cognitive decline later in life? These are open questions.

EARLY/LATE-STAGE SPECIFICITY

Although inhibiting mTORC1 to increase autophagy (and
therefore clear damaged mitochondria and protein aggregates)
may seem like a prudent intervention for neurodegenerative
diseases, that may not be universally true. What if a disease
progresses past a threshold beyond which the pathology is too
well-established to be meaningfully improved by an upregulation
in autophagy? For instance, the mTORC1 inhibitor, rapamycin,
does not reverse pathology or benefit cognition in late-stage
AD models (Majumder et al., 2011). More importantly, because
mTORC1 can inhibit apoptosis by activating p70S6K, which
itself inhibits the pro-apoptotic protein BAD (Harada et al.,
2001; Castedo et al., 2002), what if inhibiting mTORC1
beyond this hypothetical threshold increases apoptotic cell
death?

Evidence consistent with this hypothesis is provided by
multiple independent cell and rodent models of PD. These
models of established late-stage disease suggest that increasing,
rather that decreasing, mTOR activity could be beneficial
under certain circumstances. In MPP+-treated SH-SY5Y cells,
activation of mTOR with cannabidiol led to protection against
MPP+-induced cell death (Gugliandolo et al., 2020). In genetic
and pharmacologic mouse models, upregulation of mTOR
signaling (through PTEN ablation) is likewise associated with less

cell death and improved symptomology (Domanskyi et al., 2011).
A limitation of these early PD studies is that they do not involve
α-synuclein accumulation, which may better recapitulate the
human form of the disease and relative importance of autophagy
therein. Nevertheless, given the knowledge that mTORC1 can
inhibit apoptosis, and distinct possibility that there may be
a point past which activation of autophagy is insufficient to
improve disease course (Majumder et al., 2011), it’s worth
questioning whether mTORC1 inhibition could actually be
harmful in late-stage neurodegenerative disease.

REGIONAL SPECIFICITY

In addition to considering the temporal dimension (early/late-
stage disease), it’s important to consider the spatial dimension.
As the brain is partitioned into networks, nuclei, and cell types,
a given intervention may impact one region differently than
another. For example, Ramalingam et al. (2019) discovered that
rotenone injections (used to generate murine models of PD)
oppositely impact mTORC1 activity in different regions of mouse
brains, increasing activity in the midbrain and decreasing activity
in the striatum. Lifestyle interventions (more on this below), such
as exercise, may also alter mTOR activity in a region-specific
manner. In mice, wheel running regulates mTORC1 signaling
most strongly in the nucleus accumbens and hippocampus, as
compared to other brain regions (Lloyd et al., 2017). This is
notable because atrophy of nucleus accumbens and hippocampus
is most strongly associated with AD (Nie et al., 2017).

The data are nascent but sufficient to issue caution. What
if a PD patient suffering from substantia nigra atrophy were
treated with an mTORC1 inhibitor based on a rationale from data
collected from hippocampal pathology? What if a frontotemporal
dementia (FTD) patient suffering from primarily temporal lobe
pathologies was treated with an mTORC1-targeting drug based
on frontal lobe data? As there is limited evidence to support that
mTORC1 responds consistently to a wide range of interventions
across brain regions, and some evidence to the contrary, it’s
responsible to not overgeneralize and assume globalized impact
on the brain. More research needs to be conducted on the region-
specific impacts of different mTORC1-directed interventions.

DISEASE SPECIFICITY

While many neurodegenerative diseases share several key
core pathologies, including mitochondrial dysfunction,
protein aggregation, oxidative stress, and inflammation,
it’s also important to consider disease-specific aspects of
neurometabolim that could interact with mTORC1. For
example, Zhuang et al. (2020) recently discovered that TFEB
activity (which stimulates lysosomal biogenesis and promotes
autophagy) is increased in a 6-OHDA-treated SH-5YSY model of
PD, as well as in dopaminergic neurons, and that TFEB activity is
calcium/calcineurin-dependent. This is important because PD is
characterized by loss of substantia nigra pars compacta neurons,
which exhibit a unique form of calcium pacemaking activity
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not seen in most other neurons. This suggests that regulation of
autophagy may be different in the brain region most affected by
PD as compared to brain regions impacted in other diseases.

Another example is Amyotrophic Lateral Sclerosis (ALS),
which can be caused by loss-of-function mutations in the
UBQLN2/4 genes. While the products of these genes, ubiquilin
proteins, are known best as components of the ubiquitin-
proteasome system, they are also important in autophagy.
Specifically, ubiquilins are required to maintain the vacuolar H+-
ATPase function that acidifies lysosomes (Senturk et al., 2019). In
a scenario in which mTORC1 were inhibited to induce autophagy
in ALS, induction of autophagy and lysosomal biogenesis may be
increased (Figure 1), but if lysosomes are not sufficiently acidic
to destroy the contents of the autophagosome, the contents could
accumulate and exacerbate cellular stress. Therefore, inhibiting
mTORC1 to upregulate autophagy could impair autophagic flux,
leading to a back-up of components, and be harmful in such
genetic cases of ALS.

PERSONALIZED THERAPY

There is a need for informed, disease-specific interventions.
In this section, we provide three hypothetical examples of
personalized interventions involving mTORC1. These will
include glutamatergic antagonism for Huntington’s disease (HD)
(Abd-Elrahman and Ferguson, 2019), metformin treatment for
multiple sclerosis (MS) (Sanadgol et al., 2019), and SMCR8-
centered therapy for ALS and FTD (Lan et al., 2019).

Glutamate hyperactivity plays a prominent role in HD
(Andre et al., 2010) and can activate mTORC1 via the mGluR5-
PDK1-Akt-mTORC1 pathway (Abd-Elrahman and Ferguson,
2019). Correspondingly, Abd-Elrahman and Ferguson (2019)
recently demonstrated, in a mouse model of HD, that antagonism
of the mGluR5 metabotropic glutamate receptor can correct
overactive mTORC1 signaling and, consequently, increase
autophagic clearance of mutant huntingtin protein. The authors
of this paper also point out that huntingtin aggregates sequester
the transcription factor, CREB, leading to a down regulation
of neuroprotective BDNF. They show that mGluR5 inhibitors
not only clear pathological aggregates, but also increase BDNF
expression (Abd-Elrahman and Ferguson, 2019). Therefore,
mGluR5 antagonism, by inhibiting hyperactive mTORC1, could
simultaneously promote the clearance of pathological huntingtin
aggregates and increase neurotrophic factor signaling.

MS is characterized by demyelination of nerve cell axons.
As oligodendrocytes are responsible for building myelin sheaths
within the central nervous system, a goal of MS treatments
is to boost oligodendrocyte renewal and remyelination. In
a cuprizone-challenge mouse model of MS, Sanadgol et al.
(2019) recently reported that the diabetes drug, metformin,
did precisely that: it increased oligodendrocyte renewal and
remyelination. These beneficial effects were mediated by a
direct stimulatory interaction between metformin and AMPK,
and subsequent inhibition of mTORC1 (Sanadgol et al., 2019;
Figure 1). Thus, metformin is a candidate for an mTORC1-
targeting therapy for MS.

Mutations in the C9orf72 gene are the leading cause of
inherited ALS and FTD. Only recently was it discovered that
another protein, SMCR8, complexes with the C9orf72 protein to
form a heterodimer that negatively regulates mTORC1 activity
(Lan et al., 2019). Furthermore, a SMCR8-deficient mouse model
recapitulates the C9orf72-deficient phenotype, leads to a decrease
in C9orf72 protein, and is associated with upregulation of
mTORC1 activity and decreased autophagy (Lan et al., 2019).
Future treatments for genetic causes of ALS and FTD might
consider SMCR8 therapy or other interventions that target the
SMCR8-mTORC1-autophagy axis.

These examples were chosen because HD, MS, ALS, and
FTD are lesser studied than AD and PD. However, the same
personalization principle applies to all conditions in which
mTORC1 plays a role. In PD, for example, levodopa-induced
dyskinesia is thought to be induced by D1-receptor-mediated
phosphorylation of mTORC1, a hypothesis supported by the
fact that genetic variability in mTOR pathway components
is associated with PD dyskinesia (Zhu et al., 2019). The
development of useful future interventions for neurodegenerative
disorders would benefit from a deeper consideration of the
interactions between mTORC1 signaling and disease/patient-
specific mechanisms.

LIFESTYLE INTERVENTIONS

Two reasons most neurodegenerative diseases are refractory
to treatment are that interventions may be initiated too
late in the disease process and/or are too specific. These
limitations are a function of the pharmacologic approach to
neurodegenerative disease in which symptomatic patients, who
have usually been afflicted by the underlying disease for years
to decades, are prescribed drugs not available for prevention
during the preclinical stage. Certainly, drugs have their place.
But to quell the neurodegenerative disease pandemic will
require universally accessible preventative measures based on
safe lifestyle interventions, including diet and exercise. Evidence
suggests such interventions could operate, in part, through
mTORC1-mediated mechanisms.

Turmeric is the best-studied nutraceutical for
neurodegenerative diseases. In a genetic mouse model of
AD, turmeric’s active component, curcumin, inhibited mTORC1
to increase autophagy and prevent Aβ accumulation (Wang
et al., 2014a). Correspondingly, curcumin-induced inhibition
of mTORC1 protected against memory impairments in this
model (Wang et al., 2014a). A more specific dietary example
would be the mineral manganese in HD. As manganese
deficiency might contribute to the pathogenesis of HD by
affecting the insulin/Akt/mTORC1 pathway, correcting a
simple micronutrient deficiency could be protective in some
cases of HD (Bryan and Bowman, 2017). A third example
is that of PPARs, a family of transcription factors that can
inhibit mTORC1 and promote autophagy to protect against
neurodegenerative disease (San et al., 2015; Heras-Sandoval
et al., 2020). Many nutrients and their derivates activate PPARs,
including oleoylethanolamide derived from oleic acid in olive
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oil (Rodriguez de Fonseca et al., 2001; Fu et al., 2005) and the
monoterpenes carvacrol and thymol found in mint family plants
(basil, mint, rosemary, sage) (Hotta et al., 2010; Rigano et al.,
2017). Curcumin, manganese, and dietary PPAR activators are
just three examples of nutraceuticals from different classes that,
when combined in a well-formulated diet and with other dietary
mTOR regulators (Wang et al., 2014b; Rigano et al., 2017), could
have a meaningful impact on cognitive longevity.

In addition to nutraceuticals and micronutrients, shifts in
macronutrient intake can also impact mTORC1 activity. The
most evident examples are intermittent fasting and high-fat,
low-carbohydrate ketogenic diets, which can modulate mTORC1
activity through at least three mechanisms. First, fasting and
ketogenic diets diminish insulin-mediated mTORC1 activation.
Second, they activate AMPK (by altering the AMP/ATP ratio
and causing glycogen depletion) to inhibit mTORC1 and induce
autophagy (Alirezaei et al., 2010; Miller et al., 2018). Third, fasting
and ketogenic diets share the common feature of stimulating
hepatic production of the ketone body, β-hydroxybutyrate,
which itself is a signaling molecule that regulates mTORC1
(Li et al., 2017; Newman and Verdin, 2017; Norwitz et al.,
2019a). Interestingly, it has recently been demonstrated that
both short-term ketogenic diets and acute administration
of exogenous β-hydroxybutyrate improve a marker of brain
aging called “brain network stability,” in contrast to standard
Western diets and sugar which decrease network stability
(Mujica-Parodi et al., 2020). Long-term prospective studies will
need to be conducted to determine whether fasting and ketogenic
diets are truly neuroprotective in humans. Nevertheless, these

mechanisms and data coincide with the growing popularity
of intermittent fasting and ketogenic diets as prevention or
treatment strategies for neurodegenerative conditions (Roberts
et al., 2017; Zhang et al., 2017; Shin et al., 2018; Sohn,
2018; Taylor et al., 2018, 2019; Broom et al., 2019; Norwitz
et al., 2019a; Wlodarek, 2019; Mujica-Parodi et al., 2020;
Soto-Mota et al., 2020).

Exercise is another lifestyle intervention that benefits brain
health. Prospective cohort and randomized controlled studies
have found that exercise reduces the risk of developing dementia
by as much as 38% (Larson et al., 2006) and improves
cognitive function in those already living with AD (Groot et al.,
2016; Jia et al., 2019). Kou et al. (2019) recently published
a compelling review arguing that the benefits of exercise on
cognitive function and AD may be mediated by mTORC1
regulation. Even a cursory consideration of this hypothesis
suggests it has merit. Exercise alters nutrient flux, trophic
factor signaling, and can activate AMPK. Exercise can also
correct overactive mTORC1 signaling to increase autophagy
by correcting dysfunctional microRNA expression in a mouse
model of AD (Kou et al., 2017; Chen et al., 2019). These
particular studies focus on microRNA-34a, but there is reason
to believe that exercise can influence mTORC1, autophagy, and
cognitive aging by regulating a wide network of microRNAs
(Kou et al., 2019). In another rodent model of AD, treadmill
exercise decreased phospho-mTOR levels [Ser-2,448, Akt target
residue (Nave et al., 1999)], increased autophagy, and completely
rescued cognitive function on the Morris water maze test
(Kang and Cho, 2015).

FIGURE 2 | mTORC1 mysteries. Six nuances regarding mTORC1 in neurodegenerative disease. The questions and examples below each topic are illustrative, not
comprehensive, of the literature covered in this review. Disease abbreviations: ALS, Amyotrophic Lateral Sclerosis; FTD, frontotemporal dementia; HD, Huntington’s
disease; MS, multiple sclerosis; PD, Parkinson’s disease.
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Dietary micronutrients, fasting and ketogenic diets, and
exercise are but a few illustrative examples of lifestyle
interventions that may interact with mTORC1 to modulate
the course of neurodegenerative diseases. Additional therapies
include probiotics to modulate the gut-brain axis, which has
been heavily implicated in the development of neurodegenerative
diseases (Sampson et al., 2016; Sochocka et al., 2019), and
heat therapy to induce chaperone heat shock proteins [whose
expression is at least partially mediated by mTORC1 (Sun et al.,
2011)] that could promote the proper folding of amyloidogenic
proteins (Singh et al., 2006, 2010; Laukkanen et al., 2017). At the
present time, clinical studies examining the impact of lifestyle
interventions on mTORC1 signaling for cognitive decline are
few (Halikas and Gibas, 2018; Kou et al., 2019) and more
research needs to be conducted in this area to inform holistic
and universally available best practices for the treatment and
prevention of neurodegenerative disease.

CONCLUSION

While references to the most pressing open questions are
scattered throughout the abundant literature on mTOR and

neurodegenerative disease, herein, we have consolidated these
gaps in the literature (Figure 2). How do we balance the beneficial
effects of mTORC1 against its negative effects? How does this
balance shift with disease progression or brain region? How can
we use knowledge of biochemical pathways, specific to diseases
and even individual cases, to inform personalized therapy? And
what universally available lifestyle interventions might help in the
prevention of neurodegeneration? Consideration of these mTOR
mysteries will inform future research.
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