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Genetic studies have identified variants in the LRRK2 gene as important components
of Parkinson’s disease (PD) pathobiology. Biochemical and emergent biomarker
studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that
diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense
oligonucleotides, have recently advanced to the clinic. Historically, there have been few
successes in the development of therapies that might slow or halt the progression
of neurodegenerative diseases. Over the past few decades of biomedical research,
retrospective analyses suggest the broad integration of informative biomarkers early in
development tends to distinguish successful pipelines from those that fail early. Herein,
we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates,
assays, underlying biomarker biology, and clinical integration.

Keywords: LRRK2, LRRK2 kinase inhibitor, biomarker, pharmacodynamic markers, exosomes, Parkinson’s
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INTRODUCTION

Neurological disorders, including neurodegenerative diseases, were among the areas with the lowest
probability of new compound success over the 2010–2017 time period, with lack of efficacy being
the primary cause of attrition (Morgan et al., 2012; Dowden and Munro, 2019). Further, many
genes and processes associated with neurodegenerative diseases are not considered traditional
parts of the so-called druggable proteome associated with clinically efficacious drugs (Hopkins and
Groom, 2002). More than 800 Food and Drug Administration (FDA) approved small molecules
and biotech drugs typically fall into predictable classes of proteins and enzymes that compose
the known druggable proteome, and few of these known druggable targets are clearly linked to
neurodegenerative disease (Wishart et al., 2006). However, with the identification of missense
mutations in LRRK2, a new drug target emerged (Zimprich et al., 2004; West et al., 2005; Healy et al.,
2008). LRRK2 encodes protein kinase and GTPase domains, similar to domains present in some
proteins within the druggable proteome. While the exact mechanisms of mutant LRRK2-induced
neurodegeneration remain elusive and are not the focus of this review, the “kinase-activation”
hypothesis for LRRK2-linked disease has advanced forward to novel therapeutic approaches (West
et al., 2005; West, 2015, 2017). Recently, small molecule inhibitors and anti-sense oligonucleotides
have progressed into clinical trials (e.g., clinicaltrials.gov NCT03976349, NCT04056689).

While it is standard practice to collect extensive pharmacokinetic (PK) data for drugs in early
clinical efforts, these data poorly predict proof of mechanism (Morgan et al., 2018). PK measures
typically define drug properties related to absorption, distribution, metabolism, and excretion
(ADME). Convincing pharmacodynamic measures that would otherwise assess relationships
between drug concentration at the site of action (e.g., receptor binding) and the resulting
biochemical and physiological effects (e.g., enzyme activity) are not typically integrated into clinical
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trials for Parkinson’s disease. The lack of demonstrable efficacy in
a clinical trial can be attributed to many factors, but insufficient
biomarkers of target engagement and improper patient selection
for clinical trials are often cited as primary causes (Morgan et al.,
2012; Lopes et al., 2015; Smietana et al., 2016; Dowden and
Munro, 2019). Long-duration clinical trials that seek to modify
disease progression may be particularly susceptible to failures
caused by a lack of biomarker integration.

As trials of investigational compounds targeting LRRK2
move forward, the apparent need for validated LRRK2-targeted
biomarkers increases. Currently there are no biomarkers
approved by the FDA that relate to LRRK2 pathobiology or
activity. The development of informative pharmacodynamic
biomarkers involves substantial investment and are not
currently a requirement for the advancement of therapies in
regulatory pipelines. Yet, as will be discussed herein, biomarker
development may be key for successful clinical outcomes. In this
review, we provide a rationale for prioritizing LRRK2-relevant
biomarker development, an overview of possible integration
in the development pipeline, and describe promising emergent
candidates that measure different features related to LRRK2
pathobiology. While there is no clear single biomarker or
approach that will shepherd LRRK2-targeted therapies through
clinical trials, purpose-built panels with high evidentiary
standards for meaningful measures in diverse populations may
provide the best chance of identifying successful therapies.

IMPORTANCE OF BIOMARKERS IN
THERAPY DEVELOPMENT

In 1998, the National Institutes of Health Biomarkers Definitions
Working Group defined a biomarker as “a characteristic that is
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” (Biomarkers Definitions
Working Group, 2001). According to the World Health
Organization (WHO), measured responses may be functional
and physiological, biochemical at the cellular level, or specify
a molecular interaction. Biological markers that identify and
monitor the biochemical effects of drugs may be theragnostic
biomarkers that evaluate specific effects of a drug (e.g.,
target engagement) and downstream effects on pathogenic
mechanisms. Theragnostic biomarkers may have practical utility
in predicting positive outcomes. As a nascent target, there are
currently no standard LRRK2-targeted biomarkers established
for related drug development programs and clinical trials.
However, as will be discussed, rapid advancements in the field
position LRRK2 as a prime candidate for biomarker-based
enrichment strategies in development pipelines.

In multiple retrospective analyses from large pharmaceutical
companies, biomarker driven approaches have been identified
as the most common difference between failed and successful
efforts. Pfizer conducted an after-action review of 44 programs
that reached a decision point in Phase II clinical trial between
2005 and 2009 and found that only 32% were deemed positive
at their clinical proof-of-concept meeting (Morgan et al., 2012).

Deeper analysis concluded that the programs with positive
outcomes evaluated mechanism of action in humans, through
biochemical biomarker classification of disease, typically with
some evidence of target engagement. In contrast, nearly all
terminated programs failed to adequately test mechanism. Pfizer’s
findings prompted design guidelines for future projects using
fundamental data and knowledge they termed the “three Pillars
of survival” (Morgan et al., 2012). By these new standards,
compounds must demonstrate (1) sufficient drug exposure
at the target site over time, (2) target engagement, and (3)
functional modulation of the target in order to advance to clinical
development. Similarly, AstraZeneca sought to revise their
research and development enterprise through new guidelines
termed the “5R framework,” where three of the five “R” criterion
require clear empirically derived and dynamic biomarker
feedback (Morgan et al., 2018). Since implementing this revised
strategy, project success rates across all stages of development
improved for the 2012–2016 period compared to the 2005–2010
period, and at clinical proof-of-concept meetings, transition from
candidate drug nomination to phase III completion improved by
19%. Furthermore, industry-wide surveys show that clinical trials
that use biomarkers have higher overall success probabilities than
trials without biomarkers (Wong et al., 2019). In an earlier study
of 1,079 oncology drugs, success rates for drugs developed with
biomarkers was 24 versus 6% for compounds developed without
biomarkers (Lopes et al., 2015). Figure 1 illustrates points of
biomarker integration in traditional drug discovery pipelines.

PROCESS FOR BIOMARKER
QUALIFICATION

Numerous hurdles exist for transitioning novel biomarkers
from the laboratory into clinical practice. There are numerous
regulatory programs that facilitate the review and qualification
of novel biomarkers for drug development (Amur et al., 2015).
In 2004, the FDA introduced the Critical Path Initiative with
hopes to improve the drug development process, where the
advancement of new biomarkers was identified as a critical
priority (Woodcock and Woosley, 2008). Furthermore, the
FDA has clearly articulated necessary biomarker qualification
standards. In alliance with the Critical Path Initiative, a systematic
framework for developing evidentiary standards for biomarker
qualification was developed by Pharmaceutical Research and
Manufacturers of America (PhRMA) in partnership with the
FDA and academia (Altar et al., 2008). In summary, the proposed
context of use for a biomarker determines the level of evidence
required to support qualification based on the tolerability of
risk imposed. However, as might be expected with the paucity
of biomarkers currently approved and in use in the clinic,
evidentiary standards are not well defined for all types of
biomarkers and their various context of uses.

Pharmacodynamic biomarkers are generally thought to
be considered low risk because they are utilized early in
drug development (e.g., exploratory) and are not typically
decisional. Nascent biomarkers are typically used without
regulatory qualification, but as pharmacodynamic biomarkers
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FIGURE 1 | Biomarker positioning within the drug development pipeline. Preclinical studies may be used to refine and validate biomarkers in three broad categories,
target engagement, liabilities, and pathways. Early implementation in phase I/II clinical trials may increase likelihood of success in efficacy trials.

for target engagement evolve and enter the clinical space,
greater evidentiary standards will be imposed. Factors that may
contribute to evidentiary considerations for LRRK2-targeted
biomarkers for target engagement include biological rationale,
analytically validated methods, and reproducibility of data
(Figure 2). As the different biomarkers advance in this pipeline,
data will feedback over time to refine interpretations of context
of use and biological rationale. We have argued in the past that
a better understanding of the causal pathway for LRRK2 in PD

FIGURE 2 | Evidentiary standards for qualification of LRRK2-targeted
biomarkers depend on the intended context of use. In general, the intended
use of a biomarker in drug development programs dictates the level of risk
(e.g., impact of decision based on biomarker result) and engagement of
regulators. Biomarkers utilized in making decisions in the clinic, or utilized in
multiple programs, require higher levels of evidence and qualification.

pathogenesis will be critical for qualifying different biomarkers
used to measure target and pathway engagement (West, 2015,
2017). Additionally, biomarker assays require high levels of
specificity and sensitivity. As will be discussed, analytical methods
for LRRK2-targeted biomarkers will need to be well established,
with a foundational understanding of biological and technical
variability. Both evidentiary factors, biological rationale, and
validated assays, will first rely on technical reproducibility.
In addition to test datasets, positive results in confirmatory
datasets should provide the necessary level of evidence to support
LRRK2-targeted biomarker qualification by regulatory bodies
that include the FDA. Similar evidentiary frameworks exist in
European Union guidelines (Biomarkers Definitions Working
Group, 2001; Goodsaid and Papaluca, 2010).

Usage of the same FDA approved biomarkers across
different studies may expedite the identification of successful
LRRK2-targeted therapies. Of note, to establish a biomarker for
the use in multiple development programs, a pharmaceutical
developer, disease-specific foundation, health research
organization, or consortium, must request regulatory
qualification of a biomarker through the FDA Biomarker
Qualification Program. This application process is distinct
from the approval process for biomarker use in a single drug
development program (e.g., one sponsor), where acceptance
occurs through an Investigational New Drug (IND) application
during the drug approval process. A review team is then
assembled for the consultation and advice stage where
preliminary data and analysis plans are evaluated. Once a
biomarker has been qualified, it may then be used for its specified
use of context within drug development programs. While there
may be little pressure for individual developers to conform
to standardization that might expedite the field as a whole,
health-research funding bodies and foundations could reasonably
insist, especially in pre-competitive phases of development, on
utilization of standardized approved biomarkers.
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EMERGING LRRK2 BIOCHEMICAL
BIOMARKERS

Identifying physiological substrates of LRRK2 that correlate
with LRRK2 kinase activity has been a priority goal since the
discovery of mutations that biochemically upregulate LRRK2
kinase activity (West et al., 2005). Figure 3 highlights known
LRRK2 phosphorylation sites and other protein regulators
that serve as the basis for most LRRK2-targeted biomarker
approaches. Direct measures of LRRK2 kinase activity in
different cells and tissues became possible with the discovery of
LRRK2 autophosphorylation at the Ser1292 residue, the most
abundant LRRK2 autophosphorylation site near the Rab-like
ROC domain within the LRRK2 protein (Sheng et al., 2012).
Up to 30% of LRRK2 protein becomes phosphorylated at
this residue in vitro, with much higher ratios observed in
different biofluids (Wang et al., 2017). Biomarkers measuring
autophosphorylated residues in several receptor-tyrosine kinases
in different indications have been utilized in past clinical
research (Paweletz et al., 2011; Wu et al., 2014; Zhang et al.,
2016). LRRK2 also autophosphorylates several other threonine
residues directly in the ROC domain in vitro (Greggio et al.,
2009; Pungaliya et al., 2010; Liu et al., 2016), although these
phosphorylated peptides have been more difficult to measure
directly in cells and tissues, presumably due to their very
low abundance, possibly less than 1% of the total pool
of LRRK2 protein (Greggio et al., 2009; Gloeckner et al.,
2010; Webber et al., 2011). This low-level of phosphorylation
challenges current mass spectrometry-based sensitivities and

antibody-differential affinities in binding phospho-peptides
versus non-phospho-peptides.

A subset of small Rab GTPases have been identified as
trans-substrates for LRRK2 kinase activity (Steger et al., 2016),
with Rab10 phosphorylated by LRRK2 at the Thr73 residue
(Eyers, 2018). The impact of pathogenic LRRK2 mutations on
Rab10 phosphorylation are still under investigation, but with
the administration of a LRRK2 inhibitor, pT73-Rab10 levels
are reduced (Ito et al., 2016; Thirstrup et al., 2017). Dozens
of other LRRK2 candidate substrates have been proposed,
although a lack of evidence for LRRK2 phosphorylation under
physiological conditions prevents broad integration in biomarker
approaches (Pungaliya et al., 2010). LRRK2 was identified
as a constitutively phosphorylated protein in a cluster of
N-terminal residues including a serine residue at 935, although
a kinase-inactivating mutation in LRRK2 did not ablate the
levels of these phospho-sites (West et al., 2007). Curiously, small
molecule inhibition more dramatically downregulates pS935
levels than kinase-inactivating mutations in LRRK2 (Dzamko
et al., 2010). This regulation is suspected to be mediated within
a cascade of 14-3-3 interaction and phosphatase activity that
is affected by a conformational change in LRRK2 induced by
inhibitor binding (Li et al., 2011; Dzamko et al., 2012; Sheng et al.,
2012; Lobbestael et al., 2013; Liu et al., 2014; Kelly et al., 2018).
Although an indirect measure, dephosphorylation of LRRK2 at
Ser935 has been utilized extensively in development pipelines
(Henderson et al., 2015; Perera et al., 2016; Thirstrup et al., 2017).
As opposed to measures of phospho-Rab and pS1292-LRRK2,
some LRRK2 pathogenic mutations, especially in the ROC

FIGURE 3 | Illustration aligning LRRK2-conserved domain structure with constitutive phosphorylation sites (green), autophosphorylation sites (magenta), with
pathogenic mutations (red). Kinases and phosphatases that can control constitutive phosphorylation are indicated together with 14-3-3 s. Intramolecular shifts in the
ROC-COR-Kinase enzymatic stretch of domains may regulate LRRK2 activity and metabolism. ARM is armadillo-like, ANK is ankyrin-like, LRR is leucine-rich repeat,
ROC is Ras-of-Complex Rab-like GTPase, COR is conserved C-terminal of ROC, Kinase is Ser/Thr-kinase domain, and WD40 is beta-transducin-like repeat.
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domain (e.g., R1441C), appear to dramatically down-regulate
pS935-LRRK2 levels (Delbroek et al., 2013; Muda et al., 2014;
Giesert et al., 2017).

LRRK2 REGULATION IN BIOMARKER
RESPONSES

LRRK2 functions in the endolysosomal pathway in both health
and disease (Higashi et al., 2009; Tong et al., 2010; Piccoli
et al., 2011; Matta et al., 2012). On a subcellular level, LRRK2
co-localizes with some membranes and vesicular structures,
with apparent preference for mature-endosomes and lysosomes
versus mitochondrial, nuclear, or endoplasmic reticulum (Biskup
et al., 2006; Hatano et al., 2007; Alegre-Abarrategui et al.,
2009; Dodson et al., 2012; Fraser et al., 2013). Little is known
about how LRRK2 is regulated within the endocytic pathway
and how LRRK2 therapeutics may affect these mechanisms
long-term; however, it is hypothesized that LRRK2 inhibition
may alter LRRK2 turnover and protein-protein interactions

necessary for localization, function, and secretion in biofluids
via exosome release (Figure 4). 14-3-3 chaperone proteins are
highly expressed in the brain and have been implicated in the
regulation of numerous neurodegenerative disorders including
PD (Berg et al., 2003). 14-3-3 s interact with LRRK2, where
binding is mediated by phosphorylation at residues Ser910 and
Ser935 to alter LRRK2 subcellular localization (Dzamko et al.,
2010; Nichols et al., 2010; Li et al., 2011; Lavalley et al., 2016). The
14-3-3 LRRK2 interaction may regulate LRRK2 association with
late endosomes and uptake into multi-vesicular bodies (MVBs)
with subsequent secretion of LRRK2 protein in exosomes (Fraser
et al., 2013). CD9 is a ubiquitous transmembrane protein that
traffics in plasma-membrane derived vesicles to MVBs during
endocytosis and is often used a vesicular marker to identify
an exosome’s source of origin (Willms et al., 2018). LRRK2
appears to be excluded from CD9-positive plasma-membrane
endocytosed vesicles, suggesting that intraluminal budding
events in the cytosol are the primary source for extracellular
LRRK2, distinct from plasma membrane-derived exosomes
(Fraser et al., 2013).

FIGURE 4 | Proposed mechanism of how LRRK2 inhibition may alter LRRK2 turnover and protein-protein interactions necessary for localization and function.
Distinct from canonical CD9-positive plasma membrane-derived vesicles, LRRK2 interacts with 14-3-3 proteins at multi-vesicular late-endosome vesicles.
Intra-luminal budding of the endosome results in encapsulation inside of intralumenal vesicles that become exosomes when the endosome fuses with the plasma
membrane. Alternatively, LRRK2 kinase inhibitors prevent 14-3-3 interactions and LRRK2 interaction with membranes, and instead favors ubiquitination and
proteasome-dependent degradation. MVB multivesicular body, PP1 protein phosphatase 1, Ub ubiquitin, CD9 is CD9 Antigen; Leukocyte antigen MIC3.
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Finally, total LRRK2 protein levels, especially secreted LRRK2
in exosomes, may also be affected by LRRK2 inhibition.
In many experimental observations, loss of LRRK2 kinase
activity through inhibitor binding leads to decreased LRRK2
protein levels (Lobbestael et al., 2013, 2016; Fuji et al., 2015;
Zhao et al., 2015; De Wit et al., 2019). Typically, enzymatic
activity of autophosphorylating kinases are determined by the
ratio of phosphorylated protein to total protein, for example
pSer1292-LRRK2 or pSer935-LRRK2 to total LRRK2. Notable
other examples include receptor-tyrosine kinases (Zhang et al.,
2016). However, this phospho-to-total measure would be
confounded in cases where total protein levels become low due to
inhibitor treatment. A recent study evaluating LRRK2 inhibitors
in non-human primate biofluids found that LRRK2 protein is
unchanged in brain tissue but is diminished at varying levels in
the periphery following acute treatment (Wang et al., 2020).

The effects of chronic LRRK2 inhibition on the endocytic
pathway has yet to be fully understood. Studies using acute
drug dosing strategies and kinase-dead LRRK2 mutants have
provided evidence that the subcellular localization of LRRK2
is altered and reductions in kinase activity can lead to
LRRK2 protein destabilization and degradation. A recent
study in non-human primates showed that acute dosing with
structurally distinct LRRK2 kinase inhibitors PFE-360 or MLi2
reduces total LRRK2 detection within exosomes isolated from
urine and cerebral spinal fluid (CSF) (Wang et al., 2020).
Additionally, there is evidence that LRRK2 kinase activity is
crucial for maintaining steady-state levels of LRRK2. Mice
expressing kinase-dead LRRK2 demonstrate markedly decreased
levels of LRRK2 protein, and these results were mimicked
pharmacologically (Herzig et al., 2011). LRRK2 inhibition and
decreased phosphorylation of S935 has also been linked to
increased ubiquitination. It has been proposed that after kinase
inhibition occurs, phosphatases, such as PP1, are recruited to
dephosphorylate LRRK2 and interrupt 14-3-3 binding, which
then promotes the ubiquitination of LRRK2 and leads to
proteasomal degradation (Zhao et al., 2015; Lobbestael et al.,
2016). However, LRRK2 kinase inhibition in vivo does not always
result in ubiquitous destabilization and degradation of LRRK2
(Daher et al., 2015; Fell et al., 2015; Henderson et al., 2015;
Lobbestael et al., 2016; Kelly et al., 2018). Differential LRRK2
inhibition effects observed may relate to the specific compound,
LRRK2 mutations, length of treatment, tissue, and/or cell types
being evaluated.

EMERGING LRRK2 BIOMARKER
ASSAYS

LRRK2 biomarker candidates will require targeted quantitative
assays for validation and clinical assay development. One
challenge the field will face is developing a single assay that
can reliably and accurately detect LRRK2 at varying levels
in different biological matrices, and in formats that can be
realistically implemented at clinical collection sites. While ELISA
and PCR based assays represent the most common formats
for approved biomarker tests, exosomal LRRK2 is considered a

low-abundant protein source, and the concentration of LRRK2
in biofluids is usually at the low picomolar level below the
limit of detection of many ELISA formats (Wang et al., 2019).
Even with improved detection, immunodetection of peptides of
interest (e.g., pSer1292-LRRK2) is dependent on the specificity
and selectivity of the antibody in the given format. Further,
throughput and ease of sample collection and preparation are
priority variables for broad implementation. A high-throughput
ELISA for pS935-LRRK2 levels in a 96-well format was developed
to monitor the activity of endogenous LRRK2 in both rodent
and human samples (Delbroek et al., 2013). An improved
single-molecule based format from Quanterix has more recently
been deployed to measure the abundant pS935-LRRK2 and total
LRRK2 levels in human peripheral blood mononuclear cells
(PBMCs) from PD patients and healthy controls (Padmanabhan
et al., 2020). Single molecule-based and other ultrasensitive
immunoassays for pSer1292-LRRK2 and LRRK2-Rab targets
(e.g., pT73-Rab10) have not yet been described but hold
tremendous promise.

Peptide detection via quantitative mass spectrometry has
dramatically evolved in the last decade. While sensitivity may
now rival single molecule-based immunoassays, the instruments
are extremely expensive at present and complicated to run
on a routine basis. Further, detection and quantification of
single-phosphorylation events can be much more difficult than
detection and quantification of total levels of protein that can
utilize many peptides across the protein. Our past work measured
pS1292-LRRK2 via mass spectrometry, notably requiring GluC
protease digestion as opposed to canonical trypsin treatment
(Wang et al., 2017). Although there are few approved biomarkers
reliant on mass spectrometry detection, the next decade will
certainly herald a new wave of antibody-agnostic assays for
a variety of indications, possibly including LRRK2-targeted
biomarkers. Or, mass spectrometry can be combined with
efficacious antibodies. One promising approach for total LRRK2
protein measures in CSF uses a stable-isotope standard and
capture by anti-peptide antibody approach (Mabrouk et al.,
2020), and concentrations in CSF reported are very similar to
those resolved by quantitative immunoblots (Wang et al., 2017).
Figure 5 summarizes key biomarker development assays related
to LRRK2 inhibition.

CLINICAL INTEGRATION OF
LRRK2-TARGETED BIOMARKERS

LRRK2 is not a ubiquitous protein but is expressed in many
different cell types throughout the body. Neurons vulnerable
to degeneration in PD all appear to express LRRK2 protein,
as do immune cells responsive in disease, and represent the
ostensible target LRRK2 protein for inhibition (West, 2017).
Although expression in the brain is low, LRRK2 is abundantly
expressed in immune cells, kidneys, and lungs (Biskup et al., 2007;
Maekawa et al., 2010; Hakimi et al., 2011; Fuji et al., 2015). Tissue
biopsy samples (e.g., brain tissue), routine in pre-clinical work
to procure samples for LRRK2 protein analysis, are unlikely to
happen in clinical trials. However, phosphorylated and dimeric
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FIGURE 5 | LRRK2 biomarker detection methods. Various methods exist for monitoring pharmacodynamic changes in LRRK2 kinase activity and protein levels.
Implementing analytically validated biomarker assays for target engagement in early phase clinical trials will require high-throughput methods that are highly sensitive
and specific for LRRK2.

LRRK2 protein can be found within exosomes secreted into
biofluids by a number of cell types (Fraser et al., 2013, 2016; Wang
et al., 2017, 2019). Exosomes appear to have privileged access
to tissue compartments across the body, including blood-brain
barrier transparency, and represent heterogenous vesicles derived
from many different cell types. Exosome-derived LRRK2 protein
purified from biofluids like CSF, urine, saliva, and plasma, may
provide a robust opportunity to predict and monitor LRRK2
inhibition across the body. However, the correlation between the
LRRK2 changes observed in biofluids and those that occur in
the brain (e.g., LRRK2 activity in neurons) will need extensive
qualification with different therapeutic approaches in order to
transition to an approved assay.

Routine blood collection from patients may also facilitate
measurements of LRRK2 inhibition, in circulating cells where
drug exposures are often much higher than in the brain. PBMCs
can be isolated from whole blood and harbor abundant LRRK2
protein (Gardet et al., 2010; Kubo et al., 2010; Maekawa et al.,
2010; Hakimi et al., 2011; Thévenet et al., 2011). Ex vivo treatment
of PBMCs in culture with LRRK2 kinase inhibitors results in
a reduction of constitutive LRRK2 phosphorylation without
acute toxicity, as determined by phospho-Ser935 protein levels
(Perera et al., 2016). However, short-duration ex vivo treatment
(e.g., hours) may not recapitulate phenotypes associated with
longer-duration treatment, like total LRRK2 protein reduction.

Urine represents another biofluid, collected without risk, that
can be utilized to measure LRRK2 protein. Secreted LRRK2
in urinary exosomes is both dimerized and phosphorylated,
proved to contain enzymatically active LRRK2 (Sen et al., 2009;
Deng et al., 2011; Fraser et al., 2013). Urinary exosomes have
been shown to contain elevated levels of autophosphorylated
pS1292-LRRK2 and have utility in predicting LRRK2 mutation
status and PD risk (Fraser et al., 2016; Wang et al., 2017). The
collection of cerebrospinal fluid (CSF) is more invasive; however,
it comes in direct contact with the brain and is routinely collected
at least in early phase clinical trials. Neurons may be a major
source of exosomes in the brain (Faure et al., 2006; Lachenal et al.,
2011), although the exact source of LRRK2 protein in exosomes

in CSF is not yet known. Like urinary exosomes, pS1292-LRRK2
can also be readily measured in exosomes isolated from CSF.
Comparable amounts of total LRRK2 protein can be detected in
CSF and urinary exosomes, but urinary exosomes exhibit lower
pS1292-LRRK2 levels and more variability from sample to sample
(Wang et al., 2017). Initial studies show that total LRRK2 protein
and pS1292-LRRK2 levels in CSF and urine exosome fractions do
not correlate within a subject (Wang et al., 2017), suggesting that
there is cell specific regulation of LRRK2 expression and activity.
There are no reports yet attempting to measure LRRK2 in saliva.

Our recent efforts in non-human primates treated with
LRRK2 kinase inhibitors revealed that no single biomarker in
any single biofluid is likely to detail the complexity of drug
interactions across the body (Wang et al., 2020). The usage
of informative panels of biomarkers, rather than reliance on
an individual marker, is commonplace in fields with relatively
mature validated biomarkers such as those used in acute kidney
injury (Siew et al., 2011). As biomarker panels mature, the
emphasis might shift from initial target engagement profiles
toward association of responses with clinical outcomes. However,
panels must be carefully contrived so that individual markers are
not highly correlated with one another that might lead to over-fit
and unhelpful models. Our experiences so-far in urine markers
compared to CSF markers failed to detect any correlations within
subjects (Wang et al., 2017), so panels utilizing different biofluids
may be particularly efficacious in understanding drug effects.

INITIAL CLINICAL ENTRY OF
LRRK2-TARGETED THERAPEUTICS

PK properties of small molecule LRRK2 kinase inhibitors have
been refined over the last 10 years, demonstrating improved
selectivity, brain permeability, and potency (Fell et al., 2015;
Henderson et al., 2015; Scott et al., 2017; West, 2017; Kelly et al.,
2018). Many of these molecules have already been evaluated
in preclinical animal disease models to better understand the
potential neuroprotection that could be afforded, as well as the

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 807

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00807 August 4, 2020 Time: 15:41 # 8

Kelly and West Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics

extent of potentially adverse phenotypes, like those observed in
LRRK2 knockout rodents (Daher et al., 2015; Fuji et al., 2015;
Andersen et al., 2018; Kelly et al., 2018; Baptista et al., 2020).
Antisense oligonucleotides (ASOs) have also recently emerged
as a propitious strategy to treat multiple neurodegenerative
diseases. ASOs are synthetic single-stranded nucleic acids that
bind target mRNA, leading to the degradation of that target
mRNA, and thereby reduce protein levels (Bennett et al.,
2017). Importantly, intracerebral injections of ASOs allow for
brain-specific targeting that is extensively distributed in cells
and maintain a long duration of action (Kordasiewicz et al.,
2012; Hung et al., 2013; Rigo et al., 2014). Several ASO
therapeutics are already in clinical phase 1 trials for familial
amyotrophic lateral sclerosis and Huntington’s disease, and
Nusinersen has been approved by the FDA for the treatment
of spinal muscular atrophy (ClinicalTrials.gov: NCT02623699,
NCT02519036, and NCT02193074). Patient recruitment for
phase 1 clinical trials of LRRK2 ASOs began June 2019
(ClinicalTrials.gov: NCT03976349). The use of LRRK2 ASOs
aims to induce a long-term reduction in LRRK2 protein
expression to reduce kinase activity as a therapeutic treatment.

With both small molecule LRRK2 kinase inhibitors and
LRRK2-targeted ASOs, common biomarker platforms could be
conceived to measure the reduction of total LRRK2 protein in
CSF, and corresponding reductions of phospho-Rab substrates,
caused by drug effects. Peripheral measures (e.g., blood and
urine) would be less useful for establishing successful LRRK2
inhibition in the brain but could be useful in understanding
inhibition profiles and dynamics of particular drugs. For example,
early clinical trials may establish a strong correlation between
plasma or urine LRRK2 inhibition biomarkers with those of CSF,
obviating the need for CSF collection in larger populations in
ongoing efficacy trials. Such a relationship appears to be emerging
for both phospho-Tau protein and neurofilament light proteins,
where CSF levels are highly correlated with plasma levels (Ashton
et al., 2019; Forgrave et al., 2019).

CONCLUDING REMARKS

Neurotherapeutics are considered to be at an inflection point
as genetic understanding and disease mechanism continue
to be elucidated (Ehlers, 2018). Several lines of evidence
suggest biomarker driven approaches may be critical for the
successful development of LRRK2-targeted therapeutics. Herein,
we surveyed the pipeline for biomarker integration in the
clinic and the most promising pharmacodynamic markers that
might be considered for development. Measures will need
to be sensitive, reproducible, and well-validated in different
populations and laboratories (Figure 2). We further conclude
that a single LRRK2-targeted biomarker will be insufficient
to capture the complexity of LRRK2 inhibition biology
across the body with any given drug. Rather, combinations
of biomarkers would allow for a more holistic evaluation
and better understanding of how different compounds affect
LRRK2 throughout the body, and whether endpoints are
achieved in the inhibition of LRRK2 in the brain. Combined
efforts from academia, consortia, disease organizations, and
biopharmaceutical companies will expedite the implementation
of LRRK2-targeted biomarkers in drug development programs
and clinical trials.
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