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Background: Brain–computer interface (BCI) has been regarded as a newly developing
intervention in promoting motor recovery in stroke survivors. Several studies have been
performed in chronic stroke to explore its clinical and subclinical efficacy. However,
evidence in subacute stroke was poor, and the longitudinal sensorimotor rhythm
changes in subacute stroke after BCI with exoskeleton feedback were still unclear.

Materials and Methods: Fourteen stroke patients in subacute stage were recruited
and randomly allocated to BCI group (n = 7) and the control group (n = 7). Brain–
computer interface training with exoskeleton feedback was applied in the BCI group
three times a week for 4 weeks. The Fugl–Meyer Assessment of Upper Extremity
(FMA-UE) scale was used to assess motor function improvement. Brain–computer
interface performance was calculated across the 12-time interventions. Sensorimotor
rhythm changes were explored by event-related desynchronization (ERD) changes
and topographies.

Results: After 1 month BCI intervention, both the BCI group (p = 0.032) and the control
group (p = 0.048) improved in FMA-UE scores. The BCI group (12.77%) showed larger
percentage of improvement than the control group (7.14%), and more patients obtained
good motor recovery in the BCI group (57.1%) than did the control group (28.6%).
Patients with good recovery showed relatively higher online BCI performance, which
were greater than 70%. And they showed a continuous improvement in offline BCI
performance and obtained a highest value in the last six sessions of interventions during
BCI training. However, patients with poor recovery reached a platform in the first six
sessions of interventions and did not improve any more or even showed a decrease. In
sensorimotor rhythm, patients with good recovery showed an enhanced ERD along with
time change. Topographies showed that the ipsilesional hemisphere presented stronger
activations after BCI intervention.
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Conclusion: Brain–computer interface training with exoskeleton feedback was feasible
in subacute stroke patients. Brain–computer interface performance can be an index to
evaluate the efficacy of BCI intervention. Patients who presented increasingly stronger
or continuously strong activations (ERD) may obtain better motor recovery.

Keywords: BCI performance, event-related desynchronization, motor recovery, longitudinal change, stroke

INTRODUCTION

Brain–computer interface (BCI) is increasingly developing in
the neurological treatment, especially in stroke rehabilitation
(López-Larraz et al., 2018). It is an intervention focused on the
central nerve system, which played a role in both treatment and
assessment. Recently, a meta-analysis (Cervera et al., 2018) has
revealed its clinical efficacy in stroke motor rehabilitation. More
and more studies have been performed to verify the positive
effects in motor recovery by BCI training and to explore its
possible mechanism as for promoting related cortical plasticity.

Brain–computer interface intervention has been applied to
train stroke patients both in chronic and subacute stages for
motor rehabilitation. Some scholars focused on chronic stroke.
Ander et al. (Ramos-Murguialday et al., 2013) first reported a
significant improvement in upper-limb motor function of the
chronic stroke patients after 8 weeks in a randomized controlled
trial. Leeb et al. (2016) also showed motor recovery through 10
sessions’ BCI training. Ang et al. (2014) applied 12-session BCI
training in chronic stroke and reported motor improvements.

Literature reported that stroke patients might obtain more
motor recovery in subacute than chronic stage (Buma et al.,
2013). It suggested the possibility and value to add BCI
intervention in subacute stage. As a result, studies of BCI
intervention in subacute stroke were performed by several other
scholars. Li et al. (2014) applied 24 sessions’ BCI training
with functional electrical stimulation (FES) feedback in stroke
patients of subacute stage and reported an improvement in
hand function by the Action Research Arm Test. Pichiorri
et al. (2015) reported an improvement in the Fugl–Meyer
Assessment of Upper Extremity (FMA-UE) after 12-session BCI
training. Mihara et al. (2013) applied six sessions’ BCI training
and found improvement in the hand/finger subscale of FMA-
UE. All above studies suggested the feasibility and efficacy to
apply BCI intervention in both chronic and subacute stroke to
promote motor recovery.

Brain–computer interface performance is a parameter used
to judge the interaction effects when applying BCI training.
Tam et al. (2011) tried to improve BCI performance to make it
more user-friendly and reliable for stroke rehabilitation. Higher
BCI performance was reported to be along with good motor
recovery in stroke patients. Li et al. (2014) reported that BCI
performance improved as the intervention times increased and
the patients obtained motor recovery. Tung et al. (2013) reported
that the number of sessions correlated with the change in the
FMA scores. Brain–computer interface performance may be
used to evaluate the applicability of BCI intervention for stroke
individuals. Prasad et al. (2009) showed a range of 60–75%

of online BCI performance in chronic stroke patients, which
suggested the feasibility of BCI training in neurorehabilitation.

Sensorimotor rhythm changes were commonly explored
by many BCI studies. Event-related desynchronization
(ERD) (Pfurtscheller, 1979) was calculated from the
electroencephalography (EEG) data to describe sensorimotor
rhythm changes. It also stands for the cortical activities of the
stroke patients during motor tasks (Pfurtscheller, 1999; Takemi
et al., 2013; Kaiser et al., 2014). Stronger ERD was reported to
present in the sensorimotor cortex of patients with good motor
function (Bartur et al., 2019), and the location of ERD became
focused on sensorimotor cortex after rehabilitation training
(Tam et al., 2011; Liu et al., 2014). The longitudinal changes of
cortical activities during a long-term BCI intervention are of
great importance to show the time-varying effects. However,
the longitudinal sensorimotor rhythm changes of patients with
different levels of motor recovery under BCI intervention in
subacute stroke are unclear. In subacute stage, the cortical
activities varied quickly along time. During BCI training, it is
valuable to clarify the longitudinal cortical activities, which may
help explore the mechanism of BCI intervention.

The application of BCI intervention in subacute stroke
patients could be useful in motor rehabilitation. The aim
of this study was to explore the characteristics of BCI
performance and longitudinal sensorimotor rhythm changes in
subacute stroke patients. We hypothesized that the continuous
results of BCI performance could be used to evaluate the
clinical effects of motor recovery. Patients presented different
longitudinal sensorimotor rhythm changes with different levels
of motor recovery.

MATERIALS AND METHODS

Research Subjects
Patients were recruited from the Department of Rehabilitation
Medicine of Huashan Hospital affiliated to Fudan University.
Inclusion criteria for the study were as follows: (1) unilateral
subcortical stroke (ischemia or hemorrhage) diagnosed by
computer tomography or magnetic resonance imaging (MRI);
(2) first onset of stroke; (3) age between 25 and 75 years;
(4) the onset was more than 4 weeks and less than 6 months;
(5) the level of cognitive impairment: Mini-Mental State
Examination score >25; (6) and being able to sit in a
chair for at least 1 h. Exclusion criteria were as follows:
(1) patients with previous history of epilepsy; severe failure of
vital organs such as heart, lung, liver, and kidney; uncontrollable
hypertension; arrhythmia; severe coronary heart disease; and
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diabetes complications; (2) unilateral neglect or vision problems;
(3) allergic to conductive paste; (4) received other non-invasive
brain stimulation interventions during the study period; and
(5) cannot complete basic treatment. Fourteen subacute stroke
patients were enrolled in the study and randomly allocated to
BCI group (n = 7) and the control group (n = 7). Baseline
demographic data and clinical characteristics of patients were
presented in Table 1. This study was approved by the Ethics
Committee of Huashan Hospital (KY2017-005) and performed
according to the Declaration of Helsinki. All the patients signed
the informed consent.

Experimental Procedure
Group Allocation
In addition to the BCI intervention, the other parts of the
basic treatment were maintained consistent in the two groups
(BCI group and control group). Basic treatment included the
following: (1) drug: following the rehabilitation physician’s
advice; (2) routine rehabilitation therapy: physical therapy
(20 min, five times a week), low-frequency electrical stimulation
(20 min, five times a week), occupational therapy (20 min,
five times a week).

The BCI intervention was three sessions a week lasting
1 month, with a total of 12 sessions. To keep the consistency of
rehabilitation with the experimental group, the control group was
instructed with the same hand motor imagery training tasks. All
patients in the control group were instructed to attempt motion

TABLE 1 | The demographic and baseline clinical characteristics of the subjects.

Sex Age (years) AL TI TSI (m) SI FMA-UE

BCI group

OME1 M 31 R I 5 L, basal ganglia 36

OME2 M 40 L H 4 R, basal ganglia 30

OME3 M 42 R H 1 L, basal ganglia 50

OME4 M 47 R I 1 L, paracele 37

OME5 M 36 R I 3 L, basal ganglia 28

OME6 M 30 R I 5 L, paracele,
basal ganglia

25

OME7 M 65 L I 3 R, brainstem 13

Mean (SD) – 41.6 (12.0) – – 3.1 (1.7) – 31.3 (11.5)

Control group

CG1 F 72 R I 1 L, paracele 19

CG2 M 37 R H 4 L, basal ganglia 28

CG3 F 43 L I 3 R, basal ganglia 29

CG4 M 64 R I 4.5 L, paracele,
corona radiata

26

CG5 M 47 R H 2 L, basal ganglia 28

CG6 M 64 R I 6 L, brainstem,
basal ganglia,
paracele

42

CG7 M 42 L I 4 R, basal ganglia 54

Mean (SD) – 52.0 (11.1) – – 3.9 (1.5) – 32.3 (11.8)

p – 0.13 – – 0.70 – 0.87

AL, affected limb; TI, type of injury; TSI, time since injury; SI, site of injury; M,
male; F, female; R, right; L, left; I, ischemia; H, hemorrhage; FMA-UE, the Fugl–
Meyer Assessment of Upper Extremity; SD, standard deviation; p, results of t-test
between groups.

of wrist extension by the same therapist. The tasks were combined
with three sets, 30 motions for one set. And the instructions were
maintained the same as it were in the BCI group. Patients in the
control group did not use the Omega device, and they were blind
to what the patients did in the BCI group.

Protocol for BCI Intervention
Figure 1A shows the overview of the BCI intervention system
principle. Brain–computer interface training was conducted in
a quiet room. The Omega force feedback device was placed on
the table and controlled by the BCI system. The patients sat
in front of a computer screen with their affected hands fixed
on the Omega device. Electroencephalography were collected
using 32 channels consisting of Ag/AgCl electrode of EEG cap
(actiCAP; Brain Products, Gilching, Germany) according to the
configuration of 10–20 International System (Klem et al., 1999).
The signal is amplified by the amplifier (Brain Products). The
reference electrode was located in the right mastoid process, and
the ground electrode was located in the forehead. The electrode
impedance was kept below 5 k�. The original EEG signals was
recorded at a sampling rate of 200 Hz and filtered by a bandpass
filter between 1 and 100 Hz.

There was approximately 11 s for one trial, 30 trials as a set
with a total of three sets for one-session BCI training. Patients in
the process of BCI training were required to attempt motion of
wrist extension as far as possible but not to have compensatory
movements (e.g., to move the head and shoulders, etc.). When
the BCI system correctly recognized the intention of the patients’
motor attempt, it would output command and manipulate the
Omega force feedback device and drive the patients’ affected
hands to complete the wrist extension motion. When the patients’
motion intention was not successfully recognized, the Omega
device would not produce any movement.

Figure 1B shows the experimental setup of one trial. During
one trial, there was a white cross presenting on the center of the
screen from 0 to 3 s. The patients kept still and rest. After the
task began 1 s, vibrations appeared on the Omega device to give
tips for the patients. And then a red square or a red rectangle
appeared. The red square represented a static task, whereas a
red rectangle represented the motor task. When the patients
were performing motor task, they were required to maintain the
motion as far as they could until the white cross disappeared.
When there was a static task, patients just rested and did nothing.
The rest time interval was adopted randomly in order to prevent
the patients’ adaptability in the training process. There were rest
intervals between each set (totally three sets for 1 day’s BCI
training) generally for 1 min, depending on the patients’ status.

BCI Performance Calculation
Brain–computer interface performance was evaluated between
the task and idle states. The idle state was defined at [−4,
−1] s prior to task cues and the task state was defined at [1,
4] s post-task cues. Common spatial pattern (CSP) was used
for feature extraction of EEG data (Blankertz et al., 2006).
Electroencephalography data were filtered by the band from
alpha–beta frequency (8–30 Hz).

For online BCI performance, all 31 channels (FP1, FZ, F3, F7,
FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, PZ, P3, P7, O1, O2, P4,
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FIGURE 1 | (A) Overview of the BCI system principle. (B) Experimental setup of one trial.

P8, TP10, CP6, CP2, CZ, C4, T8, FT10, FC6, FC2, F4, F8, FP2)
were used for calculation. In each online test, the first run of
30 times of the task state and static state were used for training
the classifier. In the second run of tests, at the end of each task,
single-trial classification was performed with 31 channels of EEG
signals. In order to better adapt to the nonstationarity of EEG
signals, supervised online adaptation was implemented in the
online decoding. In the second online feedback training, the CSP
filter and linear discriminant analysis classifier were retrained
after each test using the previous 30 test results.

For offline BCI performance calculation, all 31 and 7 channels
(FC1, FC2, C3, CZ, C4, CP1, and CP2) were selected for data
analysis. The first and last three rows of the CSP transformation
matrix could be used for maximizing the difference of two groups
of data. And then the transformed features were trained by
random forest classifier. The 90 trials were divided into three
pieces. Thus, a 3-fold cross-validation was applied to pick an
optimal classifier.

EEG Processing
Electroencephalography data from 31 channels were used in
processing. The power spectrum of channels C3 and C4 was
computed at the frequency of 8–30 Hz to identify ERD on

motor tasks of the affected hands. Time–frequency distributions
of EEG trials were estimated using a windowed Fourier transform
(Peng et al., 2019) with a fixed 200 ms Hanning window.
Windowed Fourier transform yielded, for each trial, a complex
time–frequency estimate F(t,f) at each time–frequency point (t,f),
extending from −2,000 to 6,000 ms (in steps of 5ms) in the
time domain, and from 1 to 30 Hz (in steps of 1Hz) in the
frequency domain. Power spectrum (P), P(t,f) = |F(t,f)|2, was
obtained. The percentage of relative power change was calculated
to obtain the ERD with respect to a resting-state baseline ([−2,
0] s) before the red triangle cue. The interest time was set at
[1, 4] s after the cue, during which the patient was performing
the motor tasks of wrist extension. The power spectrum of
interest in the period after the event is given by A, whereas that
of the preceding baseline period is given by R. Event-related
desynchronization/event-related synchronization (ERS) (E) was
calculated according to Eq. (1):

E =
A− R
R
× 100% (1)

Under this definition, ERD was expressed as a negative value, and
ERS was a positive value. The topographies were drawn with an
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interest time of [1.4, 1.6] s after the task onset, with respect to a
resting-state baseline ([−2, 0] s).

Statistical Analysis
Analyses were conducted using SPSS version 23.0 (IBM Inc.,
Chicago, IL, United States). Continuous variables are presented
as the mean ± standard deviation. A t-test was performed to
compare the difference of age, time since injury, and baseline
FMA-UE between the BCI group and the control group.
Two-way repeated-measures analysis of variance (ANOVA) was

performed for the FMA-UE with time as the within-subject factor
(i.e., before and after therapy) and group as the between-subject
factor (i.e., BCI and control groups). If a significant interaction
was identified through two-way repeated measures ANOVA, then
a paired t-test was adopted for post hoc analysis to compare
FMA-UE score before and after BCI intervention. A t-test was
conducted to compare the effects between groups. Two-way
repeated-measures ANOVA was performed for the ERD with
time (i.e., before and after therapy) and channel (i.e., C3 and
C4) as the within-subject factors. A paired t-test was applied

FIGURE 2 | The online BCI performance with 31 channels of the seven subjects during the 12-session BCI training in the BCI group. The red point means the
highest value.
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for post hoc analysis to compare the ERD before and after
BCI intervention in the BCI group. p < 0.05 (two-sided) was
considered to indicate a significant result.

RESULTS

BCI Performance
Figure 2 shows the online performance of BCI tasks for all
subjects. The data were acquired from 31 channels of EEG

signals. Three patients (OME1, OME4, and OME7) maintained
a level of greater than 70% in BCI performance across the 12
training sessions. Two patients (OME3 and OME5) presented a
BCI performance of more than 70% in most of the 12 training
sessions. Two patients (OME2 and OME6) showed poor BCI
performance during the 12 training sessions.

Figure 3 shows the offline performance of BCI tasks for all
subjects. The data were acquired from 31 channels of EEG signals.
Three subjects (OME1, OME4, and OME5) were included into
a subgroup, which obtained the highest BCI performance in

FIGURE 3 | The offline BCI performance with 31 channels of the seven subjects during the 12-session BCI training in the BCI group. The red point means the
highest value.
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the last six sessions. Three subjects (OME2, OME6, and OME7)
were included into another subgroup, which obtained the highest
BCI performance in the first six sessions. Figure 4 shows the
offline performance of BCI tasks of for all subjects. The data were
acquired from seven channels (FC1, FC2, C3, CZ, C4, CP1, and
CP2). Three subjects (OME1, OME3, and OME4) were included
into a subgroup, which obtained the highest BCI performance in
the last six sessions. Three subjects (OME2, OME6, and OME7)
were included into another subgroup, which obtained the highest
BCI performance in the first six sessions.

Figure 5 shows the average BCI performance of online 31
channels, offline 31 channels, and offline 7 channels. The online

accuracies were higher than the offline accuracies in five patients
(OME1, OME3, OME4, OME5, and OME7) and lower in two
patients (OME2 and OME6). OME2 and OME6 showed average
online BCI performance that were lower than 70%. For offline 7
channels and 31 channels analysis, all subjects almost achieved
the criterion level of mean accuracy (70%) that rendered the
control of BCI application. It was suggested that the pattern of
motor attempt could be detected for BCI recognition. However,
the mean accuracies used in 7 channels were higher than those
used in all 31 channels in six subjects except OME7. It was
inferred that the effective features of neural pattern were mainly
evoked in the area of motor cortex.

FIGURE 4 | The offline BCI performance with seven channels of the seven subjects during the 12-session BCI training in the BCI group. The red point means the
highest value.
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FIGURE 5 | The average BCI performance of 12 sessions with online 31
channels, offline 31 channels, and offline 7 channels of the seven subjects in
the BCI group.

Rehabilitation Outcomes
Two-way repeated-measures ANOVA results for the FMA-UE
showed no significant time and group interaction [F(1, 6) = 1.209,
p = 0.314]. The main effect analysis showed that time had a
significant effect on FMA-UE [F(1, 6) = 12.115, p = 0.013], but
no significant effect on FMA-UE for group [F(1, 6) = 0.009,
p = 0.926]. Further analysis showed that, after the 1 month
intervention, the FMA-UE of the BCI group and that of the
control group were both significantly improved. The percentage
of improvement of the BCI group (12.77%, p = 0.032) was more
than that of the control group (7.14%, p = 0.048) before and
after intervention. The results are shown in Figure 6A. Four
(OME1, OME3, OME4, and OME5) of the seven patients (57.1%)
in the BCI group obtained more than five scores in FMA-UE
improvement, and only two of the seven patients (28.6%) in the
control group had improvement of more than five scores in FMA-
UE. The detailed improvement of every individual is shown in
Table 2.

ERD and Topography Changes
The detailed ERD changes (in T1 and T12 intervention) of every
individual are shown in Table 3. It showed that the averaged ERD

of ipsilesional (channel C3) and the contralesional (channel C4)
hemisphere of seven subjects became stronger after the 12-session
BCI training. Two-way repeated-measures ANOVA results for
the ERD of channels C3 and C4 showed no significant time
and channel interaction [F(1, 6) = 0.319, p = 0.593]. The main
effect analysis showed that time had a significant effect on ERD
[F(1, 6) = 8.927, p = 0.024], but no significant effect on ERD for
channel [F(1, 6) = 0.188, p = 0.680]. Further analysis showed that
ERD of both channels C3 (p = 0.032) and C4 (p = 0.029) became
significantly stronger after the 12-session BCI interventions. The
results are shown in Figure 6B.

Topographies in Figure 7 show that OME1 and OME3
presented with increasingly stronger ERD, especially in the
ipsilesional sensorimotor cortex (around channel C3) as the
training sessions went on. OME4 and OME5 presented
continuously activations (ERD) in the left ipsilesional hemisphere
across most of the training sessions. OME2 and OME7, who had
injury in the right contralesional hemisphere (around channel
C4), showed limited or even no activation in the sensorimotor
cortex in more than six training sessions. OME6 presented ERD
or ERS in the bilateral hemispheres in the 12 training sessions.

DISCUSSION

Our study obtained more motor function improvement after
12-session BCI intervention in the BCI group than in the
control group. Patients with good recovery showed relatively
higher online BCI performance, which were greater than 70%.
And they showed a continuous improvement in offline BCI
performance and obtained a highest value in the last six sessions
of interventions during BCI training, whereas patients with
poor recovery reached a platform in the first six sessions of
interventions and did not improve any more or even show a
decrease. Stronger ERD appeared along with motor recovery.
Topographies showed that the locations of ERD transferred to be
focused on the sensorimotor cortex after BCI intervention.

FIGURE 6 | (A) Fugl–Meyer assessment improvement between BCI group (12.77%, p = 0.032) and the control group (7.14%, p = 0.048) before (T1) and after (T12)
the intervention. (B) Event-related desynchronization change in the ipsilesional (channel C3, p = 0.032) and contralesional (channel C4, p = 0.029) hemispheres
before (T1) and after (T12) the intervention in the BCI group.
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TABLE 2 | Fugl–Meyer assessment scores change between the BCI group and
the control group.

FMA-UE Pre-intervention Post-intervention Improvement

BCI group

OME1 36 45 9

OME2 30 32 2

OME3 50 65 15

OME4 37 60 23

OME5 28 34 6

OME6 25 28 3

OME7 13 14 1

Control group

CG1 19 34 15

CG2 28 31 3

CG3 29 36 7

CG4 26 28 2

CG5 28 30 2

CG6 42 42 0

CG7 54 58 4

TABLE 3 | Event-related desynchronization values before (T1) and after (T12) the
BCI intervention of the ipsilesional hemisphere and contralesional hemisphere
in the BCI group.

ERD T1 T12

BCI group Ipsilesional Contralesional Ipsilesional Contralesional

OME1 0.103 0.018 −0.554 −0.505

OME2 0.055 −0.007 −0.126 −0.111

OME3 −0.008 −0.059 −0.242 −0.120

OME4 −0.392 −0.314 −0.607 −0.587

OME5 −0.092 0.024 −0.155 −0.106

OME6 −0.182 −0.176 −0.245 −0.416

OME7 −0.002 −0.040 −0.110 −0.034

Mean −0.074 −0.079 −0.291 −0.268

Brain–computer interface performance was an important
parameter of BCI system. Higher BCI accuracies have been
correlated with larger excitability in healthy people (Niazi et al.,
2012) and better motor recovery in hemiplegic patients (Biasiucci
et al., 2018). During BCI training, it would change with the
sessions increasing (Li et al., 2014). Many BCI researchers were
studying the effects of BCI performance on the motor recovery
of stroke patients. Feedback was an essential part of BCI system,
and it could promote brain plasticity. Frolov et al. (2017)
demonstrated motor function improvements in both subacute
and chronic stroke patients with exoskeleton feedback of BCI
intervention compared to a control group. Ang et al. (2014)
reported that 136 times of BCI exoskeleton feedback could obtain
similar recovery effects as 1,040 times of traditional robotic
training, which has shown the value of BCI feedback. Higher
BCI performance could increase the correct numbers of feedback,
which was good for the stroke patients to get motor recovery.

It has been reported in several BCI studies that BCI
performance were significantly associated with the improvement

of upper limb motor function (Li et al., 2014) or even related
to the rehabilitation efficacy of the stroke patients (Bundy et al.,
2017; Frolov et al., 2017). In the current study, the rehabilitation
process was observed by BCI performance. The group (OME1,
OME3, and OME4) that had more improvements in FMA-UE
got the highest precision of BCI control in last six sessions of
BCI training. While the other group with poor motor recovery
(OME2, OME6, and OME7) got it in first six sessions (Figure 4).
Among the three patients, OME2 presented poor online BCI
performance across the 12 training sessions, with an average
accuracy of less than 70%. It was implied that rehabilitation
effect was correlated with the performance of BCI control. The
steadily rising BCI performance suggested a good learning effect,
which might be the source of enhance brain plasticity and motor
recovery. The continuous improvements of patients could be
reflected by the raise of BCI classification accuracy. And the
patients of weak recovery performed more poorly after first
several BCI training sessions. It was meaningful for clinical
evaluation of recovery effects according to the continuous results
of BCI performance.

The power change of EEG during motor task of BCI training
was a symbol of brain function. Event-related desynchronization
represented the cortical activation state, and stronger ERD
suggested better brain function and brain plasticity (Ono et al.,
2015). After the 12-session BCI intervention, ERD became
significantly stronger in the 12th session compared to the first
session. Two patients (OME1 and OME3) obtained obviously
strong ERD in the third and fourth weeks. Moreover, the
ipsilesional hemisphere presented more power decrease than the
contralesional hemisphere did (Table 3). This was consistent
with the study in healthy subjects that motor task was mainly
activating the contralateral hemisphere (Pfurtscheller, 1999;
Wolpaw, 2000). In functional MRI studies, activation on the
ipsilateral side was also reported in stroke recovery (Erik
Ween, 2008). This also suggested that BCI could facilitate
ipsilesional cortical activations, and these activations might lead
to motor recovery in subacute stroke patients. Interestingly, one
patient (OME7) presented a relatively acceptable online BCI
performance (mostly ranking from 70 to 80%). However, he
showed poor activations in the right ipsilesional hemisphere,
especially around the C4 channel. Thus, OME7 showed poor
motor recovery. In addition, OME2 showed poor online BCI
performance along with poor activations (ERD) in bilateral
hemispheres, especially in the right ipsilesional hemisphere, in
most of the 12 training sessions. These might also show poor
motor recovery. It suggested that both BCI performance and
sensorimotor rhythm (ERD) were important in reflecting motor
recovery in subacute stroke patients during BCI training.

The locations of ERD changed as the intervention
sessions increased, and specific characteristics were shown
by topographies. A patient (OME1), who showed activations
in the contralesional hemisphere in the first week, had focal
ERD in the ipsilesional hemisphere after several BCI sessions.
It was reasonable because the sensorimotor areas should be
mostly involved in motor-related tasks (Li et al., 2014; Wang
et al., 2016). Patients, who presented with extensive activations
at the very start, became focused on the sensorimotor cortex
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FIGURE 7 | Topographies of 1.4–1.6 s after the task onset of the seven subjects during the 12-session BCI training in the BCI group. Two patients (OME1 and
OME3) presented increasingly stronger ERD in the bilateral hemispheres as the training sessions went on. Two patients (OME4 and OME5) presented continuously
strong activations (ERD) in the left ipsilesional hemisphere across most of the training sessions. Two patients (OME2 and OME7) presented weak or even no
activation in the right ipsilesional hemisphere in more than six training sessions. One patient (OME6) presented ERD or ERS in the bilateral hemispheres in the 12
training sessions.

after BCI training. This suggested that as the BCI intervention
continuously proceeded, neural plasticity might enhance with
stronger ERD in the sensorimotor cortex, which might lead
to better motor recovery. Additionally, a patient (OME6) who
presented with strong ERD but poor motor recovery could be
at a subclinical efficacy. He also presented poor online BCI
performance of less than 70%. Actually, he got an improvement
of 3 in FMA-UE, which was lower than did the other patients
with good motor recovery. He might have a slower improvement
than others but might be further improved with more training.

The limitations of our study included a small sample size and
no EEG data collected from the control group. This led to a
lack of EEG comparison between groups and a more moderate
conclusion of the clinical efficacy of BCI intervention. Based on
this pilot study, a further study with a larger sample size is needed
to contribute a stronger and clearer result.

CONCLUSION

This study explored the longitudinal sensorimotor rhythm
changes in subacute stroke patients after 1 month BCI training

with exoskeleton feedback. Clinical improvement was found in
FMA-UE scores. Brain–computer interface performance was a
good index to evaluate the clinical efficacy during the long-
term BCI intervention. Patients who presented increasingly
stronger or continuously strong activations (ERD) may obtain
better motor recovery.
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