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In the field of brain-computer interface (BCI), selecting efficient and robust features is
very seductive for artificial intelligence (AI)-assisted clinical diagnosis. In this study, based
on an embedded feature selection model, we construct a stacked deep structure for
feature selection in a layer-by-layer manner. Its promising performance is guaranteed
by the stacked generalized principle that random projections added into the original
features can help us to continuously open the manifold structure existing in the original
feature space in a stacked way. With such benefits, the original input feature space
becomes more linearly separable. We use the epilepsy EEG data provided by the
University of Bonn to evaluate our model. Based on the EEG data, we construct three
classification tasks. On each task, we use different feature selection models to select
features and then use two classifiers to perform classification based on the selected
features. Our experimental results show that features selected by our new structure are
more meaningful and helpful to the classifier hence generates better performance than
benchmarking models.

Keywords: brain-computer interface, feature selection, stacked deep structure, stacked generalized principle,
EEG

INTRODUCTION

Electroencephalogram (EEG) as a biomarker plays an important role in the brain-computer
interface (BCI) (Wang et al., 2013; Zheng, 2017; Mammone et al., 2019; Nakamura et al., 2020).
For example, EEG signals are often used to determine the presence and type of epilepsy in clinical
diagnosis (Rieke et al., 2003; Yetik et al., 2005; Adeli et al., 2007; Lopes da Silva, 2008; Coito et al.,
2016; Parvez and Paul, 2016; Peker et al., 2016; Panwar et al., 2019). In recent years, with the rapid
development of artificial intelligence technology, AI-assisted diagnosis has attracted more and
more attention and achieved unprecedented success in many scenarios including BCI (Agarwal
et al., 2018; Wu et al., 2018). In general, a standard EEG-based AI-assisted diagnosis flowchart
is illustrated in Figure 1, which contains signal acquisition, signal processing, feature extraction,
feature selection and model training and testing. As we know that original features extracted from
EEG signals cannot be directly used for model training because they are often represented in very
high-dimensional feature space. Therefore, feature selection is usually performed before model
training. In this study, we focus on how to selection effective features to guarantee high-efficiency
AI-assisted clinical diagnosis.
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FIGURE 1 | EEG-based AI-assisted diagnosis flowchart containing signal acquisition, signal processing, feature extraction, feature selection, and model training and
testing.

To the best of our knowledge, most of the existing feature
selection models belong to one of three main catalog, i.e.,
filter, embedded, and wrapper (Visalakshi and Radha, 2014;
Ang et al., 2016; Shah and Patel, 2016; Saputra Rangkuti et al.,
2018). In filter models, feature selection depends on the intrinsic
properties and the relevancies existing among features. That is
to say, filter models are independent of classifiers. Some of the
most commonly-used filter models include mRMR (Peng et al.,
2005), F-statistic (Habbema and Hermans, 1977), Chi-square and
information gain (Raileanu and Stoffel, 2004), t-test (Raileanu
and Stoffel, 2004) and Relief (Kira and Rendell, 1992), etc. All of
them perform feature selection by making use of global statistical
information such as the relevance/sensitivity/correlation of a
feature w.r.t the class label distribution of the data. In wrapper
models, feature selection is around classifiers providing them
subsets of features and receiving their feedback. Different
from filter models, wrapper models are tightly coupled with
a specific classifier. Some representative models include CFS
(Hall and Smith, 1999) and RFE-SVM (Guyon et al., 2002),
etc. In embedded models, feature selection is considered as an
optimization problem and integrating into a specific classifier
so that the selected features have a seductive effect on the
corresponding classification task. For example, Nie et al. (2010)
integrated l2, 1-norm into a robust loss function and proposed
an efficient and robust model (renamed as E-JS-Regression)
to perform feature selection. Their experimental results on
several biomedical data indicated that E-JS-Regression won better
performance than both filter models and wrapper models.

In ensemble learning (Webb and Zheng, 2004; Minku
et al., 2010; Chen et al., 2017; Liu et al., 2019; Zhu et al.,
2020), stacking is a popular classifier combination strategy
which takes the outputs of other classifier as input to
train a generalizer. In Wolpert (1992) proposed the stacked
generalization principle which indicated that the outputs can

help to open the manifold of data distribution. In our previous
work (Zhang et al., 2018), we made use of this principle
and proposed a deep TSK fuzzy system. Therefore, in this
study, based on this principle and by taking E-JS-Regression
as the basic component, we will construct a layer-by-layer
stacked deep structure for feature extraction. The new model
is termed as SDE-JS-Regression. In SDE-JS-Regression, each
component is connected in a layer-by-layer manner, the output
of the previous layer is transformed by random projection
as a random shift and then added into the input space.
The new input space is considered as the input to the next
component. In such a way, the manifold in the training space
is continuously opened. The contribution of this study is
summarized as follows:

(i) Based on E-JS-Regression proposed by Nie et al. we
construct a stacked deep structure for feature selection in
a layer-by-layer manner so as to add random projections
into the original features so that the manifold structure
existing in the original feature space is continuously
opened in a stacked way. Therefore, according to the
stacked generalized principle, the original input feature
space becomes more linearly separable.

(ii) We build three classification tasks from epilepsy EEG data
provided by the University of Bonn and introduce different
kinds of feature selection methods to demonstrate the
promising performance of our proposed method.

DATA AND METHODS

Data
The epilepsy EEG data downloaded from the University of
Bonn will be used to evaluate our proposed feature selection
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model. This dataset consists of 5 groups of subsets (from
group A to group E), where each group is composed of
100 single channel EEG segments during 23.6 s duration.
Segments in group A and group B are collected from
5 healthy subjects, while segments in the rest groups are
collected from epileptics. Table 1 lists the data structure and
collection conditions. Additionally, Figure 2 (Zhang et al., 2020)
illustrates the amplitudes during the collection procedure of one
subject in each group.

Methods
In this section, we will give technical details of our proposed
method including its framework, optimization, and algorithm
steps. Before we do that, we first summarize the following used
notations and some commonly-used definitions.

Notations and Definitions
We use X = [x1, x2, . . . , xn] ∈ Rd×n and Y =
[y1, y2, . . . , yn]T ∈ Rn×c to represent a training set, where
xi = [x1, x2, . . . , xd]T ∈ Rd represents a training sample and
yi ∈ Rc is the corresponding label vector of xi, 1 ≤ i ≤ n. For
matrix B, we use bij to represent its element in the i-th row and
j-th column, bi and bj to represent its i-th row and j-th column,
respectively. The l2,1-norm of matrix B is defined as:

‖ B2,1 ‖=

n∑
i=1

 m∑
j=1

b2
ij

1/2

=

n∑
i=1

‖ bi
2 ‖ (1)

Structure of SDE-JS-Regression
In Nie et al. (2010) proposed an efficient and robust embedded
regression model for feature selection via joint l2,1-norm
sparsity (simplified as E-JS-Regression). Since l2-norm based loss
function is sensitive to outlies, they used a l2,1-norm based loss
function to remove outlies. Additionally, they also used a l2,1-
norm to regularize the transformation matrix to select features
with joint sparsity. That is to say, each feature either has small

TABLE 1 | Data structure and collection conditions of epilepsy EEG segments.

Volunteers Groups #Channels #Features Collection conditions

Health A 100 4097 Signals were recorded
when volunteer subjects
were relaxed in awaken
state with eyes open.

B 100 4097 Signals were recorded
when volunteer subjects
were relaxed in awaken
state with eyes closed.

Epileptic C 100 4097 Signals were recorded from
the hippocampal formation
of the opposite hemisphere
of brain.

D 100 4097 Signals were recorded
within epileptogenic zone
during seizure free intervals.

E 100 4097 Signals were recorded
during seizure activity.

scores for all samples or has large scores for all samples. The
objective function is defined as:

min
W

J (W) =‖ XTW− Y ‖2,1 + θ ‖W ‖2,1 (2)

where θ is the regularized parameter, W ∈ Rd×c. The stacked
generalized principle as an ensemble learning strategy can
provide an efficient way for model combination. Although the
stacked generalized principle is not as widely used as boosting
and bagging, its great innovation has been successful in many
application scenarios. In this study, we take E-JS-Regression
as a basic component to construct a stacked deep embedded
regression model for EEG feature selection. Figure 3 illustrates
the stacked deep structure of our proposed model.

The stacked deep structure is composed of m basic
components linked in a layer-by-layer manner. To be specific,
when the first component is fixed, the input to the subsequent
components consists of two parts: the original input features and
the output of the previous layer/component. How to fuse these
two parts is very important in this study. Referring to the stacked
generalized principle, we randomly generate a project of the
output of the previous layer as a random shift and then integrate
the random shift into the original input features. Therefore, the
input of component s (1 < s ≤ m) Xs can be obtained by the
following equation,

XT
s = XT

+ σYs−1Z (3)

where Z ∈ Rc×d is a random projection matrix in which each
element is in the range of [0, 1], σ is a positive regularized
parameter. By virtue of this structure, all components (E-JS-
Regression) are stacked and bridged by adding the original
features to a continuous random shift to form the proposed
feature selection model SDE-JS-Regression.

The benefits we inherit from the stacked deep structure lie in
that the random projections added into the original features can
help us to continuously open the manifold structure existing in
the original feature space in a stacked way. With such benefits,
the input feature space becomes more linearly separable.

Optimization of SDE-JS-Regression
By substituting (3) into (2), the optimization of SDE-JS-
Regression can be considered as solving m subproblems. The s-th
subproblem can be formulated as follows,

min
W

J (W) =
1
θ
‖ (XT

+ σYs−1Z)W− Y ‖2,1 + ‖W ‖2,1 (4)

which is equivalent to the following problem,

min
W,Q

J (W) =‖ Q ‖2,1 + ‖W ‖2,1 (5)

s.t.(XT
+ σYs−1Z)W+ θQ = Y (6)
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FIGURE 2 | The amplitude of one subject in each group during the collection procedure. From top to bottom corresponds to (A–E), respectively.
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FIGURE 3 | Stacked deep structure of SDE-JS-Regression.

By equivalent transformation, we have:

min
W,Q

J (W) =

∣∣∣∣∣∣∣∣ [W
Q

] ∣∣∣∣∣∣∣∣
2,1

(7)

s.t.
[

XT
+ σYs−1Z θI

] [W
Q

]
= Y (8)

where I ∈ Rn×n is a identity matrix. Let h = n+ d, K =[
XT
+ σYs−1Z θI

]
∈ Rn×h and V =

[
W
Q

]
∈ Rh×c, then the

optimization problem in (7) can be updated as follows,

min
V

J (V) =‖ V ‖2,1 (9)

s.t. KV = Y (10)

By introducing Lagrangian multiplies 1, the corresponding
Lagrangian function of (9) is formulated as follows,

L(V) =‖ V ‖2,1 −Tr
(
1T (KV− Y)

)
(11)

By setting the partial derivative of L(V) w.r.t V to 0, i.e.,

∂L(V)
∂V

= 2GV− KT1 = 0 (12)

where G ∈ Rh×h is a diagonal matrix in which the i-th diagonal
element is:

gii =
1

2 ‖ vi ‖2
(13)

Thus, by multiplying the two sides of (12) by KG−1, and making
use of the constraint KV = Y, we have:

2KV− KG−1KT1 = 0
⇒ 2Y− KG−1KT1 = 0
⇒ 1 = 2(KG−1KT)−1Y

(14)

By substituting (14) into (12), we obtain V as:

V = G−1KT(KG−1KT)−1Y (15)

Algorithm of SDE-JS-Regression
The detailed algorithm steps of SDE-JS-Regression are listed
in Algorithm 1. When the transformation matrix W ∈ Rd×c is
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obtained by SDE-JS-Regression, we compute the sum of each
column vector wj, then sort the elements in the final column
vector from largest to smallest. In such a way, we obtain the
feature ranking list, which can guide feature selection.

RESULTS

In this section, we will report our experimental
settings and results.

Setups
To fairly evaluate the feature selection performance of SDE-JS-
Regression, we introduce serval types of feature selection models,
i.e., E-JS-Regression (Nie et al., 2010), mRMR (Peng et al., 2005),
RFE-SVM (Guyon et al., 2002), and Relief (Kira and Rendell,
1992) for benchmarking testing. A brief introduction of each
benchmarking model is summarized as follows.

• E-JS-Regression: It is an embedded feature selection model
and also the basic component of our proposed method. Its
involved regularized parameter γ will be determined by 5-
CV in our experiments.
• mRMR: It is a filtering feature selection model based

on minimum redundancy and maximum relevancy. The
redundancy is measured by mutual information.
• RFE-SVM: It is a wrapper feature selection model

combining with the SVM classifier to achieve recursive
feature elimination. Parameters in SVM are all
determined by 5-CV.
• Relief: It is also a filtering feature selection model, which

assigns a weight to each feature depending on the relevance
between features and classes. The number of nearest
neighbors is set to 10 in our experiments.

Algorithm 1: SDE-JS-Regression
Input:
X = [x1, x2, . . . , xn] ∈ Rd×n and

Y = [y1, y2, . . . , yn]
T
∈ Rn×c

θ, σ and m
Output:
W
Procedure:
Set t← 0
Initialize G(t)

∈ Rh×h as an identity matrix
Set s← 1
Set Y0 = 0

Compute K =
[

XT
+ σY0Z θI

]
∈ Rn×h

Repeat
Compute V(t+1)

= (G(t))−1KT(K(G(t))−1KT)−1Y
Compute G(t+1), where the i-th diagonal element is

gii = 1
2‖vi(t+1)‖2

Set t← t + 1
Until

∣∣J(t+1) (V)− J(t)(V)
∣∣ <

Extract W from V
Compute Y1 = XTW
For s = 1 to m

Set t← 0
Initialize G(t)

∈ Rh×h as an identity matrix
Randomly generate Z ∈ Rc×d, where each element is in the

range of [0, 1]
Compute K =

[
XT
+ σYsZ θI

]
∈ Rn×h

Repeat

Compute V(t+1)
= (G(t))−1KT(K(G(t))−1KT)−1Y

Compute G(t+1), where the i-th diagonal element
is gii = 1

2vi(t+1)
2

Set t← t + 1
Until

∣∣J(t+1) (V)− J(t)(V)
∣∣ < ε

Extract W from V
Compute Ys = XTW

End
When the feature ranking list generated by each model is

obtained, the Gaussian kernel based SVM (Chang and Lin, 2011)
and Ridge regression (Ridge) (Yang and Wen, 2018) are employed
to perform classification tasks. Based on the epilepsy EEG data
shown in Table 1, we construct 3 classification tasks (see Table 2).

For each task, 75% samples are used for training and 25%
samples are used for testing. Parameters (kernel width and slack
variable) in the Gaussian kernel based SVM and the regularized
parameter in Ridge are determined by 5-CV on the training set.
Testing procedure is repeated 100 times and the average results
in terms of Accuracy are recorded, where Accuracy is defined
as the ratio of the number of correctly classified samples to the
number of all samples.

Experimental Results
In this section, we report our experimental results from two
main aspects, i.e., classification performance of selected features
and the parameter analysis. Figures 4, 5 show the classification
performance of five models with different numbers of features
(from 5 to 100, step size is 5) selected from the corresponding

TABLE 2 | Three classification tasks for selected features.

No. of tasks Volunteers Groups #Sizes #Classes Task description

Task 1 Health A, B 200 2 Classify healthy subjects to the eye-opening group and the eye-closing
group.

Task 2 Epileptic C, D and E 300 3 Classify epileptic subjects to non-seizure period, interseizure period and
seizure period.

Task 3 Health/Epileptic A, B, C, D and E 500 2 Classify all subjects into healthy group and epileptic group.
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 Task 1

 Task 2

  Task 3

A

B

C

FIGURE 4 | Classification performance by SVM. SDE-JS-Regression is our
method. (A) Task 1. (B) Task 2. (C) Task 3.

ranking list. Figure 6 shows parameter analysis results w.r.t the
regularized parameter θ and the number of components m, where
θ is searched from the range [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,

 Task 1

Task 2

 Task 3

A

B

C

FIGURE 5 | Classification performance by Ridge. SDE-JS-Regression is our
method. (A) Task 1. (B) Task 2. (C) Task 3.

1.5, 2, 2.5] and m is searched from the range [1–10]. Accuracy
of each task is obtained on the top 55 features selected from the
ranking feature list.

DISCUSSION

From the comparative results of three classification tasks shown
in Figures 4, 5, we observe that SDE-JS-Regression performs
better than the benchmarking models, especially mRMR,
RFE-SVM, and Relief. On task 3, regardless of SVM or Ridge,
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 Task 1

 Task 2

 Task 3

A

B

C

FIGURE 6 | Parameter analysis w.r.t θ and m. Accuracy of each task is
obtained on the top 55 features selected from the ranking feature list. (A) Task
1. (B) Task 2. (C) Task 3.

SDE-JS-Regression always perform better than E-JS-Regression
when the number of selected top features is bigger than 15. More
characteristics are exhibited from the following aspects.

• From our experimental results, we find that features
obtained from embedded feature selection models
(SDE-JS-Regression and E-JS-Regression) are more
inductive to the classifier than filter models (mRMR
and Relief) and wrapper models (RFE-SVM). This is
because embedded feature selection models minimize
the classification training errors during the procedure of
feature selection. Therefore, for our epilepsy classification
tasks via EEG signals, embedded feature selection models
are more suitable.
• On the three classification tasks, especially task 3, SDE-

JS-Regression achieves better performance than E-JS-
Regression, which indicates that our stacked deep structure
can indeed help to select more classification addictive
features and hence improve the classification performance.
As we stated before, the benefits we inherit from the stacked
deep structure lie in that the random projections added into
the original features can help us to continuously open the
manifold structure existing in the original feature space in
a stacked way. With such benefits, the input feature space
becomes more linearly separable.
• From Figure 5, with respect to θ, we observe that SDE-JS-

Regression performs well in its range of [0.001, 0.05]. With
the further increase of θ from 0.05 to 2.5, the classification
performance begins to decrease. However, although the
performance begins to decline when θ is in the range of
[0.05, 2.5], the performance of SDE-JS-Regression does not
show a significant change. Therefore, our proposed SDE-
JS-Regression seems to be robust to θ. For our three EEG
classification tasks, θ can be set from 0.001 to 0.05.
• The number of layers (components) in the structure of

SDE-JS-Regression determines the number of random
shifts added into the input feature space. As we can see from
Figure 5 that “the more layers the better performance” is
not holds. On the three tasks, 4–6 layers can guarantee a
relatively good performance. Too many random shifts can
lead to distribution distortion of the training set.

CONCLUSION

In this study, we propose a feature selection model SDE-JS-
Regression for AI-assisted clinical diagnosis through EEG signals.
SDE-JS-Regression is quite different from the existing embedded
models due to its stacked deep structure that is constructed
in a layer-by-layer manner based on the stacked generalized
principle. SDE-JS-Regression is derived from E-JS-Regression
but performs better than E-JS-Regression since that random
projections added into the original features can help us to
continuously open the manifold structure existing in the original
feature space in a stacked way so that the original input feature
space becomes more linearly separable. We construct three
classification tasks based on the selected features to evaluate the
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effectiveness of SDE-JS-Regression. Experimental results show
that features selected by SDE-JS-Regression are more meaningful
and helpful to the classifier hence generates better performance
than benchmarking models. This study is not without limitations.
For example, how to effectively determine the number of layers
is very important. Therefore, in addition to CV, a new finding
strategy will be desired in our coming studies.
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