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Objectives: Selectively attending to a target talker while ignoring multiple interferers
(competing talkers and background noise) is more difficult for hearing-impaired (HI)
individuals compared to normal-hearing (NH) listeners. Such tasks also become more
difficult as background noise levels increase. To overcome these difficulties, hearing
aids (HAs) offer noise reduction (NR) schemes. The objective of this study was to
investigate the effect of NR processing (inactive, where the NR feature was switched
off, vs. active, where the NR feature was switched on) on the neural representation of
speech envelopes across two different background noise levels [+3 dB signal-to-noise
ratio (SNR) and +8 dB SNR] by using a stimulus reconstruction (SR) method.

Design: To explore how NR processing supports the listeners’ selective auditory
attention, we recruited 22 HI participants fitted with HAs. To investigate the interplay
between NR schemes, background noise, and neural representation of the speech
envelopes, we used electroencephalography (EEG). The participants were instructed to
listen to a target talker in front while ignoring a competing talker in front in the presence
of multi-talker background babble noise.

Results: The results show that the neural representation of the attended speech
envelope was enhanced by the active NR scheme for both background noise levels.
The neural representation of the attended speech envelope at lower (+3 dB) SNR
was shifted, approximately by 5 dB, toward the higher (+8 dB) SNR when the NR
scheme was turned on. The neural representation of the ignored speech envelope was
modulated by the NR scheme and was mostly enhanced in the conditions with more
background noise. The neural representation of the background noise was modulated
(i.e., reduced) by the NR scheme and was significantly reduced in the conditions with
more background noise. The neural representation of the net sum of the ignored
acoustic scene (ignored talker and background babble) was not modulated by the
NR scheme but was significantly reduced in the conditions with a reduced level of
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background noise. Taken together, we showed that the active NR scheme enhanced
the neural representation of both the attended and the ignored speakers and reduced
the neural representation of background noise, while the net sum of the ignored acoustic
scene was not enhanced.

Conclusion: Altogether our results support the hypothesis that the NR schemes in
HAs serve to enhance the neural representation of speech and reduce the neural
representation of background noise during a selective attention task. We contend that
these results provide a neural index that could be useful for assessing the effects of HAs
on auditory and cognitive processing in HI populations.

Keywords: hearing impairment, hearing aids, noise reduction scheme, electroencephalography, stimulus
reconstruction

SUMMARY

Selectively attending to a target talker while ignoring multiple
interferers is more difficult for hearing-impaired (HI) individuals
compared to their normal-hearing (NH) peers and becomes
more difficult with increased background noise levels. To
overcome such difficulties, hearing aids (HAs) offer noise
reduction (NR) schemes. Here we aimed to investigate the
effect of NR processing on the neural representation of speech
envelopes across two different background noise levels by using a
stimulus reconstruction (SR) method. The electroencephalogram
was recorded while 22 HI participants fitted with HAs were
performing a listening task. The participants were instructed
to listen to a target talker in front of them while ignoring a
competing talker also in front in the presence of multi-talker
background babble noise. Measures of neural representation for
the envelopes of the attended speech, the unattended speech,
and the background noise were calculated separately. The
results show that the neural representation of the attended
speech envelope was enhanced by the active NR scheme for
both background noise levels. The neural representation of the
attended speech envelope at low signal-to-noise ratio (SNR) was
shifted, approximately by 5 dB, toward the higher SNR when
the NR scheme was turned on. The neural representation of the
ignored speech envelope was modulated by the NR scheme and
was mostly enhanced in the conditions with more background
noise. The neural representation of the background noise was
modulated by the NR scheme and was significantly reduced
in the conditions with more background noise. The neural
representation of the net sum of the ignored acoustic scene
(ignored talker and background babble) was not modulated by
NR scheme but was significantly reduced in the conditions with
a reduced level of background noise. We conclude that, during
a selective attention speech task, the active NR scheme enhanced
the neural representation of both the attended and the ignored
speakers and reduced the neural representation of background
noise, while the net sum of the ignored acoustic scene was not
enhanced. We contend that these results provide a neural index
that could be useful for assessing the effects of HAs on auditory
and cognitive processing in HI populations.

INTRODUCTION

Natural speech communication with multiple concurrent talkers
requires a listener to be able to selectively attend to a talker while
ignoring interfering talkers or background noise (Cherry, 1953;
Fritz et al., 2007). Behavioral studies have shown that this ability
to segregate multiple talkers and selectively attend to a particular
talker is decreased in hearing-impaired (HI) listeners (Pichora-
Fuller and Schneider, 1991; Moore, 1996; Gatehouse and Noble,
2004; Shinn-Cunningham and Best, 2008).

To compensate for the hearing impairment, aided hearing
offers various advanced signal processing methods for digital
noise suppression. Such noise reduction (NR) processing aims to
reduce the level of interfering background noise to improve the
signal-to-noise ratio (SNR; Chung, 2004; Dillon, 2012). Previous
studies have shown that fast-acting NR processing reduces the
listening effort in HI listeners and improves speech intelligibility
at low SNRs (Wendt et al., 2017; Ohlenforst et al., 2018). The
question is whether these improvements of speech intelligibility
and reduced effort can also support selective auditory attention,
i.e., improvements in a listener’s ability to selectively attend to one
talker in a sound mixture.

Human neuroimaging studies, including
electroencephalography (EEG), and magnetoencephalography
(MEG), have demonstrated a strong attentional modulation of
cortical responses by the substantial selective enhancement of
neural responses to an attended talker vs. competing talker(s)
during active listening (Ding and Simon, 2012a; Mesgarani
and Chang, 2012; Power et al., 2012; Ding and Simon, 2013;
Horton et al., 2013; Lakatos et al., 2013; Zion Golumbic et al.,
2013; Horton et al., 2014; Kong et al., 2014; Evans et al., 2016;
Fiedler et al., 2019). This stimulus–response correlation has
been referred to as “neural representation,” “speech tracking,”
or “neural entrainment” and reflects how strongly the speech
envelopes of the individual talkers are represented in the M/EEG.
The correlation reflects that concurrent competing talkers are
encoded individually in brain areas associated with the auditory
cortex. Moreover, the neural representation of the attended
talker is higher compared to that of the ignored (competing)
talker. That being said, the characterization of stimulus–response

Frontiers in Neuroscience | www.frontiersin.org 2 September 2020 | Volume 14 | Article 846

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00846 September 8, 2020 Time: 18:22 # 3

Alickovic et al. Noise Reduction Supports Selective Attention

correlation using computational strategies plays a major role in
investigating selective auditory attention.

Three inter-related computational strategies to characterize
stimulus–response correlation have been proposed in the
literature (Alickovic et al., 2019). First, stimulus reconstruction
(SR; decoding) is an inverse mapping technique that finds
a linear kernel, or response function, that best reconstructs
(approximates) the speech envelope from the population of
evoked neural responses. The correlation between reconstructed
and actual speech envelopes—reconstruction accuracy—is often
used as a metric to evaluate the fidelity of the neural
representation of speech (Ding and Simon, 2012a; Mesgarani and
Chang, 2012; O’Sullivan et al., 2015; Das et al., 2018; Aroudi et al.,
2019). Second, a closely related strategy, termed neural response
prediction (encoding), is a forward mapping technique that finds
a linear kernel known as temporal response function (TRF) that
best predicts the population of evoked neural responses from
speech features (Lalor et al., 2009; Ding and Simon, 2012a,
2013; Di Liberto et al., 2015; Alickovic et al., 2016; O’Sullivan
et al., 2019). Third, as an extension to these two strategies, a
hybrid strategy combining the strengths (and the weaknesses) of
encoding and decoding methods has also been proposed recently
(de Cheveigné et al., 2018; Dmochowski et al., 2018; Iotzov and
Parra, 2019).

Stimulus reconstruction has several advantages over the other
methods to shed light on the neural mechanisms being targeted
by hearing aids (HAs). First, it has been investigated in an
extensive body of auditory literature in recent years. Second,
the estimated neural representation of the speech envelope
(reconstructed speech envelope) may uncover information about
the perception and the processing of speech signals such as speech
intelligibility (Ding and Simon, 2013; Di Liberto et al., 2018;
Vanthornhout et al., 2018, Lesenfants et al., 2019; Verschueren
et al., 2019), focused attention (O’Sullivan et al., 2015; Fuglsang
et al., 2017), listener’s age (Presacco et al., 2016a, 2019; Brodbeck
et al., 2018; Decruy et al., 2019), hearing loss (Presacco et al.,
2019), and background noise level (Puvvada et al., 2017; Das et al.,
2018; Khalighinejad et al., 2019).

Yet, to the best of our knowledge, there have not been attempts
to evaluate the potential benefits of HAs equipped with NR
schemes on selective auditory attention in complex settings that
resemble everyday noisy social situations. The NR schemes in
HAs may greatly benefit the HI listener’s ability to focus attention
selectively by suppressing undesired background noise that is
not the focus of attention. By improving SNR, fast-acting NR
algorithms make the attended and the ignored talkers in front
more audible, which could help the HA users to voluntarily
switch attention between competing talkers while simultaneously
suppressing background noise. This suggests that changes in
NR processing in HAs may result in changes in the neural
representation of speech envelopes.

Importantly, fast-acting active NR processing may enhance
selective auditory attention by enhancing the strength of
the neural representation of the foreground (attended and
ignored) talkers while ensuring that the neural representation
of the background noise is suppressed when compared to the
inactive NR processing. Additionally, associated with the neural

representation of the ignored talker and the ignored background
noise, the net sum of the ignored acoustic scene outside of
the primary focus of the listener’s attention (ignored talker
and background noise in this study) should not be enhanced,
i.e., either reduced or unchanged. Taken together, compared
to inactive NR processing, fast-acting NR processing may be
advantageous in that it may contribute to the improved “neural
SNR,” which means that the fast-acting active NR processing
may enhance the EEG responses to the attended talker while
either reducing or keeping unchanged the EEG responses to the
background noise and the ignored acoustic scene.

Therefore, to test the feasibility of quantifying the user
benefits of NR schemes in HAs, inspired by a previous study
with normal-hearing (NH) listeners (Das et al., 2018), we
conducted a study in 22 HA users listening to continuous
speech in a competing talker scenario. The NR schemes were
tested in an “OFF” condition (inactive, where the NR feature
was switched off in the HA) and an “ON” condition (active,
where this feature was switched on in the HA) and under
two different background noise levels to explore the influences
of background noise level and noise reduction on the neural
representation of speech. Sentences spoken by two talkers
were presented from two different loudspeakers in front of
the HI listener (i.e., in the foreground). Four loudspeakers,
each playing a four-talker babble, were in the background.
The HI listener was instructed to attend to one of the two
talkers in the foreground while ignoring the other one and the
background noise.

The NR scheme used in the present study improves the SNR
of speech coming from the two foreground loudspeakers (i.e.,
both the attended and the ignored talkers) by predominately
attenuating the background noise coming from the four
background loudspeakers. The back-facing cardioid was used to
determine the levels and the spatial locations of noise and speech
sources in the environment. Then, a fast-acting combination of
minimum variance distortion-less response beam-former (Kjems
and Jensen, 2012), which is designed to improve SNR by using
spatial filtering to attenuate noise between speech sources, and
a single-channel Wiener post-filter (Jensen and Pedersen, 2015)
was applied before amplification. If speech-like modulation is
detected in one of the 16 frequency bands in a sound source in
the environment, the system is expected to deactivate the beam-
forming and post-filter NR in that band. This is done to prevent
the attenuation of speech in the environment.

The NR scheme gives an overall SNR improvement of
approximately +5 dB. For example, Ohlenforst et al. (2018)
used a similar NR scheme and settings. In a test setup where
a single target speaker was presented in two different types of
background noise, the NR scheme provided SNR improvements
up to +5.2 dB. The SNR improvement was further verified
in technical measurements done in the specific test setup of
the present study, which had two target talkers instead of one.
The details of the technical measurements, together with the
description of the NR scheme, are discussed in the “MATERIALS
AND METHODS” section. Based on the approximately 5-
dB SNR improvement provided by the NR scheme, the two
SNR levels tested in this study also allowed us to investigate
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whether the SNR improvement provided by the NR scheme
can be translated to a corresponding +5 dB of “neural SNR”
improvement or, in other words, whether the NR-enhanced
neural representation of the attended talker corresponds to a+5-
dB shift in the reconstruction accuracy. This would be tested
by comparing the test conditions +3 dB SNR with active NR
(resulting in +8 dB SNR output from HA) and +8 dB SNR
with inactive NR.

In combination with EEG-based speech reconstruction, this
setup was designed to investigate whether NR processing in
HAs affects the strength of the neural representation of different
elements present in an acoustic scene and consequently supports
selective auditory attention in HI listeners. We hypothesized that:

(H1) The active NR scheme would enhance the neural
representation of the attended speech masked by a
competing talker and noise compared to when the NR is
inactive and across low and high SNRs.

(H2) The NR algorithm would enhance the neural
representation of the ignored speech to a higher degree at
a lower SNR than at a higher SNR.

(H3) The active NR processing would reduce the
neural representation of the background noise across
low and high SNRs.

(H4) The effect of the NR scheme on the neural
representation of the attended speech would correspond
to a +5-dB shift in the reconstruction accuracy toward the
higher SNR.

MATERIALS AND METHODS

Study Population
Twenty-two native Danish speakers (11 males), aged between 40
and 80 years (mean age 67 years, SD = 11.2) years, were recruited
from the Eriksholm Research Centre database (see Figure 1).
All the participants were experienced HA users, with at least
4 months of HA usage. This criterion was chosen because it may

FIGURE 1 | Frequency distribution of all participants by age.

take several weeks to months to get acclimatized to HAs (Munro,
2008; Dawes et al., 2014). The maximum difference between the
left and the right ears’ audiometric thresholds (averaged between
500 and 4,000 Hz) was below 8 dB, and the thresholds at 500,
1,000, 2,000, and 4,000 Hz ranged from 33 to 58 dB hearing level
(HL), with an average of 45 dB HL (see Figure 2). The inclusion
criteria for the participants were mild to moderate sensorineural
hearing threshold, normal or corrected-to-normal vision, and no
history of neurological disorders, dyslexia, or diabetes mellitus.

The study was approved by the ethics committee for the capital
region of Denmark (journal number H-1-2011-033). The study
was conducted according to the Declaration of Helsinki, and all
the participants signed a written consent prior to the experiment.

Hearing Aid Fitting and Signal
Processing
All the participants wore identical HA models, with two pairs of
HAs fitted for each participant. The Voice Aligned Compression
(VAC) amplification rationale (Le Goff, 2015) was applied in
both pairs of HAs to compensate for hearing loss based on each
individual’s hearing thresholds. The VAC amplification rationale
is based on a curvilinear, wide, dynamic-range compression
scheme with low-level compression knee points between 20 and
50 dB SPL (sound pressure level), depending on the frequency
range and the hearing thresholds.

In one pair, the NR scheme was turned off (Le Goff, 2015).
The HAs were set to the omnidirectional setting, with an added
natural slight forward effect of the pinna. This mimics the pinna’s
natural acoustic effect.

In the other pair, the NR scheme was activated. Technical
measurements were done to verify the output SNR improvement
in the HAs, which is defined as the difference between the
input level of the environment (two target talkers and four
background masker talkers) and HA output responses measured
on a head and torso simulator (HATS). A pair of HAs was

FIGURE 2 | Average audiometric thresholds (mean and SD) across the entire
frequency range measured (125–8,000 Hz).
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coupled to the HATS, and the output SNRs of the HAs were
derived using the phase-inversion technique described in Björn
and Olofsson (2004) with NR schemes ON and OFF. The
articulation index weighted SNR improvements were 6.24 and
5.17 dB at +3 and +8 dB SNR for NR ON compared to
that for NR OFF. These SNR improvements were within 1-dB
difference from the maximum SNR improvement of what were
reported by Ohlenforst et al. (2018).

Speech Material
Danish news clips of neutral content were used for all speech
streams. The two target streams were read by the same male and
female talker for all 84 trials. The four-talker babble presented
from each of the four loudspeakers in the back consisted of
two female speakers and two male speakers, and none of the 16
streams were the same for each trial.

The background noise was delivered from four loudspeakers.
Each loudspeaker played a different four-talker babble, leading to
an overall effect of 16-talker surrounding babble to be ignored.
Each babble stream was made from four unique single talkers—
two females and two males—each reading a different news clip.
The long-term average frequency spectrum of the babble noise
was matched with the target talkers. The two target talkers were
always presented at 65 dB, which was obtained by a fixed level
of 62 dB SPL for each of the loudspeakers during the entire
experiment, as indicated in Figure 3. Each of the maskers was
presented at either 53 or 48 dB, leading to a total of 59 or
54 dB background SPL.

The SNR was defined as the ratio of signal power of the
attended talker to the total signal power of the background noise,
similar to that of Das et al. (2018). Hence, the SPL of the attended
talker was raised either by +3 or +8 dB when compared to the
background (4 × 4 talker babble) noise, which was tested at
both NR schemes (OFF and ON) resulting in a 2 × 2 design.
The particular SNR levels were chosen to create “real-world”
listening conditions at different levels of difficulty. This level of
background noise was defined as the long-term average sound
level after eliminating pauses longer than 200 ms and applying
root mean square equalization to the streams.

Stimuli were routed through a sound card (RME Hammerfall
DSP multiface II, Audio AG, Haimhausen, Germany) and
were played via loudspeakers (Genelec 8040A; Genelec Oy,
Iisalmi, Finland).

Study Design
Our experimental design was inspired by a previous study with
NH listeners (Das et al., 2018). The participants were seated in
a listening booth with controlled light conditions and with two
target loudspeakers positioned at±22◦ azimuth and four masker
loudspeakers, each presenting a four-talker babble positioned at
±90◦ and ±150◦ azimuth, as illustrated in Figure 3. The task
for the participant was to attend to one of the two talkers in the
foreground while ignoring the other talker and the background
babble noise. The participants were presented speech-on-speech
from news clips obtained from Danish broadcasts (see section
“Speech Material”).

FIGURE 3 | Schematic illustration of the experimental setup. The two target (competing) speakers in the foreground were positioned 44◦ (±22◦) degrees apart and
played news clips (continuous speech) at 62 dB. Each of the four masker (babble) speakers in the background played a four-talker babble summing up to either 59
or 54 dB. The circle around talker T1 shows that the HI listener in this trial was instructed to attend to talker T1 and hence to ignore the competing talker T2 and the
four masker (babble) noises B1–B4. The HI listener was instructed to gaze at the computer screen during sound presentation, and neural responses were measured
using EEG.
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A total of 84 trials were conducted, with four trials used for
training and 80 trials used for testing and analysis. Each trial
consisted of a short period of silence, 5 s of background noise
followed by 33 s of simultaneous stimuli from all speakers, as
illustrated in Figure 4. After each trial, a two-choice question
about the content of the attended speech was presented to the
participant to ensure sustained attention.

The trials were randomized into a block design, with 20 trials
for each of the four experimental conditions: “+3 dB OFF,”
“+3 dB ON,” “+8 dB OFF,” and “+8 dB ON.” The target talkers
consisted of one male and one female talker. The male and the
female talkers were presented by separate loudspeakers, and the
gender and the position (left/right) were randomized. The 20
trials in each experimental condition (block) were divided into
sub-blocks of five randomized consecutive trials for each of “male
right,” “male left,” “female right,” and “female left,” as illustrated in
Figure 5. This design was only used to obtain an equal number
of attended speech streams and spatial distribution and not
used for any further sub-analysis. Before each sub-block of five
consecutive trials with the same attended talker, the participants
were instructed on the screen to pay attention to the target on
either the right or the left side and ignore the talker on the other

side and the babble noise from behind. Additionally, 5 s of the
attended speech from the to-be-attended spatial position was
played to prepare the participant for the task. The participants
were given a rest period after each of the four blocks. Two pairs
of HAs were used, each pre-set with the two different noise
reduction conditions. After each block, the HAs were removed
and replaced with either the same pair of HAs (if the same NR
condition was to follow), or the other pair of HAs (in cases where
the other NR condition was to follow).

Each participant’s visit started with a training block in which
the NR scheme was active (ON) and with one trial for each of
the stimuli “male right,” “male left,” “female right,” and “female
left” to ensure that the participants were confident with the
experimental procedure.

Neural Data Acquisition
Electroencephalography (EEG) data were recorded using a
BioSemi ActiveTwo amplifier system (Biosemi, Amsterdam,
Netherlands), with a standard cap including 64 surface electrodes
mounted on the scalp according to the international 10–20
system. The cap included driven right leg and common mode
sense electrodes, corresponding to the electrical reference, or

FIGURE 4 | Illustration of a trial design.

FIGURE 5 | Schematic illustration of the study design. The four conditions “+3 dB OFF,” “+3 dB ON,” “+8 dB OFF,” and “+8 dB ON” were tested with 20 trials each.
For each condition, the trials were randomized with five consecutive trials with attended speaker being “male right (MR),” “male left (ML),” “female right (FR),” and
“female left (FL).” The order of these subconditions was randomized between conditions and participants and were applied to avoid bias toward one of the speakers
or spatial awareness.
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“ground,” as reference for all other recording electrodes. To
ensure stable connections to the scalp, the electrodes were
prepared (and if necessary, supplied with additional gel) such that
the offset voltage was stable and below 50 mV. The EEG signals
were recorded with a sampling rate of 1,024 Hz.

EEG-Based Envelope Reconstruction
Data analysis was done offline in Matlab R2018a (MathWorks)
using the Fieldtrip toolbox (Oostenveld et al., 2011), mTRF
Toolbox (Crosse et al., 2016), and custom-written scripts.

Neural Data Preprocessing
The signals picked up by each EEG electrode were epoched from
8 s before to 33 s after the onset of the two target (attended and
ignored) speech stimuli. Then, 0.5-Hz high-pass filter, 95-Hz low-
pass filter, and 50-Hz notch filter were applied. Afterward, the
data were downsampled to 512 Hz and referenced to the average
of the two mastoid electrodes. The EEG channels with excessive
noise were identified visually and removed. On average, 3.1± 0.8
channels were rejected. The noisy channels were interpolated
from the surrounding clean EEG channels by using the nearest
neighbor method in Fieldtrip (Oostenveld et al., 2011). The
logistic Infomax independent component analysis algorithm
(Bell and Sejnowski, 1995; Delorme and Makeig, 2004) was
applied to calculate temporally independent components. The
components were inspected visually and rejected if identified
to clearly reflect artifacts caused by eye movements, eye blinks,
muscle activity, heart beats, and single-channel noise. On average,
7.9± 3.6% of the components were rejected. One participant
with excessively noisy data was removed from further analysis.
Furthermore, due to technical problems, no data for one block
of one participant was recorded. In a final step, the EEG signals
were band-pass-filtered between 2 and 8 Hz (neural δ and
θ bands) using a third-order Butterworth filter to extract the
evoked neural activity representing slow temporal modulations
in acoustic stimuli (Ding and Simon, 2012b; Zion Golumbic et al.,
2013; O’Sullivan et al., 2015; Alickovic et al., 2019). Subsequently,
data were downsampled to 128 Hz and segmented into trials
of 33-s duration from 0 to 33 s relative to the onset of the
attended speech stream.

Extraction of Acoustic Envelope
The acoustic envelope Ui was calculated by taking the absolute
value of the analytic signal after a Hilbert transform of the raw
sound signal at its original sampling rate (44.1 kHz), Butterworth
low-pass filtering of the resulting waveform with a cutoff at 8 Hz
(O’Sullivan et al., 2015), downsampling the result to match the
sampling rate of the EEG data (128 Hz), and then separating
the calculated envelopes into 33-s snippets to match their
corresponding EEG trials. The envelope of the attended talker is
referred to as the attended speech envelope (UA) and the envelope
of the ignored talker is referred to as the ignored speech envelope
(UI). In contrast, the envelope of the ignored background noise,
comprising four different four-talker babbles B1, B2, B3, and B4
(see Figure 3), is referred to as the ignored background noise
envelope (UIBN = UB1+B2+B3+B4), and the envelope of the entire
ignored acoustic scene, comprising both the ignored talker, and

the ignored background noise (see Figure 3), is referred to as
the ignored acoustic scene envelope (UIAS = UI+B1+B2+B3+B4).
These envelopes are used to design the neural models in section
“Decoder Designs.”

Stimulus Reconstruction
To study the effects of NR processing on selective attention
tasks in HI listeners, we used the method of stimulus
(speech) reconstruction (SR). The SR estimates the unknown
model response (in the literature, referred to as a linear
kernel) function or decoder, which best relates evoked neural
responses to (spectro-) temporal information in speech such
as acoustic envelope. This allows a direct comparison between
the reconstructed acoustic envelope and the envelope of the
actual sound stream via Pearson’s r correlation coefficient, which
reflects reconstruction accuracy—a measure of the fidelity of the
neural representation of that acoustic envelope (Ding and Simon,
2012a; Presacco et al., 2016b).

With SR, the assumption is that the acoustic envelope can be
explained as the convolution of the EEG signals with an unknown
model response plus noise. Given the known acoustic envelope
features and the measured EEG data, the model response is
estimated in this study using dense linear regression, with an
integration window set from 0 to 250 ms (O’Sullivan et al., 2015;
Das et al., 2018). This design was chosen to capture the relevant
temporal features in the EEG data which best correlate to each
time point of the acoustic envelope to be reconstructed (see
section “Supplementary Appendix A” for more details).

Decoder Designs
In order to quantitatively assess whether NR processing affects
the neural representations of the sounds coming from different
sound sources in an auditory scene, we estimated four different
potential neural representations of sound elements in the multi-
talker acoustic scene. To estimate the neural representations of
the attended speech envelope, ignored speech envelope, ignored
background noise envelope, and ignored acoustic scene envelope,
four separate decoders were trained in a participant-specific
manner for each experimental condition:

(1) The attended talker decoder trained on the responses to the
attended talker.

(2) The ignored talker decoder trained on the responses to
the ignored talker.

(3) The ignored noise decoder trained on the responses to the
ignored background noise.

(4) The ignored acoustic scene decoder trained on the
responses to the ignored acoustic scene consisting of the
competing talker and background noise.

Each of the four decoding approaches was used to reconstruct
the corresponding acoustic envelope whose similarity with the
actual acoustic envelope was assessed via Pearson correlation
coefficient r.

The attended talker decoder analysis tests the hypothesis that
the active NR scheme enhances the neural representation of the
attended speech. The ignored talker decoder analysis tests the
hypothesis that the active NR processing enhances the neural
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representation of the ignored speech. The ignored noise decoder
analysis tests the hypothesis that the active NR processing reduces
the neural representation of the background noise. Finally, the
ignored acoustic scene decoder analysis includes an additional
exploration of the EEG responses to investigate whether the active
NR processing either reduces or keeps unchanged (i.e., does not
enhance) the neural representation of the ignored acoustic scene
consisting of the competing talker and the background noise (i.e.,
sounds outside of the primary focus of the listener’s attention).

The four decoders were optimized separately for each
experimental condition using leave-one-out (LOO) cross-
validation (CV) while maximizing the Pearson’s r correlation
between the reconstructed and the actual acoustic envelope
(Crosse et al., 2016; Das et al., 2018). At the CV step j, the
data from all trials but trial j were used to fit a model given in
Eq. (2) in a per-trial manner, i.e., treating each trial as a single
mapping problem, estimating one decoder for each training trial
separately, and averaging across all but the j-th decoder. Then,
the averaged decoder was used to reconstruct the envelope of
the left-out j-th trial as in Eq. (4). The CV procedure was
then repeated for all trials, thus allowing one to reconstruct
one envelope for each trial [see O’Sullivan et al. (2015) and
Alickovic et al. (2019) for more details on the “per-trial” training
implementation]. These results were then grouped based on the
experimental condition.

The regularization (ridge) parameter (see section
“Supplementary Appendix A”) was set to a fixed value to
produce the highest group mean LOO correlation (Pearson’s
correlation r), i.e., to maximally correlate the reconstructed
envelope with the acoustic envelope to be decoded across all
participants and experimental conditions (λ = 105 ).

Statistical Analysis
All statistical analyses were conducted in R (version 3.6.1) using
the R packages lme4 (Bates et al., 2014) and lmerTest (Kuznetsova
et al., 2017) for fitting linear mixed models (LMMs). The function
lmer was applied in this work to fit the LMMs to the data.
We applied two-way LMM ANOVA to investigate the effect of
the experimental conditions [NR, two types: inactive (OFF) vs.
active (ON), SNR, and two levels: low (+3 dB) vs. high (+8 dB)]
and their joint effect on the neural speech representations. We
fitted one LMM ANOVA model for each of the four decoders,
modeling reconstruction accuracy as a function of NR type and
SNR, their corresponding interaction treated as fixed factors,
and the participants treated as a repeated measure, i.e., random
effects. The probability level was p < 0.05. P-values for the
individual follow-up pairwise comparison of the NR processing
settings [inactive (OFF) vs. active (ON)] at each SNR level were
based on t-values and used Satterthwaite approximation for
degrees of freedom.

RESULTS

We examined the effect of NR processing on the neural
representation of the attended talker, ignored talker,

ignored background noise, and ignored acoustic scene
across different SNRs.

Neural Representation of Attended
Speech
To test the hypothesis H1, we used the attended talker decoder to
reconstruct the attended speech envelope to assess the strength of
the neural representation of attended speech across four different
listening conditions (see Figure 6). As shown in Figure 6,
the average reconstruction accuracy improves when the NR
processing is active. The LMM ANOVA of the reconstruction
accuracy rA with main factors of SNR and NR found a significant
effect for NR

[
F419 = 9.2783, p = 0.0024

]
. No significant

effect was found for SNR
[
F419 = 0.2849, p = 0.59369

]
.

Furthermore, no significant effect for interaction between
SNR and NR

[
F419 = 0.2558, p = 0.6131

]
was found,

suggesting that NR was equally effective at enhancing the
reconstruction accuracy r at both SNR levels. A follow-up
pairwise comparison for each SNR level confirmed that the
significant effect of NR processing was present at both SNR
levels

[
+3 dB : p = 0.0092,+8 dB : p = 0.0366

]
. In addition

to this, we also tested whether the active NR scheme shifts the
reconstruction accuracy by approximately 5 dB toward the
higher SNR. Figure 6 shows that the average reconstruction
accuracy is higher at “+3 dB ON” condition than at “+8 dB
OFF” condition. However, the post hoc pairwise comparison
did not reveal the significant difference in the reconstruction
accuracy values between these two conditions

[
p = 0.0782

]
.

Given the non-significant interaction between SNR and NR,
these results could be seen to suggest that the NR-enhanced
neural representation also corresponds to a +5-dB shift (even
though the SNR improvement from HA is relatively less, which is
3.6 dB). These results validated that a NR scheme can significantly
improve the neural representation of attended speech in, for
the HI individuals, challenging sound environments and
that this improvement could correspond to the shift of 5 dB
toward the higher SNR.

Neural Representation of Ignored
Speech
Prior to testing H2, we investigated how the neural representation
of the ignored talker compared to the neural representation
of the attended talker (see Figure 7). We applied a one-way
LMM ANOVA to test the effect of attention on the neural
representation of speech. In this model, reconstruction accuracy
was treated as a dependent measure, attention was treated as
a fixed effect, and the participants were treated as a random
measure, i.e., random effects. The LMM ANOVA revealed a
significant main effect of attention (F = 942.5845, p < 2.2e-16),
which confirms that the attended talker is more strongly
represented in the brain than the ignored talker.

To test the hypothesis H2, we investigated whether the
neural representation of the ignored speech envelope,
reconstructed using the ignored talker decoder, depended
on NR scheme and SNR level. Figure 7 shows the reconstruction
performances of the ignored speech envelope for inactive
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FIGURE 6 | (H1) The active noise reduction (NR) scheme enhances the neural representation of attended speech to when the NR is inactive and across low and high
signal-to-noise ratio (SNR) levels. Boxplots showing the reconstruction accuracy values of the attended speech envelope reconstructed from the attended talker
decoder for two SNR levels tested with NR scheme inactive (OFF) or active (ON; left column) for global averages across NR schemes (middle column) and for global
averages across SNR levels (right column). A significant main effect of NR scheme setting, indicating the enhanced neural representation of the attended speech
when NR scheme was active, was observed. Significant differences in reconstruction performances between inactive and active NR in the pairwise comparison at
each SNR level were observed. The horizontal lines in yellow denote single participants and the horizontal lines in black depict predictions of linear mixed models.
The black horizontal line in the boxplot denotes the mean reconstruction accuracy of the attended speech envelope and the box indicates the upper and the lower
quartiles, with the vertical lines representing the minimum and the maximum reconstruction accuracy values. The asterisks indicate significant differences (*p < 0.05,
**p < 0.01); ns, not significant.

and active NR schemes for the two SNR levels. The
reconstruction accuracy for the ignored speech envelope
was modulated by SNR

[
F419 = 6.767, p = 0.0094

]
and NR[

F419 = 27.816, p < 0.0005
]
, with an interaction between

SNR and NR
[
F419 = 10.966, p = 0.002

]
, indicating that the

reconstruction accuracy (neural representation) of the ignored
speech is affected by the differences in listening difficulty (SNR)
and the NR processing algorithm. The interaction effect between
NR scheme and SNR level implies that the NR effect of the
reconstruction accuracy for the ignored speech envelope is
more prominent in the difficult listening situation at +3 dB,
as illustrated in Figure 7. A follow-up pairwise comparison
revealed significant differences in reconstruction accuracy
(neural representation) of the ignored speech between NR
scheme settings at lower SNR (p < 0.0005), but not at higher
SNR (p = 0.1621).

Neural Representation of the Ignored
Background Noise
To test hypothesis H3, Pearson correlation between the neural
representation of the ignored background envelope estimated
from the ignored noise decoder and the actual ignored speech
envelope was calculated for each participant and experimental

condition (see Figure 8). The results obtained from the
analysis are shown in Figure 8. There was a significant main
effect of NR scheme setting

[
F419 = 6.214, p = 0.013

]
and

correlations were overall lower when the NR scheme was
active. The LMM ANOVA also revealed a significant main
effect of SNR

[
F419 = 21.3262, p < 0.0005

]
and correlations

were overall lower when the SNR was increased. There was
no significant interaction effect between NR scheme and SNR[
F419 = 1.1101, p = 0.2922

]
. Follow-up pairwise comparisons of

the two NR scheme settings (OFF or ON) were applied at the two
SNR levels. Significant differences in correlations were observed
in the follow-up pairwise comparison between the NR schemes at
lower SNR (+3 dB; p = 0.0351), but not at higher SNR (+8 dB;
p = 0.5359). These results revealed a significant reduction of
the neural representation of background noise when the NR
scheme was turned on.

Neural Representation of the Ignored
Acoustic Scene
Finally, we exploratorily investigated the neural representation of
the ignored acoustic scene consisting of the ignored talker and
the background noise. The neural representation of the ignored
acoustic scene envelope was estimated using the ignored acoustic
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FIGURE 7 | (H2) The NR algorithm enhances the neural representation of the ignored speech to a higher degree at a lower signal-to-noise ratio (SNR) level than at a
higher SNR. Boxplot showing the reconstruction accuracy value of the ignored speech envelope reconstructed from the ignored talker decoder for two SNR levels
tested with noise reduction (NR) scheme inactive (OFF) and active (ON; left column) for global averages across NR schemes (middle column) and for global averages
across SNR levels (right column). A significant main effect of NR, indicating the enhanced neural representation of the ignored speech when NR scheme was turned
on, and a significant main effect of SNR were observed. Significant differences in reconstruction performances were seen between inactive and active NR in the
pairwise comparison at lower SNR (+3 dB). The horizontal lines in yellow denote single participants and the horizontal lines in black depict predictions of linear mixed
models. The black horizontal line in the boxplot denotes the mean reconstruction accuracy of the ignored speech envelope and the box indicates the upper and the
lower quartiles, with the vertical lines representing the minimum and the maximum reconstruction accuracy values. The asterisk indicates significant differences
(**p < 0.01, ****p < 0.0005); ns, not significant.

scene decoder (see Figure 9). Figure 9 shows the correlation
values reflecting the reconstruction performances for each NR
scheme setting tested at each of the SNR conditions. We found
a significant main effect of SNR

[
F419 = 4.3828, p = 0.03654

]
.

However, no significant effect for NR scheme was observed[
F419 = 0.4205, p = 0.5168

]
, showing that the NR scheme did

not significantly enhance the neural representation of the ignored
acoustic scene. A significant interaction was also observed
between SNR and NR, indicating that the NR dependency of the
reconstruction performance differs according to the SNR level[
F419 = 7.7392, p = 0.0055

]
. A pairwise post hoc comparison for

each noise condition revealed a significant difference between
NR scheme settings at +8 dB SNR (p = 0.0153915), indicating
a significantly reduced neural representation of the ignored
acoustic scene. Hence, these results suggest that an active NR
scheme should not enhance the ignored acoustic scene.

DISCUSSION

In this study, we systematically studied the effect on NR and SNR
on neural speech representation during selective attention by
means of SR methods applied to EEG responses. Taken together,
we showed that active NR enhanced the neural representation of

both the attended and the ignored speaker and reduced the neural
representation of background noise, while the net sum of the
ignored acoustic scene (ignored talker and background babble)
was not enhanced. In addition, the condition with low SNR at
+3 dB had increased neural background noise suppression as
compared to the condition with high SNR at +8 dB. Hence, the
overall neural representation of the foreground was enhanced as
compared to the background noise during an active NR scheme.
These findings were consistent across two SNR levels. Thus,
these results suggest that the NR algorithms in HAs play an
important role in enhancing the neural representation of speech
and reducing the neural representation of background noise in
HI listeners during a selective auditory attention task.

Contribution of NR Processing and SNR
on Neural Representation of Speech
Attended Speech
The neural representation of the attended talker was significantly
affected by the levels of NR scheme (ON vs. OFF) and SNR
conditions. Our main finding was that the neural representation
of attended speech was enhanced when the NR scheme was
active as compared to inactive. Furthermore, as a complementary
finding, our results revealed that the changes in SNR level
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FIGURE 8 | (H3) The active NR processing reduces the neural representation of the background noise across low and high signal-to-noise ratio (SNR) level. Boxplot
showing the reconstruction accuracy values of the ignored background noise envelope reconstructed from the ignored noise decoder for two SNR levels tested with
noise reduction (NR) scheme inactive (OFF) or active (ON; left column) for global averages across NR schemes (middle column) and for global averages across SNR
levels (right column). A significant main effect of NR, indicating the reduced neural representation of the ignored background noise when NR scheme was turned on,
and a significant main effect of SNR were observed. A significant difference in reconstruction performances between inactive and active NR in the pairwise
comparison at lower SNR (+3 dB) was observed. The horizontal lines in yellow denote single participants and the horizontal lines in black depict predictions of linear
mixed models. The black horizontal line in the boxplot denotes the mean reconstruction accuracy of the ignored background noise envelope and the box indicates
the upper and the lower quartiles, with the vertical lines representing the minimum and the maximum reconstruction accuracy values. The asterisk indicates
significant differences (*p < 0.05, ****p < 0.0005); ns, not significant.

were accompanied by changes in the reconstruction accuracy
of attended speech in HI listeners. As expected, a lower SNR
produced lower reconstruction accuracy, while a high SNR
produced higher reconstruction accuracy of attended speech.
This observation is in line with a recent study with NH listeners
(Das et al., 2018). Next to Das et al. (2018), our results are in
line with the results reported by Decruy et al. (2020), showing
that reconstruction fidelity increases with increasing speech
understanding in both NH and HI participants. Furthermore,
this association between increased reconstruction fidelity with
increased SNR and vice versa is also consistent with the results
reported in recent studies with older clinically NH listeners
(Presacco et al., 2016a,b) and older HI listeners (Presacco et al.,
2019). Here, for the first time, we showed that the decline in
reconstruction accuracy with decreasing SNR can be corrected
with an active NR scheme in HAs. Interestingly, we also found
that the neural representation of the attended speech envelope
at lower (+3 dB) SNR was shifted by approximately 5 dB
toward the higher (+8 dB) SNR when the NR scheme was
turned on. In this context, it may be worth noting that previous
studies targeting attention gain used the weighting to a given
stream that was roughly 10 dB higher when it was attended
compared to when another sound was attended (Choi et al.,
2013). As hypothesized (H1 and H4), our results hence suggest
that the active NR scheme helps the HI listeners to selectively

attend to the talker of most importance to them in challenging
listening environments.

Ignored Speech
The neural representation of the ignored talker was enhanced
during active NR processing, and this enhancement was more
prominent at a lower SNR. As the NR algorithm should
suppress background sounds while still providing audibility of
sound sources in front of the listener, this demonstrates the
benefit of active NR to enable the HA user to switch attention
between competing talkers. This finding is consistent with a
recent study which reported that the neural representation
of ignored speech was significantly affected by the acoustic
environment (Fuglsang et al., 2017). Fuglsang and colleagues
found that the reconstruction accuracy of ignored speech was
higher in an anechoic condition compared to mildly and highly
reverberant conditions. In addition, this finding is also consistent
with an earlier study that tested the perceptual load theory
(Lavie, 1995) of selective auditory attention and found that
reduced perceptual load leads to increased neural processing
of ignored speech streams as reflected by an increased cortical
segregation of the ignored speech streams (Hausfeld et al.,
in review). As hypothesized (H2), these findings indicate that the
acoustic environment may influence the neural representation
by reducing the reconstruction fidelity of the ignored talker in
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FIGURE 9 | The active NR processing does not enhance the neural representation of the ignored acoustic scene consisting of the ignored talker and background
noise. Boxplot showing the reconstruction accuracy values of the ignored acoustic scene envelope reconstructed from the ignored acoustic scene decoder for two
signal-to-noise ratio (SNR) levels tested with noise reduction (NR) scheme inactive (OFF) or active (ON; left column) for global averages across NR schemes (middle
column) and for global averages across SNR levels (right column). A significant main effect for SNR and an interaction between SNR and NR were observed. The
results showed no significant main effect of NR. A significant difference in reconstruction performances between inactive and active NR in the pairwise comparison at
higher SNR (+8 dB) was observed. The horizontal lines in yellow correspond to each participant. The horizontal lines in yellow denote single participants and the
horizontal lines in black depict predictions of linear mixed models. The black horizontal line in the boxplot denotes the mean reconstruction accuracy of the ignored
acoustic scene envelope and the box indicates the upper and the lower quartiles, with the vertical lines representing the minimum and the maximum reconstruction
accuracy values. The asterisk indicates significant differences (*p < 0.05); ns, not significant.

more complex acoustic scenes. Our study took this a step further
by examining the effect on neural representations of the ignored
talker in the case of varying background noise levels obtained by
NR schemes in HAs.

Background Noise
As hypothesized (H3), the active NR processing reduced
the overall neural representation of the background noise
as compared to inactive NR. This result was observed
by reconstructing the envelope of unsegregated background
noise sounds rather than reconstructing the envelope for
each background noise object and then averaging them.
This approach was based on findings in recent studies
suggesting that the background streams are more accurately
represented as a single unsegregated background noise object
rather than separated noise objects (Puvvada et al., 2017;
Hausfeld et al., 2018).

Hence, the activation of a NR scheme suppressed the
background noise features in the evoked neural responses in HI
listeners. This finding confirms that NR processing plays a role
in reducing background noise in the cortex and thus may lead
the HA user to find the background noise less troubling (Dillon,
2012). This reduction is likely due to the NR algorithms applied
in this study, which attenuates background noise by combining

beam-former (Kjems and Jensen, 2012) and a single-channel
Wiener post-filter (Jensen and Pedersen, 2015).

Ignored Acoustic Scene
An additional exploration of the response shows that fast-acting
NR algorithms enhance the neural representation of the attended
speaker while ensuring that the neural representation of the
ignored acoustic scene is not enhanced, i.e., either reduced or
unchanged. We observed that the neural representation of the
ignored acoustic scene was reduced at high SNR levels with active
NR, while it was unchanged between NR settings at low SNR
level. This result was obtained by reconstructing the envelope
of the unsegregated ignored acoustic scene based on previous
findings (Puvvada et al., 2017; Hausfeld et al., 2018).

Neural Speech Representation as a Tool
to Evaluate HA Settings
The experimental design introduced in this study allowed us to
analyze the effect of NR processing on cortical responses to both
the foreground (competing talkers) as well as the background
noise across two different SNR levels using SR method. We
hypothesized that, under challenging listening conditions, HAs
can alleviate the impact of background noise while providing
adequate access to foreground streams during selective auditory
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attention by applying high-end NR signal processing algorithms.
It therefore appears reasonable to use the SR to objectively
assess how well the talkers of interest in the foreground can be
enhanced and the noise in the background suppressed in the
brain with different HA settings. In our previous studies, we
showed that NR scheme processing had a significant positive
effect on sentence recognition and listening effort measured
by peak pupil dilation (Wendt et al., 2017, 2018; Ohlenforst
et al., 2018). We thus designed this experiment to see whether
the NR scheme processing also has a significant positive effect
on neural speech representation and consequently on selective
auditory attention.

Our results indicate that the NR processing alters the neural
representations of sounds present in complex acoustic scenes
across different SNRs, demonstrating the role of NR algorithms
in natural sound environments. Crucially, we showed that
the NR algorithm applied in this study enhanced the neural
representations of attended and ignored talkers and reduced the
neural representation of ignored background noise. We also give
the evidence that the active NR corresponds to a shift in the
neural representations of sound elements from 5 dB toward a
higher SNR. Our results indicate that some aspects of selective
auditory attention in HI listeners can be improved independent
of SNR. Our study confirmed that the currently tested NR
schemes enhance the neural representation of both the attended
and the ignored talkers, leading to higher detail and audibility of
the speech streams. This may ease selective auditory attention to
enable the listener to attend to the speech of interest and switch
attention if desired.

The approach to quantitively assess the effect of NR processing
on the representation of speech in the brain using SR applied
to EEG responses may, in the future, provide a valuable tool
to explore the user benefits of different HA settings. Whether
age and degree of hearing loss would further influence the
improved neural representations with a given HA setting should
be explored. Determining how improved neural representations
are linked to different perceptual benefits (such as improved
speech perception and subjective listening abilities) would
also have implications in prescribing amplification as well as
providing insights into the design of new HA technology.
With this approach in hand, we can now begin answering
open questions concerning the benefits of HAs in solving the
cocktail party problem in more realistic listening scenarios with
continuous speech.

In particular, the goal of our future studies will be to reveal
how specific hearing-loss-related deficits in neural processing at
various hierarchical levels in the auditory system (Puvvada and
Simon, 2017; O’Sullivan et al., 2019; Brodbeck et al., 2020) lead
to failures of selective attention (i.e., ability to separate and follow
the target sound over time) and whether HAs can compensate
for these deficits. Such an understanding of the links between
specific neural deficits and their perceptual consequences may
help identify HI listeners who have particular difficulties in
deploying selective attention in complex acoustic situations.
Toward that goal, speech tracking (i.e., neural representation of
speech) measures hold a potential to delineate how higher-order
acoustic, phonetic, and linguistic speech features are represented

and integrated at different levels of the auditory system and to
understand the role played by individual auditory regions during
selective attention in unaided and aided conditions.

Limitations of the Study Design
A major limitation of the experimental design proposed in
this study is the restriction on randomization. Overall, four
experimental conditions (“+3 dB OFF,” “+3 dB ON,” “+8 dB
OFF,” and “+8 dB ON”) were tested in a randomized block design
rather than a completely randomized design, which would allow
us to avoid practice effects. This was decided for two reasons.
First, each HI participant had a pair of HAs fitted for inactive
(OFF) and active (ON) NR scheme settings. The HAs were
removed and replaced at the end of each experimental condition,
whether or not the NR condition actually changed, which would
not be possible in a fully randomized design. Second, altering
the experimental condition after each trial (i.e., every 38 s) may
induce surprise and fatigue to the participants. Furthermore,
the completely randomized design could have emphasized the
two SNR conditions as the background noise level changed
between SNR conditions, and hence the 5-s background noise
prior to the onset of target talkers could have primed the
participant on task difficulty. The randomization between gender
and spatial position of the attended talker was likewise applied in
a randomized block design to allow the HI participant to focus on
the listening task rather than on the task instructions. This issue
may be partially addressed by instructing the HI participant to
attend to the same talker throughout all 80 trials. Nevertheless,
a randomized block design was preferred in this study for the
reasons that were described earlier.

A related limitation specific to the present study is the spatial
separation of the target (attended and ignored) talkers in the
foreground. The two target talkers were positioned 44◦ apart,
which was the maximum possible separation due to dimensions
of the listening booth. Previous studies have shown that the
separation of the speakers affects the mean decoding accuracy,
with an advantage of having larger angular separation between
the two target talkers due to spatial release from masking (Kidd
et al., 1998; Gary and Litovsky, 2011; Das et al., 2018). However,
since we were testing NR schemes in HAs with spatial filtering
and Wiener filtering to attenuate sounds originating behind the
listener, constraints apply in the spatial separation. Therefore,
we believe that the separation of 44◦ is an appropriate design
for the study. Additionally, the primary goal of the present
study was to investigate the effects of NR and SNR, and hence
the speaker separation effect was kept constant between the
experimental conditions.

While we provide strong evidence for the benefits of HA
signal processing on the neural representation of speech during
selective auditory attention, another limitation of this study is
that we did our analyses on a population basis, and thus we
did not explore the role of age or other factors that may affect
selective attention. In our current sample, there is a considerable
spread in age (half of the participants were 70 years or older,
while some participants were well below 60 years). Future studies
are warranted to further investigate whether the benefits of
the hearing aid signal processing vary across age and whether
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such benefits can be extended to hearing aid users with more
severe hearing loss.

Finally, content-related question-and-answer procedure may
not be suitable to ensure sustained attention to one of the multiple
talkers. In particular, the HI participants were asked a two-
choice question after each trial about the content of the attended
speech (i.e., random snippet of the attended news clip). For each
question, there were two alternatives options: “True” or “False.”
These questions served only to secure the sustained attention to
one of the two competing talkers in the foreground (news clips).
As the questions were only on a short snippet of the attended
news clip, the participants may have heard the content but could
not recall the correct answer. Similarly, the participants might
have guessed the correct answer without attending or hearing the
content of the news clip. Due to these uncertainties, we did not
correlate our findings to behavioral performance.

CONCLUSION

We demonstrated that a noise reduction scheme in commercial
HAs can help listeners to focus attention in challenging
listening environments by attenuating the neural representation
of unwanted background noise and enhancing the neural
representation of foreground sounds. Overall, we compared the
reconstruction accuracy (a metric to evaluate the fidelity of the
neural speech representation) for two different SNRs and two
different noise reduction schemes. We found an improvement in
the neural representation of attended speech with an active NR
scheme, shifting the reconstruction accuracy by approximately
5 dB toward the higher SNR, indicating a selective enhancement
of neural responses to the attended talker. In addition, a
main effect of NR processing on the reconstruction accuracy
of background noise was observed, indicating the suppression
of neural responses to background noise. Furthermore, we
found that the neural representation of the ignored speech
envelope was also modulated by noise reduction scheme and
was mostly enhanced in the conditions with more background
noise, indicating the enhancement of the neural responses to the
ignored talker and the improved ability to switch attention at will.
Taken together, these results confirm that NR processing in HAs
serves to support selective auditory attention in natural listening.
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