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and Sciences, Amsterdam, Netherlands

The perception of speed is influenced by visual contrast. In primary visual cortex (V1),
an early stage in the visual perception pathway, the neural tuning to speed is directly
related to the neural tuning to temporal frequency of stimulus changes. The influence
of contrast on speed perception can be caused by the joint dependency of neural
responses in V1 on temporal frequency and contrast. Here, we investigated how tuning
to contrast and temporal frequency in V1 of anesthetized mice are related. We found
that temporal frequency tuning is contrast-dependent. V1 was more responsive at lower
temporal frequencies than the dLGN, consistent with previous work at high contrast. The
temporal frequency tuning moves toward higher temporal frequencies with increasing
contrast. The low half-maximum temporal frequency does not change with contrast.
The Heeger divisive normalization equation provides a good fit to many response
characteristics in V1, but does not fit the dependency of temporal frequency and
contrast with set of parameters for all temporal frequencies. Different mechanisms for
normalization in the visual cortex may predict different relationships between temporal
frequency and contrast non-linearity. Our data could help to make a model selection.

Keywords: V1, contrast, temporal frequency, divisive normalization, mouse, visual cortex

INTRODUCTION

While the signals that are produced by an image and leave the retina are dependent on the overall
level of contrast, the interpretation of an image is largely independent of the overall contrast
(Avidan et al., 2002). Reducing the contrast makes an image harder to see, but does not change
its interpretation. Although we have some insight on how this independence of contrast arises by
thresholding, we have no detailed understanding of this process even at the first stage of cortical
visual processing. In the primary visual cortex (V1), neurons are responsive to local differences in
image contrast, edges in particular (Hubel and Wiesel, 1959). In a good approximation, V1 neurons
operate as spatiotemporal filters of the image contrast. Most investigations have focused on the
interaction of spatial frequency filtering and contrast of grating stimuli. Initially, responses of V1
neurons were thought to be separable for contrast and spatial frequency, meaning that responses are
the product of a function depending on stimulus contrast and a function depending on the spatial
frequency (Albrecht and Hamilton, 1982). Later, it became clear that spatial frequency tuning and
contrast are not completely inseparable in V1 in cat (Skottun et al., 1986), monkey (Sceniak et al.,
2002; Priebe et al., 2006), and mouse (Heimel et al., 2010).

Likewise, the temporal frequency tuning and the contrast response of neurons in early visual
cortical areas were first considered to be independent (Foster et al., 1985), but later found to
depend on each other in macaque, cat and ferret V1 (Albrecht, 1995; Alitto and Usrey, 2004;
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Priebe et al., 2006) and macaque MT (Krekelberg et al., 2006;
Pawar et al., 2019). In V1, temporal frequency tuning and
speed are directly linked, because spatial and temporal frequency
dependencies are separable in most of the individual neuronal
responses (Tolhurst and Movshon, 1975). The interdependency
of temporal frequency and contrast could thus underlie the so-
called Thompson effect (Thompson, 1982; Thompson and Stone,
1997) that our perception of speed and temporal frequency is
different at low contrast (Krekelberg et al., 2006). We wanted to
understand the nature of the interaction of contrast and temporal
frequency, and were interested to learn if this interaction is
universal across mammals. In the mouse, V1 temporal frequency
tuning has been measured at high contrast (Niell and Stryker,
2008; Gao et al., 2010; Durand et al., 2016), but the relationship
between contrast and temporal frequency on responses has not
been studied yet. Due to their small eye size, mice have about
100 times lower spatial acuity than humans (0.5 vs 60 cycles per
degree; Prusky et al., 2000), but their temporal frequency tuning
is more similar. In photopic conditions, contrast sensitivity
in mice peaks at 1.5 Hz, six fold below humans (Burr and
Ross, 1982; Umino et al., 2008), and mouse psychophysics of
temporal contrast shares fundamental properties with human
psychophysics (Umino et al., 2018).

We studied the responses in V1 of anesthetized mice to
gratings of different temporal frequencies and contrasts. We
found that responses do not factorize in contrast and temporal
frequency dependencies, and that temporal frequency tuning
moves to higher frequencies with higher contrast. V1 responses
to many stimuli can be fitted by a divisive normalization
model (Albrecht and Geisler, 1991; Heeger, 1992; Carandini
and Heeger, 2011). Divisive normalization also describes the
interdependency of contrast and spatial frequency of grating
responses (Heimel et al., 2010). We investigated if divisive
normalization also explains the relationship between contrast
and temporal frequency in the responses, and if normalization
operates equally across temporal frequencies. We found that,
while the normalization model with a single saturation constant
and exponent can approximately match V1 population responses
for all combinations of temporal frequency and contrast, it does
not describe the change in temporal frequency tuning with
contrast for low and intermediate temporal frequencies.

MATERIALS AND METHODS

Animals
We used male, 2–4 month old, calb2-cre mice bred on a
C57BL6/J background (Strain #010774, Jackson laboratory),
which we also used for investigating calretinin-positive cortical
interneurons (Camillo et al., 2018). All animals were kept
in a 12 h day/night cycle with access to food and water
ad libitum. The experiments were carried out during the day
cycle. All experiments were approved by the animal care and
use committee of the Royal Netherlands Academy of Arts and
Sciences. The experiments were performed in accordance with
relevant guidelines and regulations.

Extracellular Electrophysiology
Mice were injected with urethane (1.2 g per kg of mouse body
weight, intraperitoneally) and chlorprothixene (8 mg per kg,
subcutaneous). We injected atropine sulfate (0.1 mg per kg)
to reduce mucous secretions. We maintained body temperature
at 36.5–37◦C with a heating pad and rectal probe. Additional
doses of urethane were injected when a toe-pinch response was
observed. The head was fixated with ear bars and a bite bar.
During surgery, the eyes were protected from light by black
stickers and from drying by Cavasan eye ointment. The scalp
above visual cortex was removed and a very small craniotomy was
made around 2,900–3,000 µm lateral and 300–500 µm anterior
to Lambda. Laminar silicon electrodes (A1 × 16–5 mm-50–
177-A16, 16 channels spaced 50 µm apart, Neuronexus) for
extracellular recordings were inserted in the binocular region of
V1. The signals were digitized at 24 kHz and band pass filtered
between 0.5 and 10 kHz using a Tucker-Davis Technologies RX5
Pentusa. Signals were thresholded at 3× standard deviation to
isolate spikes, and spikes were sorted after a principal component
extraction by KlustaKwik (Harris et al., 2000) and custom-written
Matlab (Mathworks) scripts.

Visual Stimuli
Stimuli were back projected by a gamma-corrected Plus U2-
X1130 85 Hz DLP projector onto a screen (Macada Innovision)
placed 18 cm in front of the animal. Full screen size
was 60 × 42 cm. Stimuli were produced by scripts using
Psychophysics Toolbox 3 (Kleiner et al., 2007) running on
Matlab. We first mapped the receptive fields of the units at the
recording sites by presenting a 5 min movie (5 frames per second)
of small white squares (approximately 5 degrees wide) in random
positions on black background (ratio of white to black area: 1:30)
(Ahmadlou et al., 2018). These receptive field positions were
used to ascertain that we were recording in binocular V1. The
next visual stimuli were full-screen, sine-wave, drifting gratings
of 0.05 cycles per degree. Drift frequencies were 0.5, 1, 2, 4, 8,
and 16 Hz. This corresponded to speeds of 10, 20, 40, 80, 160
and 320 degree per second. Grating contrasts were 10, 30, 50,
70, and 90%. In each 2 s long stimulus presentation, a grating
was drifting in one of the eight cardinal and oblique directions.
The stimuli were shown in pseudorandom order (i.e., shuffled per
block). Each combination of contrast, temporal frequency and
direction was shown five times for each recording. The screen was
an equiluminant gray (10 cd m−2) for 1.5 s between the stimuli.

Data Analysis
Analysis was done using Matlab scripts. For all stimuli, we
computed the evoked visual responses, averaged over the
duration of the stimulus, minus the spontaneous rate. The
spontaneous rate was defined as the mean rate in the last
0.5 s before stimulus onset. We averaged the response for
each combination of contrast and temporal frequency over all
drift directions. Only units were included that had a minimum
response (i.e., the evoked responses minus the spontaneous
rate) of 1 spikes per second for at least one combination of
temporal frequency and contrast. The response dependence on
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the temporal frequency was fitted with a difference of Gaussians
(d.o.G.), i.e., R(f ) = Re exp(−1/2 f2/we

2) − Ri exp(−1/2 f 2/wi
2),

where f is the temporal frequency, Re and we are the gain and
width of the positive Gaussian and Ri and wi of the wider negative
Gaussian. The fits were made by minimizing the summed squared
error of the fit to the mean responses for all temporal frequencies,
using the Matlab fminsearch implementation of the Nelder-Mead
simplex algorithm. The fit was rejected if the optimal fit was
found for Re < 10−4 or Ri < 10−4 or we > 10× 16 Hz. The d.o.G.
fit was used to calculate the optimal temporal frequency and the
low and high half-maximum temporal frequencies at which the
responses were half of the interpolated maximum response.

The response dependence on the Michelson contrast of the
stimulus was fitted with a Naka-Rushton function, i.e., R(c) = Rm
cn/(σn + cn), where c is the contrast and Rm, σ, and n are
fitting parameters (Albrecht and Hamilton, 1982). The fits were
made by minimizing the summed squared error of the fit to all
responses for all contrasts plus very small contributions of σ2 and
(n − 2)2 to reduce the degeneracy in fitting sometimes nearly
linear data, using Matlab fminsearch. From the fit, the C50 value
was interpolated as the contrast at which the response would be
half of the response at 100% contrast.

The explained variance per unit for the temporal frequency
and contrast response fits were calculated as 1 – {6i
(F(i)− R(i))2}/{6i (R(i)− Rm)2}, where F(i) are the fitted values
for each frequency or contrast i, and Rm is the mean of all R(i)’s.

The population models in Section “Divisive Normalization”
were fit by minimizing the norm of the difference between all
the measured values and the fit values over all parameters, using
Matlab fminsearch. For the normalization model, the optimal
parameters were σ = 6.9 and n = 0.87. For the shunting-extended
model, the optimal parameters were σ = 0.5, τ = 0.11/Hz, and
n = 0.99.

An approximation for the LGN population tuning in the
mouse was made by taking the values reported in the literature
for the optimal temporal frequency, and low and high half-
maximum responses for the LGN population (Tang et al., 2016),
respectively, 3.2, 1.5, and 6.0 Hz and fitting a d.o.G. function
with the same values (there were only band pass cells in the
LGN). The fit was made by a stochastic search for the d.o.G.
parameters that minimized the difference between the optimal,
low half-maximum and high-maximum values of the d.o.G. with
the literature values.

Experimental Design and Statistics
The number of mice used for this study was determined before
its start and was based on previous experience with determining
feature tuning with mouse extracellular electrophysiology. The
mice were randomly selected from the breeding stock. We used
the Shapiro–Wilk test to test the C50 values and the optimal,
low and high half-maximum values for normality. Most of
these populations were not normally distributed at the 95%
significance level and therefore we used non-parametric statistics
for comparison and use the median and the bootstrapped
standard deviation of the median as its standard error to
describe the data. For comparisons of multiple populations, we
used the Kruskal–Wallis test. For paired comparisons of two

measurements of one population, we used the Wilcoxon signed-
rank test. For comparing the fraction of units in two categories,
we used the chi-square test. For testing a non-zero slope, we used
the Matlab fitlm function, which applies a linear regression and
computes the p-value for the t-statistic of the hypothesis test that
the corresponding coefficient is equal to zero or not.

Software Accessibility
The scripts for visual stimulus display and analysis of the data are
available online at https://github.com/heimel/InVivoTools.

RESULTS

We measured the response of neurons in V1 of anesthetized
mice using linear silicon electrodes to drifting full-screen gratings
of different contrasts and temporal frequencies (Figures 1A–D).
For this report, we studied the 59 units in four mice that
had a response larger than 1 spikes per second for at least
one combination of contrast and temporal frequency. We first
analyzed the temporal frequency dependence at 90% contrast,
the highest stimulus contrast that we used, and reproduced
previous findings (Niell and Stryker, 2008; Gao et al., 2010;
Durand et al., 2016). The temporal frequency tuning of these cells
could be well-fitted with a difference-of-Gaussian (d.o.G.) curve
(median explained variance was 97%, examples in Figures 1A,C).
The median optimal temporal frequency was 2.83 ± 0.14 Hz
(bootstrapped standard deviation) (Figure 1E). The median high
half-maximum temporal frequency was 7.7± 0.3 Hz (Figure 1F).
Units were termed band-pass cells if they responded to stimuli
shown at 0.5 Hz, the lowest temporal frequency that we tested, at
less than half the interpolated response to the optimal temporal
frequency. About half, 30 of 59 (51%) of the units were band-
pass cells. These band-pass cells had a median low half-maximum
temporal frequency of 1.09 ± 0.07 Hz (Figure 1G). The other
half were considered low-pass cells, although the histogram of the
ratio of the response at 0.5 Hz over the response at the optimal
temporal frequency shows that there is no strict division between
low-pass and band-pass cells (Figure 1H).

Varying Temporal Frequency and
Contrast
Next, we considered the temporal frequency tuning across all
the presented contrasts of 10, 30, 50, 70, and 90%. For 46 of
the 59 units, the temporal frequency tuning could be well fitted
with a d.o.G. for all contrasts. The median explained variances
were 97, 97, 96, 91, and 82% for contrasts of 90, 70, 50, 30, and
10%, respectively. For the other 13 cells, the fit was too poor,
because the response at the 10% was completely absent or so low
that the number of repetitions that we used was insufficient to
provide an accurate measurement of the response. Cells that were
band-pass in temporal frequency responses for high contrasts
often became low-pass at lower contrasts (Figure 2A). Low-
pass cells at high contrasts were always also low-pass at low
contrasts (Figure 2B). The mean temporal frequency responses
for the whole population were also well described by different
d.o.G. functions for the different contrasts (Figure 2C). The
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FIGURE 1 | Temporal frequency response at 90% contrast can be band pass or low pass. (A) Temporal frequency tuning of an example band pass neuron. Error
bars indicate s.e.m. around the mean rate during the stimulus presentation. Black dashed line indicates the spontaneous firing rate. Curve is a
difference-of-Gaussian (d.o.G.) fit to the data. Green dashed line indicates the optimal temporal frequency at which the neuron is predicted to give most response.
Red line indicates the lower half-maximum response frequency. Blue line indicates the higher half-maximum response frequency. (B) Peristimulus time histogram
(PSTH) of the activity for all stimuli of the same neuron shown in (A). Dotted line indicates the peak response time. (C) Temporal frequency tuning of an example low
pass neuron. (D) PSTH for the same neuron as (C). (E) Histogram of optimal temporal frequencies from d.o.G. fits. Arrowhead indicates median. (F) Histogram of
high half-maximum temporal frequencies. Arrowhead indicates median. (G) Histogram of low pass cells and the lower half-maximum temporal frequencies of band
pass cells. Arrowhead indicates the median of the band pass cells. (H) Histogram of the response at 0.5 Hz over the response at the optimal temporal frequency. In
gray the low-pass cells, in red the band-pass cells.

shape of the curve and the optimal temporal frequency and
high half-maximum temporal frequencies of the population
response were fairly constant above 30% contrast except for a
gain change. Looking at the values of individually fitted temporal
tuning curves, we noticed that there was significant difference in
the optimal temporal frequency across contrasts (p = 0.00004,
Kruskal–Wallis test, d.f. = 225, χ2 = 25.6, 46 units in four
mice; Figure 2D). A similar, but not significant, trend was also
present in the high half-maximum temporal frequency across
contrasts (p = 0.10, Kruskal–Wallis test, d.f. = 225, χ2 = 7.7;
Figure 2D). More specifically, the optimal temporal frequency at
10% was much lower than the optimal temporal frequency at 90%
(median± s.e.m. at 10% contrast: 1.23± 0.40 Hz; at 90% contrast:
2.90 ± 0.19 Hz; p = 0.00012 Wilcoxon signed-rank, z = 3.8,
46 units in four mice; Figure 2E). The high half-maximum
temporal frequency was also significantly lower at 10% contrast
than it was at 90% contrast (median ± s.e.m. at 10% contrast:
6.08 ± 0.99 Hz; at 90% contrast: 8.07 ± 0.27 Hz; p = 0.033
Wilcoxon signed-rank, z = 2.1). The response at 8 Hz relative
to the maximum response increased with increasing contrast
(p = 0.029, non-zero slope test, F = 4.9; Figure 2F). This did
not happen at 0.5 Hz. If anything, there was a drop of relative
response with increasing contrast and the slopes of the 0.5 and
8 Hz curve were significantly different (p = 0.0017, non-zero slope
test on difference, F = 9.99; Figure 2F). The low half-maximum
temporal frequency was smaller at low contrast (at 10% contrast:

0.89± 0.11 Hz; at 90% contrast: 1.14± 0.09 Hz), but this was just
a trend (p = 0.10, Wilcoxon signed-rank, statistic = 79). At 10%
contrast, there were only 16 band-pass neurons out of the 46 fitted
by a d.o.G. (low-pass were 29 of 59 units at 90% contrast, 30 of 46
at 10% contrast, p = 0.10, chi-square test; Figure 2G). Overall, the
temporal frequency tuning in V1 shifts toward higher temporal
frequencies with increasing contrast.

Other than looking at how the temporal frequency tuning
changed with contrast, we can also look at how the contrast
response function changed with temporal frequency. The
contrast dependence at a single temporal frequency can be fitted
by a Naka-Rushton function (Albrecht and Hamilton, 1982). For
higher contrasts, the Naka-Rushton curves have a decreasing
steepness, referred to as saturation (Figure 3A). Occasionally,
neurons were “super-saturated” and response decreased for the
highest contrasts, but generally there was a very good fit (median
explained variance was 98%). The C50 value, i.e., the interpolated
contrast at which the cell responds at half the extrapolated 100%
contrast response, is a common way to give an indication of
the range of contrast where a cell is most sensitive. A high or
low C50 indicates that the cell is most sensitive to, respectively,
high or low contrasts. The population response curves showed
differences in C50 across temporal frequencies (Figure 3B). The
population contrast curves of Figure 3B, however, are more
linear than the individual tuning curves and do not necessarily
accurately reflect the changes in the individual neuronal contrast
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FIGURE 2 | Relationship of temporal frequency and contrast. (A) Temporal frequency tuning for different contrasts for an example band pass neuron. Error bars
indicate s.e.m. around the mean rate during the stimulus presentation. Dashed line indicates the spontaneous rate. Black curves are d.o.G. fits, independently made
for each contrast. Green lines connect the optimal temporal frequencies for each contrast. Blue lines connect high half-maximum responses. Red lines connect low
half-maximum response when they exist. (B) Example like (A) for a low pass neuron. (C) Temporal frequency tuning for the mean population response for all units.
Green and blue lines are connecting the optimal and high half-maximum responses for the fits of the population averages. (D) Median optimal (green) and high
half-maximum temporal frequency (blue) for different contrasts for all individual units. Error bars are bootstrapped s.e.m. There is a difference across contrasts for
optimal frequency (∗∗∗p = 0.00004, Kruskal–Wallis test, 46 units in four mice), but only a trend for a change in the high half-maximum (p = 0.10, Kruskal–Wallis test).
(E) Optimal temporal frequency is lower at 10% contrast than at 90% contrast (∗∗∗p = 0.00012, Wilcoxon signed-rank). (F) Response at 0.5 and 8 Hz normalized by
the maximum response at each contrast. The relative response at 8 Hz increases with contrast (∗p = 0.029, non-zero slope test). (G) Fraction of low pass cells at 10
and 90% contrast (#, 29/59 at 90% contrast, 30/46 at 10%, p = 0.10, chi-square test).

response curves. The medians of the individual units C50,
however, showed similar differences across temporal frequencies
(p = 0.016, 59 units in four mice, Kruskal–Wallis test, d.f. = 294,
χ2 = 12.1, Figure 3C) and the C50 at 8 Hz is higher than at
0.5 Hz (p = 0.0057, Wilcoxon signed-rank, z = 2.8; Figure 3D).
This again illustrates that response functions did not factorize in
separate contrast and temporal frequency dependent functions.
The C50 value alone does not completely describe the contrast
response function. In particular, it does not capture whether
the response changes over the full range of contrasts or only
over a narrow range. For this reason, we also computed the
dynamic range, i.e., the difference between the contrasts that
evoke one quarter and three quarters of the maximum response
(Figure 3A). A cell with a C50 of 50% contrast with a response
that grows linearly with contrast has a dynamic range of 50%.
A cell that has a very steep increase in response around the C50
contrast has a much lower dynamic range. The median dynamic
range had a dependence on temporal frequency (p = 0.011,
Kruskal–Wallis test, d.f. = 294, χ2 = 13.0; Figure 3E), and peaked
at 2 Hz. The distributions of the dynamic range at 0.5 and 8 Hz,
however, were not different from each other (p = 0.51, Wilcoxon
signed-rank, z = 0.66; Figure 3F).

Divisive Normalization
Our results thus clearly show that the mouse V1 population
response is not a product of a function dependent on the temporal
frequency and a function dependent on the stimulus contrast.
The same is the case for the combination of spatial frequency and
contrast (Heimel et al., 2010). The interdependence of response
on contrast and spatial frequency was accurately described by
divisive normalization. Divisive normalization is characterized by
the normalization equation, describing the response Ri of neuron
i by:

Ri = Dn
i

/(
σn +

∑
k

Dn
k

)
(1)

where the enumerator Di describes the driving input into the
neuron and the denominator is a saturation constant σ plus the
sum of a large number of driving inputs Dk, the normalization
pool (Figure 4A; Heeger, 1992; Carandini and Heeger, 2011). The
exponent n is a parameter signifying the rectification stage of the
model. If we consider the population response P =

∑
i Ri, we find

P =
∑

i D
n
i
/ (

σn +
∑

k D
n
k
)
. We have established experimentally

that the population response does not factorize, but let us assume
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FIGURE 3 | Contrast response function for different temporal frequencies. (A) Contrast response function for an example neuron. Error bars indicate s.e.m. around
the mean. The curve is a fit with a Naka-Rushton function. C50 is the contrast at which the fitted response is half the response at 100% contrast. The dynamic range
is the difference in contrasts that evoke one and three quarters of the 100% contrast response (B). Population averaged contrast responses across temporal
frequencies. In magenta, the C50s of the Naka-Rushton fits of the population responses are indicated. Independent fits are made for all curves. (C) Median C50
varies across temporal frequencies (∗p = 0.016, Kruskal–Wallis test, 59 units in four mice). Error bars indicate bootstrapped s.e.m. (D) C50 at 0.5 and 8 Hz
(∗∗∗p = 0.0057 Wilcoxon signed-rank). Histograms are shown on top and to the right. (E) The dynamic range differs across temporal frequencies (∗p = 0.011,
Kruskal–Wallis test). (F) Dynamic range at 0.5 and 8 Hz (p = 0.51, Wilcoxon signed-rank). Histograms are shown on top and to the right.

the driving inputs into V1 approximately do, i.e., there exist
functions di(f ) such that Di = c di(f )1/n with contrast c and
temporal frequency f. We can then define T(f ) = 6i di(f ), and
find

P
(
c, f
)
= cn

/ (
σn
/
T
(
f
)
+ cn

)
(2)

This is a Naka-Rushton function, just as those that were used to
fit the contrast responses of individual neurons, but the shape of
the function depends on the temporal frequency. From Eq. (2)
follows that there should be a single temporal frequency tuning
function T(f ) and two parameters σ and n to fit the V1 population
response at all contrasts and temporal frequencies. We find that
indeed the 30 population responses (six temporal frequencies
at five contrasts) can be well fitted by the normalization model
with seven parameters (n, σ and the five d.o.G. parameters
for T). An example fit (with T described by a difference-of-
Gaussians) explaining 98% of the variance in the means is shown
in Figure 4B, but there is a large range of parameter values
with a similar goodness of fit. For all good fits, σn/T(f ) is much
larger than 1 and n is close to 1. In those cases, the population
response is approximately equal to c T(f )/σ. In fact, fitting the
joint temporal frequency and contrast tuning with a function
c T(f ) that is just linear in contrast, also explained 97% of the

variance, and is thus an equally good fit with two parameters
less (n, σ). The contrast-temporal frequency curves of individual
neurons, however, are much more poorly fit by fits that are
linear in contrast, than by the normalizing model with n and
σ optimized for each unit (median explained variance of linear
model: 83%, normalization model: 92%; p = 10−11 Wilcoxon,
z =−6.8; Figures 4C,D). The normalization model thus provides
a much better, but still not perfect fit. If we look at the population
fits in Figure 4B more closely, we see that they are relatively poor
at low temporal frequencies. The normalization model explained
only 92 and 94% of the variance at 0.5 and 1 Hz, while it explained
99, 99, and 97% at 2, 4, and 8 Hz. The fits undershoot for
the lowest contrasts, and overshoot for the highest contrasts.
Furthermore, while the data showed that the optimal temporal
frequency shifts with contrast, Figure 4B shows that the optimal
temporal frequency does not change with contrast. Indeed, taking
the derivative with respect to f of the population response in
Eq. (2), we find

dP
(
c, f
)

df
=

σncn[
σn + cnT(f )

]2
dT(f )
df

.
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FIGURE 4 | V1 output can be fit with normalization model, but inferred drive is lower pass than dLGN output. (A) In the normalization model, the response of a
neuron is described by a stimulus drive divided by the sum of a pool of such inputs. (B) Population responses across temporal frequencies and contrasts can be fit
with divisive normalization of d.o.G. temporal frequency tuning of the input. Red curve is a fit with Rm = 37 spikes/s, σ = 6.9, n = 0.87, Re = 1 spikes/s, we = 4.7 Hz,
Ri = 0.66 spikes/s, wi = 1.5 Hz. Error bars denote s.e.m. around mean. (C) Cumulative histogram of the explained variances when all individual units are fit with a
linear model, the normalization model, or the shunting-extension of the normalization model. (D) The histogram of n for fitted to all individual units. The arrow
indicates the median 0.99. (E) The ratio of the response at 8 Hz over the response at 0.5 Hz strongly varies with contrast in the data, but this is not true in the
optimal fit of the normalization model or for the shunting model. Dotted line is linear fit to the data. (F) Full contrast dLGN output from literature (Tang et al., 2016)
(solid line) does not match the stimulus drive from the normalization equation (dashed line).

Therefore, the maximum of the population response P will
be at the maximum of T(f ) at f = f opt where dT(f )/df = 0,
independently of the contrast. Furthermore, taking the derivative
of P(c,f )/P(c,f opt) with respect to contrast, we find

d
dc

P(c, f )
P(c, fopt)

=
ncn−1σn

{
T
(
fopt
)
− T(f )

}
T
(
fopt
)
T(f )

{
σn

T(f )
+ cn

}2 > 0,

because T(f opt) > T(f ). This means that the response at a
suboptimal temporal frequency will grow relatively faster with
contrast than the response at the optimal frequency f opt. Thus
the responses at 0.5 and 8 Hz, divided by the maximum response,
should grow with contrast. In Figure 2F, we presented that this
was true at 8 Hz, but not at 0.5 Hz. Indeed, if we plot the ratio of
the response at 8 Hz and at 0.5 Hz, we see that the experimental
data show a strong increase with contrast, while the optimal
fit of the normalization model predicts the ratio to be almost
independent of the stimulus contrast (Figure 4E).

One assumption implicitly made in the normalization Eq. (1)
is that there is a single pair of saturation constant σ and
exponent n for different stimuli. Any neural implementation
of normalization, however, will be dynamic and there could
be an interaction of the stimulus dynamics and normalization.
Indeed, one suggested implementation of divisive normalization
by shunting inhibition (Carandini and Heeger, 1994; Carandini

et al., 1997) predicts that σ grows with the temporal frequency
of the stimulus. This would allow P(c,f )/P(c,f opt) to decrease
with contrast for small frequencies (again can be shown by
inserting Eq. (2) and taking the derivative), and potentially fit the
decreasing relative response at 0.5 Hz (Figure 2F). However, if
we substitute σ + τ f for σ, and optimize the fit for all data, we
find essentially the same fit as for the model with fixed σ and do
not get a better fit for the ratio of the responses to 8 and 0.5 Hz
(Figure 4E, shunting model). If we reconsider Eq. (2), however,
we see that any frequency-dependency of σ can be absorbed by
choosing a different T(f ). This explains why we get almost the
same fit. The reason for the small difference between the models
in Figure 4E is because we constrained T(f ) to be a difference-
of-Gaussians. If we release this requirement, the shunting model
and the regular model give exactly the same fits, with an explained
variance of 98%. Fitting individual units with this shunting model
slightly improves the fits, as it has an extra degree of freedom
and includes the static normalization equation (p = 8 × 10−6,
Wilcoxon, z = −4.4; Figure 4C), but the median explained
variance is lower for the extended model when we adjust it for
the extra model parameter (median adjusted explained variance
normalization model: 0.89, shunting model: 0.88).

The normalization model predicts the temporal frequency
tuning of the driving input to V1 to be equal to T(f )1/n

(Figure 4F). It is difficult to measure the driving input into
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V1, but we expect it to be close to the signal leaving the
dLGN. The temporal frequency dependence of the mouse
dLGN has been measured with full contrast stimuli (Grubb and
Thompson, 2003; Tang et al., 2016). From the reported optimal
temporal frequencies (median 3.2 Hz) and low and high half-
maximum frequencies (medians of 1.4 and 6.0 Hz, respectively),
we can infer the dLGN population response (Figure 4F).
There is a large difference between the prediction from the
normalization model and the measured dLGN response at the
lower temporal frequencies.

We conclude that our findings are consistent with divisive
normalization operating at the higher temporal frequencies, but
that either divisive normalization is not operating as described
by Eq. (1) at the lower temporal frequencies, or that the
dependencies on contrast and temporal frequency in the driving
inputs into V1 do not factorize.

DISCUSSION

We found that the shape of contrast tuning curves of mouse V1
neurons depended on the temporal frequency of the stimulus
and vice versa, the shape of the temporal frequency tuning
curve depended on the stimulus contrast. We measured this with
drifting gratings, as commonly done (Foster et al., 1985; Priebe
et al., 2006; Gao et al., 2010). The gratings had a fixed spatial
frequency, and changing temporal frequency was equivalent to
changing the drifting speed. It has been established, however, that
in V1 dependencies on spatial and temporal frequency are mostly
separable (Tolhurst and Movshon, 1975), and rather than looking
at speed tuning, it is natural to focus on spatial and temporal
frequency tuning.

Our findings at 90% contrast are very comparable to previous
measurements of temporal frequency tuning at 80–100% contrast
in mouse V1 (Niell and Stryker, 2008; Gao et al., 2010; Durand
et al., 2016). In close agreement to our finding that 49% of the
cells were low-pass tuned, Gao et al. (2010) found that 44%
were low-pass. The two early studies found a peak response for
temporal frequencies between 1 and 2 Hz. This is slightly below
our median peak frequency (2.83 Hz), which exactly matches the
2.8 Hz found by Durand et al. (2016). We cannot give a reason
for this difference. Perhaps there was a difference in the depth of
anesthesia across the studies, although there was no significant
difference in peak frequency between the awake and anesthetized
condition (2.8 vs 2.99 Hz; Durand et al., 2016). Niell and Stryker
(2008) used counter-phase changing gratings, different from our
drifting gratings, but Gao et al. (2010) used drifting gratings. At
low luminance, temporal frequency tuning is strongly dependent
on luminance (Ferry-Porter law; Bex and Langley, 2007; Umino
et al., 2008), but the previous studies and ours were done at
similar, photopic, light levels, where tuning is independent of
luminance. Our median optimal temporal frequency is below the
4 Hz found for rats (Girman et al., 1999), but in line with other
nocturnal and crepuscular animals that are strongly dependent
on rod vision (Heimel et al., 2005).

The peak frequency in V1 is below the peak frequency in the
mouse dLGN (3–4 Hz; Grubb and Thompson, 2003; Durand

et al., 2016; Tang et al., 2016). Furthermore, while half of the
cells in mouse V1 are low-pass for temporal frequency, the cells
in the dLGN are consistently band-pass (Grubb and Thompson,
2003). The temporal frequency tuning thus substantially moves
toward lower frequencies in the mouse like it does in the
monkey (Hawken et al., 1996). This shift has been hypothesized
to be caused by a combination of intracortical inhibition and
thalamocortical NMDA receptors (Krukowski and Miller, 2001).

We found that the temporal frequency tuning characteristics
were dependent on contrast, in particular at low contrast.
Responses at high temporal frequencies were relatively more
reduced at lower contrasts than responses at more optimal
temporal frequencies (Figure 2F). Relative response at low
temporal frequencies, on the other hand, were not more reduced
at lower contrasts. Reducing contrast also slightly lowered the
preferred temporal frequency (Figure 2D). In carnivores, the
responses at low and high temporal frequencies also grew more
with increasing contrast than responses at the optimal temporal
frequency (Holub and Morton-Gibson, 1981). In particular,
the responses at high temporal frequencies grow faster at
higher contrasts, and thus also leading to a shift toward a
higher temporal frequency preference with increasing contrast
(Albrecht, 1995; Alitto and Usrey, 2004). This influence of
contrast on temporal frequency tuning is different from its
influence on spatial frequency tuning. In the macaque, the
optimal spatial frequency is independent of contrast and both
the low and high half-maximum frequencies move away from
the optimal frequency with increasing contrast (Sceniak et al.,
2002). In the mouse, the contrast dependence has not been
measured down to the typical low half-maximum frequency
(which requires very large stimuli due to the low visual acuity
of mice), but the response to high spatial frequency gratings
was also much more sensitive to contrast than the response to
gratings of the optimal spatial frequency (Heimel et al., 2010).
The effect of contrast on spatial frequency tuning follows from
the divisive normalization behavior of visual cortex (Heimel
et al., 2010). According to the normalization model, the response
of a neuron is well described by dividing its driving input
by a constant and the sum of the activity of a normalizing
pool of inputs (Heeger, 1992; Carandini and Heeger, 2011).
For spatial frequencies that evoke much response, the activity
level of the normalizing pool is higher and the driving input
is divided by a larger number than for spatial frequencies
that evoke little response. The effect is thus a widening of
the tuning curve with increasing contrast. At high temporal
frequencies, the effect of contrast on the population response is
as predicted by the normalization model (see Figure 2F). Higher
temporal frequencies cause less activity in the normalization
pool than more optimal temporary frequencies, resulting in
less normalization and thus more dependence on contrast.
At low temporal frequencies, the stationary normalization
Eq. (1) predicts the same effect, but the data do not show
this (Figure 2F). One of the assumptions implicitly made in
Eq. (1) is that the saturation constant σ and the exponent n
are independent of the stimulus. This assumption holds across
orientations and spatial frequencies (Heeger, 1992). At the
introduction of the normalization model, the validity of this
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assumption was not asserted for different temporal frequencies,
but it was noted that the model could explain the contrast-
dependent changes in temporal frequency tuning that were found
in the cat (Holub and Morton-Gibson, 1981; Heeger, 1992;
Albrecht, 1995). The stationary normalization equation, however,
does not accurately describe the responses across temporal
frequencies and contrasts with a single set of σ and n (Carandini
et al., 1997). It could still be, however, that a single divisive
normalization mechanism is operating, but that the interaction
of a changing stimulus and the normalization mechanism leads
to a different set of parameters in the equation describing
the stationary state. Currently, we do not know how divisive
normalization is implemented in the visual cortex. A number
of mechanisms, such as (shunting) inhibition (Carandini and
Heeger, 1994), excitation (Sato et al., 2016) and short-term
synaptic depression (Carandini et al., 2002) have been proposed
to underlie the normalization phenomenon in visual cortex,
but there is not one mechanism that is consistent with all
effects. Carandini et al. (1997) have shown how shunting
inhibition could lead to divisive normalization with a saturation
constant σ that grows with increasing stimulus frequency. The
resulting stationary normalization equation, however, produces
the same fit to the data as the model without this extra degree
of freedom, if we also optimize the frequency-dependency of
the driving input.

Even without knowing the mechanism underlying
normalization, looking at normalization as a dynamic process
offers a possible explanation for the relatively poor fit of
the data at lower temporal frequencies. Consider that the
normalization mechanism is operating on a time scale that is
faster than that of the low temporal frequencies (0.5 Hz) that
we used. The activity of many neurons in V1 is modulated
by the stimulating temporal frequency. A simple cell would
be very responsive during one period of the stimulus cycle.
Perhaps the effects of normalization diminish quickly during
the responsive period of a cell. For low temporal frequencies,
normalization would thus have no effect during most of
the responsive period of the cell and would not change
the average firing rate as much as it would do for higher
temporal frequencies.

One more assumption that was implicitly made in deriving
the stationary normalization Eq. (1) was that the activity in the
normalization pool is equal to the average of the population
activity. Of course, this can only be an approximation, because
the neurons certainly do not have instantaneous access to the
population activity across the entire visual field (Reynaud et al.,
2012). In our case, however, we have used full screen gratings
and recorded from neurons that had their receptive field away
from the screen borders. The stimulus input would thus at
least have been relatively homogeneous for nearby neurons
which have similar receptive fields. The normalization pool,
however, could have a different temporal frequency tuning
than the population activity. This extra freedom in the fit
of the model would certainly produce a more accurate fit to
the data. It could also be that the normalization pool has
a local polarity (dark/light) preference, and therefore oscillate
with the stimulus frequency. In this case, it also becomes

necessary to estimate the time averaging by the normalization
mechanism. To fit human steady state visual evoked potentials
of masking stimuli with the normalization model, a temporal
averaging window of 26 ms provided the best fit (Tsai
et al., 2012). If one, however, allows the normalization pool
and the population pool to vary independently for different
stimulus parameters, the predictive power of the normalization
model disappears.

An entirely different explanation is that normalization
does operate also at lower temporal frequencies, but that
the assumption that the contrast and temporal frequency
dependencies of the input driving V1 factorize does not hold.
We do not know the precise input into V1, but we do know
that indeed in the macaque this assumption fails. Changes
in temporal frequency altered the contrast tuning in dLGN
(Derrington and Lennie, 1984; Dhruv et al., 2009). In the
ferret, the difference in contrast gain at low and high temporal
frequency was not higher in V1 than the difference already
present in the LGN (Alitto and Usrey, 2004). Furthermore, even
in the retina (of the cat) contrast and temporal frequency do
not completely separate for low temporal frequencies (Shapley
and Victor, 1978). Responses of X and Y retinal ganglion cells
to low frequencies of modulation (<1 Hz) grew less than
proportionally with contrast. Response amplitudes at higher
modulation frequencies scaled approximately proportionally
with contrast. The source of the interdependency of temporal
frequency and contrast in mouse V1 responses may thus already
lie in the LGN or the retina.

This explanation why the normalization model poorly fits the
data, leaves open the possibility that divisive normalization
is operating in the V1 exactly as predicted. However,
along the visual hierarchy in human cortex, the temporal
frequency tuning becomes progressively more low-pass (Mullen
et al., 2010). This would not follow from a normalization
model working the same at all temporal frequencies. As
discussed previously, dynamic implementations of divisive
normalization may lead to frequency dependence of the
saturation constant (Carandini et al., 1997), but there could
also be other mechanisms operating in the visual system
to change temporal frequency tuning to lower frequencies.
This may be the combination of intracortical inhibition and
NMDA receptor signaling hypothesized to be responsible
for the change in temporal frequency from dLGN to V1
(Krukowski and Miller, 2001). It will be interesting to
understand if this would correctly predict our data on the
interplay between temporal frequency and contrast in the
responses. Furthermore, it may give a mechanism underlying
the Thompson effect that contrast and perceived speed
and flicker are not completely separated (Thompson, 1982;
Thompson and Stone, 1997).

More than 50 years after the first psychophysical
measurements of the dependence of contrast sensitivity on
temporal frequency (Robson, 1966), we find that we still do
not know how the limits set by the retina are changed into the
limits of our perception. Our measurements could help to select
between candidate neural implementations of the normalization
model linking visual input to perception.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 868

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00868 August 23, 2020 Time: 12:47 # 10

Camillo et al. Contrast-Dependent Temporal Frequency Tuning

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article
will be made available by the authors on request, without
undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by DEC and
IVD KNAW.

AUTHOR CONTRIBUTIONS

DC and MA performed the experiments. DC, MA, and JH
devised the experiments. JH wrote the manuscript. All authors

contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported by NWO VIDI Grant 864.10.010.

ACKNOWLEDGMENTS

We thank Christiaan Levelt and Pieter Roelfsema for
sharing equipment, Chris Klink for critical reading
of the manuscript, and Matteo Carandini for helpful
suggestions.

REFERENCES
Ahmadlou, M., Zweifel, L. S., and Heimel, J. A. (2018). Functional modulation of

primary visual cortex by the superior colliculus in the mouse. Nat. Commun.
9:3895.

Albrecht, D. G. (1995). Visual cortex neurons in monkey and cat: effect of
contrast on the spatial and temporal phase transfer functions. Vis. Neurosci. 12,
1191–1210. doi: 10.1017/s0952523800006817

Albrecht, D. G., and Hamilton, D. B. (1982). Striate cortex of monkey and cat:
contrast response function. J. Neurophysiol. 48, 217–237. doi: 10.1152/jn.1982.
48.1.217

Albrecht, D. G., and Geisler, W. S. (1991). Motion selectivity and the contrast-
response function of simple cells in the visual cortex. Vis. Neurosci. 7, 531–546.
doi: 10.1017/s0952523800010336

Alitto, H. J., and Usrey, W. M. (2004). Influence of contrast on orientation and
temporal frequency tuning in ferret primary visual cortex. J. Neurophysiol. 91,
2797–2808. doi: 10.1152/jn.00943.2003

Avidan, G., Harel, M., Hendler, T., Ben-Bashat, D., Zohary, E., and Malach, R.
(2002). Contrast sensitivity in human visual areas and its relationship to object
recognition. J Neurophysiol. 87, 3102–3116. doi: 10.1152/jn.2002.87.6.3102

Bex, P. J., and Langley, K. (2007). The perception of suprathreshold contrast and
fast adaptive filtering. J. Vis. 7, 1–23. doi: 10.1167/7.12.1

Burr, D. C., and Ross, J. (1982). Contrast sensitivity at high velocities. Vision Res.
22, 479–484. doi: 10.1016/0042-6989(82)90196-1

Camillo, D., Ahmadlou, M., Saiepour, M. H., Yasaminshirazi, M., Levelt, C. N.,
and Heimel, J. A. (2018). Visual processing by calretinin expressing inhibitory
neurons in mouse primary visual cortex. Sci. Rep. 8:12355.

Carandini, M., and Heeger, D. J. (1994). Summation and division by neurons in
primate visual cortex. Science 264, 1333–1336. doi: 10.1126/science.8191289

Carandini, M., Heeger, D. J., and Movshon, J. A. (1997). Linearity and
normalization in simple cells of the macaque primary visual cortex. J. Neurosci.
17, 8621–8644. doi: 10.1523/jneurosci.17-21-08621.1997

Carandini, M., and Heeger, D. J. (2011). Normalization as a canonical neural
computation. Nat. Rev. Neurosci. 13, 51–62. doi: 10.1038/nrn3136

Carandini, M., Heeger, D. J., and Senn, W. (2002). A synaptic explanation of
suppression in visual cortex. J. Neurosci. 22, 10053–10065. doi: 10.1523/
jneurosci.22-22-10053.2002

Derrington, A. M., and Lennie, P. (1984). Spatial and temporal contrast sensitivities
of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219–240.
doi: 10.1113/jphysiol.1984.sp015498

Dhruv, N. T., Tailby, C., Sokol, S. H., Majaj, N. J., and Lennie, P. (2009). Nonlinear
signal summation in magnocellular neurons of the macaque lateral geniculate
nucleus. J. Neurophysiol. 102, 1921–1929. doi: 10.1152/jn.00331.2009

Durand, S., Iyer, R., Mizuseki, K., de Vries, S., Mihalas, S., and Reid, R. C. (2016).
A comparison of visual response properties in the lateral geniculate nucleus
and primary visual cortex of awake and anesthetized mice. J. Neurosci. 36,
12144–12156. doi: 10.1523/jneurosci.1741-16.2016

Foster, K. H., Gaska, J. P., Nagler, M., and Pollen, D. A. (1985). Spatial and
temporal frequency selectivity of neurones in visual cortical areas V1 and V2
of the macaque monkey. J. Physiol. 365, 331–363. doi: 10.1113/jphysiol.1985.
sp015776

Gao, E., DeAngelis, G. C., and Burkhalter, A. (2010). Parallel input channels
to mouse primary visual cortex. J. Neurosci. 30, 5912–5926. doi: 10.1523/
jneurosci.6456-09.2010

Girman, S. V., Sauvé, Y., and Lund, R. D. (1999). Receptive field properties of
single neurons in rat primary visual cortex. J. Neurophysiol. 82, 301–311. doi:
10.1152/jn.1999.82.1.301

Grubb, M. S., and Thompson, I. D. (2003). Quantitative characterization of
visual response properties in the mouse dorsal lateral geniculate nucleus.
J. Neurophysiol. 90, 3594–3607. doi: 10.1152/jn.00699.2003

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsáki, G.
(2000). Accuracy of tetrode spike separation as determined by simultaneous
intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414. doi:
10.1152/jn.2000.84.1.401

Hawken, M. J., Shapley, R. M., and Grosof, D. H. (1996). Temporal-frequency
selectivity in monkey visual cortex. Vis. Neurosci. 13, 477–492. doi: 10.1017/
s0952523800008154

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Vis.
Neurosci. 9, 181–197. doi: 10.1017/s0952523800009640

Heimel, J. A., Van Hooser, S. D., and Nelson, S. B. (2005). Laminar organization
of response properties in primary visual cortex of the gray squirrel
(Sciurus carolinensis). J. Neurophysiol. 94, 3538–3554. doi: 10.1152/jn.00106.
2005

Heimel, J. A., Saiepour, M. H., Chakravarthy, S., Hermans, J. M., and Levelt, C. N.
(2010). Contrast gain control and cortical TrkB signaling shape visual acuity.
Nat. Neurosci. 13, 642–648. doi: 10.1038/nn.2534

Holub, R. A., and Morton-Gibson, M. (1981). Response of visual cortical neurons
of the cat to moving sinusoidal gratings: response-contrast functions and
spatiotemporal interactions. J. Neurophysiol. 46, 1244–1259. doi: 10.1152/jn.
1981.46.6.1244

Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in the
cat’s striate cortex. J Physiol. 148, 574–591. doi: 10.1113/jphysiol.1959.sp006308

Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in psychtoolbox-3?.
Perception 36, 1–16.

Krekelberg, B., van Wezel, R. J., and Albright, T. D. (2006). Interactions between
speed and contrast tuning in the middle temporal area: implications for the
neural code for speed. J. Neurosci. 26, 8988–8998. doi: 10.1523/jneurosci.1983-
06.2006

Krukowski, A. E., and Miller, K. D. (2001). Thalamocortical NMDA conductances
and intracortical inhibition can explain cortical temporal tuning. Nat. Neurosci.
4, 424–430. doi: 10.1038/86084

Mullen, K. T., Thompson, B., and Hess, R. F. (2010). Responses of the human visual
cortex and LGN to achromatic and chromatic temporal modulations: an fMRI
study. J. Vis. 10:13. doi: 10.1167/10.13.13

Frontiers in Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 868

https://doi.org/10.1017/s0952523800006817
https://doi.org/10.1152/jn.1982.48.1.217
https://doi.org/10.1152/jn.1982.48.1.217
https://doi.org/10.1017/s0952523800010336
https://doi.org/10.1152/jn.00943.2003
https://doi.org/10.1152/jn.2002.87.6.3102
https://doi.org/10.1167/7.12.1
https://doi.org/10.1016/0042-6989(82)90196-1
https://doi.org/10.1126/science.8191289
https://doi.org/10.1523/jneurosci.17-21-08621.1997
https://doi.org/10.1038/nrn3136
https://doi.org/10.1523/jneurosci.22-22-10053.2002
https://doi.org/10.1523/jneurosci.22-22-10053.2002
https://doi.org/10.1113/jphysiol.1984.sp015498
https://doi.org/10.1152/jn.00331.2009
https://doi.org/10.1523/jneurosci.1741-16.2016
https://doi.org/10.1113/jphysiol.1985.sp015776
https://doi.org/10.1113/jphysiol.1985.sp015776
https://doi.org/10.1523/jneurosci.6456-09.2010
https://doi.org/10.1523/jneurosci.6456-09.2010
https://doi.org/10.1152/jn.1999.82.1.301
https://doi.org/10.1152/jn.1999.82.1.301
https://doi.org/10.1152/jn.00699.2003
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1017/s0952523800008154
https://doi.org/10.1017/s0952523800008154
https://doi.org/10.1017/s0952523800009640
https://doi.org/10.1152/jn.00106.2005
https://doi.org/10.1152/jn.00106.2005
https://doi.org/10.1038/nn.2534
https://doi.org/10.1152/jn.1981.46.6.1244
https://doi.org/10.1152/jn.1981.46.6.1244
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1523/jneurosci.1983-06.2006
https://doi.org/10.1523/jneurosci.1983-06.2006
https://doi.org/10.1038/86084
https://doi.org/10.1167/10.13.13
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00868 August 23, 2020 Time: 12:47 # 11

Camillo et al. Contrast-Dependent Temporal Frequency Tuning

Niell, C. M., and Stryker, M. P. (2008). Highly selective receptive fields in mouse
visual cortex. J. Neurosci. 28, 7520–7536. doi: 10.1523/jneurosci.0623-08.2008

Pawar, A. S., Gepshtein, S., Savel’ev, S., and Albright, T. D. (2019). Mechanisms of
spatiotemporal selectivity in cortical area MT. Neuron 101, 1–14.

Priebe, N. J., Lisberger, S. G., and Movshon, J. A. (2006). Tuning for spatiotemporal
frequency and speed in directionally selective neurons of macaque striate
cortex. J. Neurosci. 26, 2941–2950. doi: 10.1523/jneurosci.3936-05.2006

Prusky, G. T., West, P. W., and Douglas, R. M. (2000). Behavioral assessment of
visual acuity in mice and rats. Vision Res. 40, 2201–2209. doi: 10.1016/s0042-
6989(00)00081-x

Reynaud, A., Masson, G. S., and Chavane, F. (2012). Dynamics of local
input normalization result from balanced short- and long-range intracortical
interactions in area V1. J. Neurosci. 32, 12558–12569. doi: 10.1523/jneurosci.
1618-12.2012

Robson, J. G. (1966). Spatial and temporal contrast-sensitivity functions of the
visual system. J. Opt. Soc. Am. 56, 1141–1142. doi: 10.1364/josa.56.001141

Sato, T. K., Haider, B., Häusser, M., and Carandini, M. (2016). An excitatory
basis for divisive normalization in visual cortex. Nat. Neurosci. 19, 568–570.
doi: 10.1038/nn.4249

Sceniak, M. P., Hawken, M. J., and Shapley, R. (2002). Contrast-dependent changes
in spatial frequency tuning of macaque V1 neurons: effects of a changing
receptive field size. J. Neurophysiol. 88, 1363–1373. doi: 10.1152/jn.2002.88.3.
1363

Shapley, R. M., and Victor, J. D. (1978). The effect of contrast on the transfer
properties of cat retinal ganglion cells. J. Physiol. 285, 275–298. doi: 10.1113/
jphysiol.1978.sp012571

Skottun, B. C., Bradley, A., and Ramoa, A. S. (1986). Effect of contrast on spatial
frequency tuning of neurones in area 17 of cat’s visual cortex. Exp. Brain Res.
63, 431–435.

Tang, J., Ardila Jimenez, S. C., Chakraborty, S., and Schultz, S. R. (2016).
Visual receptive field properties of neurons in the mouse lateral
geniculate nucleus. PLoS One 11:e0146017. doi: 10.1371/journal.pone.014
6017

Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Res.
22, 377–380. doi: 10.1016/0042-6989(82)90153-5

Thompson, P., and Stone, L. S. (1997). Contrast affects flicker and speed perception
differently. Vision Res. 37, 1255–1260. doi: 10.1016/s0042-6989(96)00302-1

Tolhurst, D. J., and Movshon, J. A. (1975). Spatial and temporal contrast sensitivity
of striate cortical neurones. Nature 257, 674–675. doi: 10.1038/257674a0

Tsai, J. J., Wade, A. R., and Norcia, A. M. (2012). Dynamics of normalization
underlying masking in human visual cortex. J. Neurosci. 32, 2783–2789.

Umino, Y., Solessio, E., and Barlow, R. B. (2008). Speed, spatial, and temporal
tuning of rod and cone vision in mouse. J. Neurosci. 28, 189–198. doi: 10.1523/
jneurosci.3551-07.2008

Umino, Y., Pasquale, R., and Solessio, E. (2018). Visual temporal contrast
sensitivity in the behaving mouse shares fundamental properties with human
psychophysics. eNeuro 5:e181-18.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Camillo, Ahmadlou and Heimel. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 868

https://doi.org/10.1523/jneurosci.0623-08.2008
https://doi.org/10.1523/jneurosci.3936-05.2006
https://doi.org/10.1016/s0042-6989(00)00081-x
https://doi.org/10.1016/s0042-6989(00)00081-x
https://doi.org/10.1523/jneurosci.1618-12.2012
https://doi.org/10.1523/jneurosci.1618-12.2012
https://doi.org/10.1364/josa.56.001141
https://doi.org/10.1038/nn.4249
https://doi.org/10.1152/jn.2002.88.3.1363
https://doi.org/10.1152/jn.2002.88.3.1363
https://doi.org/10.1113/jphysiol.1978.sp012571
https://doi.org/10.1113/jphysiol.1978.sp012571
https://doi.org/10.1371/journal.pone.0146017
https://doi.org/10.1371/journal.pone.0146017
https://doi.org/10.1016/0042-6989(82)90153-5
https://doi.org/10.1016/s0042-6989(96)00302-1
https://doi.org/10.1038/257674a0
https://doi.org/10.1523/jneurosci.3551-07.2008
https://doi.org/10.1523/jneurosci.3551-07.2008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Contrast-Dependence of Temporal Frequency Tuning in Mouse V1
	Introduction
	Materials and Methods
	Animals
	Extracellular Electrophysiology
	Visual Stimuli
	Data Analysis
	Experimental Design and Statistics
	Software Accessibility

	Results
	Varying Temporal Frequency and Contrast
	Divisive Normalization

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


