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Objective: To evaluate whether introducing gamification in BCI rehabilitation of the
upper limbs of post-stroke patients has a positive impact on their experience without
altering their efficacy in creating motor mental images (MI).

Design: A game was designed purposely adapted to the pace and goals of an
established BCI-rehabilitation protocol. Rehabilitation was based on a double feedback:
functional electrostimulation and animation of a virtual avatar of the patient’s limbs. The
game introduced a narrative on top of this visual feedback with an external goal to
achieve (protecting bits of cheese from a rat character). A pilot study was performed with
10 patients and a control group of six volunteers. Two rehabilitation sessions were done,
each made up of one stage of calibration and two training stages, some stages with the
game and others without. The accuracy of the classification computed was taken as
a measure to compare the efficacy of MI. Users’ opinions were gathered through a
questionnaire. No potentially identifiable human images or data are presented in this
study.

Results: The gamified rehabilitation presented in the pilot study does not impact on the
efficacy of MI, but it improves users experience making it more fun.

Conclusion: These preliminary results are encouraging to continue investigating
how game narratives can be introduced in BCI rehabilitation to make it more
gratifying and engaging.

Keywords: brain computer interface, gamification, stroke, rehabilitation, functional rehabilitation, serious game

INTRODUCTION

Stroke is a leading cause of severe physical disability. According to the World Health Organization,
15 million people suffer from stroke worldwide each year, five million of them die, and five
million are permanently disabled (Donkor, 2018). Impairments in the upper limbs affect 60% of
stroke survivors. Rehabilitation of these patients is key to improve patients’ capabilities of realizing
daily life activities and, consequently, to improve their independence and quality of life (Pindus
et al., 2018). Various technologies have been used to support upper limb rehabilitation including
assistive robotic systems, camera tracking and motion sensors. Among them, the Mental Imagery
Brain Computer Interface (MI-BCI) has emerged as a cost-effective, non-invasive rehabilitation
technology, specially indicated for patients with a low range of motor motion, having fatigue, or
pain (van Dokkum et al., 2015; Remsik et al., 2016; Cervera et al., 2018).
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The strategy of MI-BCI rehabilitation is to exploit the
capability of users to create a mental image of a movement. BCI
systems use ElectroEncephaloGraphy (EEG) placing electrodes
over the patients’ head to capture functional cortical activation
changes while patients are trying to create a mental image
of a functional motor movement. The EEG signal exhibit
event-related synchronization and desynchronization of neural
rhythms that can be correlated with the laterality of the mental
image (McFarland et al., 2000; Neuper et al., 2006). Thus,
machine learning algorithms can be trained to determine in real
time if the mental image is correct (Chavarriaga et al., 2017).

Feedback is an essential feature of EEG-BCI rehabilitation.
EEG-BCI signal analysis can be used to trigger functional
electrostimulation (FES) (Quandt and Hummel, 2014) and to
control robotic ortheses in order to assist the realization of motor
activity (Ang et al., 2015). In this way, the disrupted sensorimotor
loop is closed. It has been proven that this loop closure is a key
factor to induce neural plasticity changes, therefore to improve
functional behavior. Visual feedback is necessary to learn how
to create mental images. In addition, during the routine use of
BCI, it provides users with self-awareness and assessment of how
they are performing. The suitability of different forms of feedback
has been discussed (Lotte et al., 2013; Jeunet et al., 2016). On
one hand, symbolic widgets such as progress bars and arrows
are simple and fast to implement, but they have been found to
be difficult to understand and may even distract users (Kosmyna
and Lécuyer, 2017; Škola et al., 2019). On the other hand,
embodied avatar representations of the patient’s limb promote
Action Observation mechanisms and activate the Mirror Neuron
Network (MNN) inducing thus cortical plasticity (Pichiorri et al.,
2015; Zhang et al., 2018). Moreover, the sense of embodiment that
a realistic avatar provides impacts positively on BCI control (Petit
et al., 2015; Alimardani et al., 2016).

BCI sessions are based on repetition of exercises, they
are cognitively demanding and can lead to a reduced patient
engagement in rehabilitation. Gamification is defined as the
introduction of game-design elements and principles such as
narratives, scores and awards in non-game contexts to increase
a person satisfaction and interest in performing activities by
bringing intrinsically motivational playful experiences (Richter
et al., 2015). Gamification has become a popular research topic
with applications in a variety of domains from corporate business
transformation to education and health (Zichermann and Linder,
2013). However, some studies in domains such as education, have
shown that it is not always effective. Moreover, it can even yield to
a reduction of the efficacy of the activity it aims at making more
motivating (Hamari et al., 2014). The effects of gamification are
greatly dependent on the context and on the users. In particular,
rewards, badges and leaderboards should be used with precaution
as they may backfire (Hanus and Fox, 2015).

Gamification has been largely used in conventional upper-
arm rehabilitation in order to alleviate the repetitiveness of
sessions, increase motivation, and engagement (Burke et al., 2009;
Bermúdez-Badia et al., 2016). Commercial computer games have
been adapted and new games have been designed on purpose
to enhance the rehabilitation experience (Bermúdez-Badia and
Cameirão, 2012). These games use the movement of the patients

as the input system of the game. The movement is measured
through various tracking systems (Llorens et al., 2015), and it
substitutes conventional devices such as mouse and joysticks.

The introduction of gamification in BCI rehabilitation is quite
challenging because using brain signals as the only user input
reduces the scope of possible game narratives. Moreover, in order
to keep the benefits of embodiment (Borrego et al., 2019), games
should somewhat integrate the patient’s upper limb avatar. This
is why existing studies typically involve driving or navigation
tasks: for instance, destroying asteroids using left/right hand
(Vourvopoulos et al., 2016) or rowing boats while trying to collect
flags (Vourvopoulos et al., 2019). Existing gamified BCI solutions
have been basically tested with volunteer participants that have
not been affected by a stroke, thus there is a lack of data on actual
patients. Little is known about the impact of introducing external
stimuli such as game elements aside from the avatar’s limb on the
efficacy of the training activity.

In this paper, we present a preliminary experimental study
on gamified BCI post-stroke functional rehabilitation of the
upper limbs. The goal of the study is to analyze how
gamification impacts on the efficacy of the treatment and on
patients’ experience.

MATERIALS AND METHODS

Setup
The BCI system used on this study is recoveriX R© (g.tec medical
engineering GmbH, Austria). The system analyzes the EEG brain
signals and provides multimodal feedback through a virtual
reality avatar of the upper limbs and a FES proprioceptive
feedback stimulation (Irimia et al., 2016, 2017; Cho et al.,
2016). The EEG caps were equipped with 16 active electrodes
(g.LADYbird or g.Scarabeo, g.tec medical engineering GmbH)
located according to international 10/10 system (extended 10/20
system): FC5, FC1, FCz, FC2, FC6, C5 C3, C1, Cz, C2, C4, C6,
Cp5, Cp1, Cp2, Cp6. A reference electrode was placed on the right
earlobe and a ground electrode at position of Fpz.

Game Design
The game was developed on top of this system with two
main requirements. First, it could not alter the pace of the
rehabilitation. Second, in order to avoid altering the sense of
identification of the user with the virtual forehand, the game
could not modify the gesture of the avatar. With these limitations,
the narrative was restricted to a game in which the unique action
of the avatar was raising and lowering the wrist. Moreover, to
make the virtual situation as similar as possible to the real one,
we avoided driving-like actions that imply a virtual navigation
of the avatar. We also wanted to have feedback of the current
exercise and of the total training stage so far. Hence, the goal
of the game is to compete with a mouse in order to preserve
food. Figure 1 shows the “standard” avatar and the new game
appearance. At the beginning of the session 80 pieces of cheese
(one for each exercise) are set between the two virtual arms.
At each exercise, a mouse appears from the right or left corner
of the room (the side of the wrist that must move) and stands
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FIGURE 1 | Standard avatar and new game appearance. In the left side, is
the avatar used in recoveriX system, the green arrow indicates in which hand
the movement should be performed. In the right side is the new animated
game, both arms are in the same position than the standard avatar. In front of
the virtual subject there are 80 pieces of cheese that the user should try to
keep. The rat indicates which hand should move.

nearby the pile of cheese pieces during the cue sub-stage. In the
feedback sub-stage, the game receives a cue of Boolean events
that indicate if the mental image is being correct or not. The
avatar’s hand moves accordingly, and the FES is activated. When
a cue is incorrect, both the visual feedback and the electrical
stimulation are disabled. In the relax sub-stage, if five consecutive
events are considered correct, when the virtual arm lowers, the
mouse runs away empty-handed. Otherwise, it takes a piece of
cheese. The size of the pile is thus an indicator of the overall
progress of the training stage. In addition, a scoring panel was
added to reinforce the awareness of the user. This panel could
be deactivated, shown intermittently or constantly displayed.
The game was implemented with Unity and connected to the
recoveriX R© replacing the non-gamified version. It is available
upon request by mail to the corresponding author.

Participants
Ten stroke patients with hemiparesis in the upper limb and
six healthy subjects were recruited for this study. The stroke
subjects were patients from Institut Guttmann. All participants
were volunteers. The inclusion criteria for stroke patients were:
(i) residual hemiparesis, (ii) the stroke occurred at least 4 days
before the first assessment, (iii) functional restriction in the
upper extremities. Additionally, for all participants, the following
criteria were applied: (iv) to be able to understand written and
spoken instructions, (v) stable neurological status, (vi) willing to
participate in the study and to understand and sign the informed
consent, (vii) to be able to attend meetings. Ethics approval
was obtained from the Ethic committee of Institut Guttmann,
Barcelona, Spain. Finally, all participants were informed about
the goals of the project, and they provided their written informed
consent before participating in the study.

Experimental Design
All participants took part in the same procedure: control users
in the research lab and patients in the rehabilitation institution.
They performed two training sessions separated in time by a
minimum of 1 day and a maximum of 2 weeks. Each session
was composed of three runs or stages: Calibration (C-S1, C-S2),
Training 1 (T1-S1, T1-S2), and Training 2 (T2-S1 and T2-S2).
Each run was composed of 80 trials (80 movements) and lasted
12 min. There was a resting time of about 5 min between stages.

FIGURE 2 | RecoveriX trial description.

Figure 2 describes the timing of each trial. Each movement
started with a cue, and 2 s later the system presented an
arrow pointing to the movement direction. The participant was
instructed to start the MI just after the cue for the next 6 s. During
this period the user had to imagine the wrist dorsiflexion, and
the feedback devices were activated. After the feedback period the
system provided a sound to mark the end of the exercise and gave
2 s of rest before the next trial.

Motor Imagery Accuracy Calculation
The EEG data was bandpass filtered (0.5–30 Hz) to increase
the signal to noise ratio (SNR) and to remove unnecessary
components. We also applied a 50 Hz notch filter to reduce line
noise. We then created 8 s epochs of EEG data for every trial and
divided them into two classes: left and right.

Each epoch was bandpass filtered (8–30 Hz) and an
artifact rejection was applied (the same as in the lateralization
coefficient). Using the current frames, a CSP filter was created.
Next, it was used to get 4 spatially filtered channels from the
16 EEG channels. For every frame we defined 14 timepoints,
separated 0.5 s one from each other, from 1.5 to 8 s of the frames.
For each timepoint we calculated a set of 4 features.

For each timepoint, we calculated the variance of each spatially
filtered signal using a window of 1.5 s. The resulting four
features for each timepoint were normalized, and we then derived
their logarithmic values. Using all the features from all the
timepoints and the entire frame collection, we calculated a linear
discriminant analysis (LDA) classifier.

Using the CSP filter and the LDA classifier, the classifier
accuracy is assessed with a 10-fold cross validation process.
During this process, a classifier is created for every fold using 90%
of the frames (training set). The classifier is then assessed with the
other frames (testing set). This is done 10 times, and ultimately
yields a mean accuracy for each class (left and right hand)
and every timepoint. Finally, for each class, the MI accuracy
is calculated as the maximum (Max. Accuracy) or as the mean
(Mean Accuracy), among all timepoints. The LDA classifier was
not modified from the original version (Irimia et al., 2016) to
support the gamification pilot. Its code is not publicly available.

The calibration run is used to train the LDA classifier, thus,
during this run the online feedback provided to users is always
positive. After the calibration run, all participants were moved to
the “Training” mode, where the feedback is triggered by the MI
in real time. During Training 1 feedback is based on the classifier
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built after Calibration, and during Training 2 it is based on an
enhanced version of the classifier using data from the previous
two stages. Each session started from scratch; thus Session 2 did
not use the classifier of Session 1.

During the two sessions subjects sat at a table with the
computer screen in front. They wore headphones to listen to the
instructions and sounds.

In the first session, calibration (C-S1) and Training 1 (T1-
S1) were without the game, only with the regular avatar, while
Training 2 (T2-S1) used the game without any feedback of time
and scoring (no feedback). In the second session, all stages used
the game: C-S2 (no feedback), T1-S2 showing score and time
every ten exercises (intermittent feedback) and T2-S2 showing
time and score constantly (constant feedback).

The feedback received by the users is shown in Figure 1. As
mentioned, there are two kinds of feedback: time and score. The
time is shown through a cheese-shape clock while the score is
shown literally differentiating the user score, under the name of
Jasper, and the rat score.

Assessment Test
For this study two variables were analyzed: BCI performance
and users’ experience. BCI performance was studied using the
MI accuracy of each run computed as exposed above. Users’
experience was assessed using a questionnaire.

Questionnaire
The opinions of users about the game were gathered through a
customized version of the System Usability Scale (SUS) composed
by 8-items to be answered in a Likaert scale of 1–5, being 1 the
worst case and 5 the best (see Table 1).

In addition, all participants were asked about how often they
played videogames in a 5-values scale (never, sometimes, often,
usually, always), and if they had previous experience with BCI
technology. The answers and all collected data are available at the
git repository: https://github.com/nosepas1/BCI_gamification_
data.

Statistical Analysis
The software used for the statistical analysis was MATLAB
R2017a and a python script using scipy stats, numpy and pandas.
The first step of the statistical analysis is the comparison of
the baselines of each group of participants; age, gender, and
precision. First, the Shapiro-Wilk Test (SWT) test was performed
to analyze the normality of the variables. For the comparison
between groups (“Healthy” and “Stroke”), t-test for independent
samples (in case of assumption of normality) and Mann–Whitney
U test (in case of non-normality) were used.

For the analysis of the impact of the serious game combined
with BCI on the user’s concentration, since no independence
could be assumed, the MI accuracies of every subject in all
games mode were compared. The selected test for the analysis
was “repeated measures ANOVA” (Girden, 1992; Norman and
Streiner, 2008; Singh et al., 2013; Verma, 2015), which allows the
results’ comparison of the same group of participants at different
time points. For that, two assumptions are needed: normality

distribution (Shapiro-Wilk test > 0.05) and assumption of
sphericity (Mauchly’s sphericity test > 0.05).

Finally, a quantitative analysis of the answers in the
questionnaire of each participant was carried out.

RESULTS

Participants Baseline
Six healthy subjects and ten stroke patients were enrolled in the
study, seven of them were females and nine males. The average
age of the healthy group was 35.3 years old (SD = 16.0), with
the maximum and minimum age in this group was 58 and
23 years old, respectively. The mean age of the stroke group
was 55.8 years old and the maximum and minimum age was 79
and 26 years old. In the Stroke group, four patients had been
affected on their right side, and 6 on their left side. The mean time
since stroke was 33 months (SD = 22.8), seven in subacute phase,
Three in chronic phase, and 0 in acute phase. Neither patients
nor control users had previous experience in BCIs, except two
patients that had used the recoveriX R© system years ago. Control
users had neither previous known neurological disorder, nor
previous experience in BCIs.

The accuracy obtained after the first training run in the first
session (T1-S1) is taken as a baseline reference for each subject.
As mentioned above, in run T1-S1, participants used the standard
visual feedback with a personalized classifier generated in the
calibration run of Session 1(T1-C1). Thus, the accuracy obtained
in T2-S1, T1-S2, and T2-S2 is compared with that of T1-S1. The
equality of the baselines cannot be assumed, because there is a
statistical difference in the age between groups. The age variable
of the healthy group is not normally distributed (SWT: P = 0.022)
and Mann-Whitney U test shows a significant difference between
both age groups, P = 0.031. In order to see how much the age
differences can influence the BCI performance, the correlation
between the age and the maximum classification accuracy
(maximum accuracy of the second run in the first session T1-S2)
has been studied. The age variable with all participants and MI
accuracy data follow a normal distribution (SWT age, P = 0.075,
SWT accuracy, P = 0.096). The Pearson correlation test shows
that there is no significant correlation between age and accuracy
(rho = −0.195, P = 0.505). Thus, the comparison of the MI
accuracy between groups is allowed. However, because of the
small size of sample no general conclusion can be extracted about
the relationship age and accuracy.

The comparison of the accuracy obtained in the first training
run T1-S1 (after system calibration), shows that there is no
statistical difference in the BCI performance between healthy
and stroke group using unpaired t-test, t-value = |1.475| and
P = 0.166 (SWT > 0.05).

Impact of the Game in the BCI
Performance
In order to detect differences in the accuracy using different
visual feedback modalities, the MI accuracy of each run has
been analyzed using repeated measures ANOVA. All the datasets
can be considered normally distributed. Shapiro-Wilk test did
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TABLE 1 | Users’ experience questionnaire.

# Question Score

Q1 Evaluate the level of fun in the game. [1] no fun; [2] little fun; [3] indifferent; [4] fun; [5] very fun

Q2 Evaluates the visual aspect of the game. [1] very bad; [2] bad; [3] indifferent; [4] good; [5] very good

Q3 Evaluate the easeiness of use of the game. [1] very hard; [2] hard; [3] normal; [4] easy; [5] very easy

Q4 Evaluate the clarity of rules of the game. [1] very confusing; [2] confusing; [3] indifferent; [4] clear; [5] very clear

Q5 With regard to the narrative plot (the fight against the mouse to protect the
cheese), you thought so.

[1] very inadequate; [2] inadequate; [3] indifferent; [4] adequate; [5] very
adequate

Q6 With regard to the level of concentration required to perform the exercise, in
your opinion, adding the game to the rehabilitation session has contributed to:

[1] has distracted me a lot; [2] has distracted me; [3] has not influenced me; [4]
has helped me to concentrate; [5] has helped me to concentrate a lot

Q7 With regard to possible boredom while exercising, in your opinion, adding the
game to the rehabilitation session has contributed to:

[1] It’s increased a lot more boredom; [2] It’s bored me more; [3] It has not
influenced me; [4] It alleviated boredom more; [5] It alleviated boredom a lot
more

Q8 In general, the idea of introducing a game (not necessarily this one) into
rehabilitation therapy, seems:

[1] very bad; [2] bad; [3] indifferent; [4] good; [5] very good

not show significant results at alpha level. Mauchly’s Test of
Sphericity indicated that the assumption of sphericity has not
been violated, χ2(2) = 9.595, P = 0.088.

Table 2 shows the results of the accuracy comparison
using repeated measures ANOVA. The multiple comparison
did not show statistical differences in the accuracy based on
the gamification with different visual feedback modalities (see
Figure 3 and Table 3). The same comparison has been done using
only the data from the healthy or stroke group, and no significant
differences have been detected.

While no significant differences are shown in several
ANOVA tests, from inspection of Figure 3, a trend toward
an improvement of mean accuracy along the sessions seems
plausible. However, no conclusive results can be drawn because
of the small number of subjects.

Users’ Satisfaction With the Serious
Game
The users’ satisfaction was assessed after the last session using
a questionnaire with eight questions rated from 1 to 5. For
the quantification of the results the average of the individual
score and the average of each question in the questionnaire
has been computed.

Table 4 shows the results in the questionnaire based on groups
and gaming experience. The first column shows the group name,
the second column the group size, the third column is the
averaged total questionnaire score based on the average score in
each question, and the next eight columns show the average result
for each group of each question. Figure 4 shows the questionnaire
results of each group.

All participants gave high scores in all questions: users’
satisfaction is 4.20 points (SD = 0.45) up to five, the stroke
group gave higher score in the questionnaire with 4.23 points
(SD = 0.35), whereas the healthy group was 4.15 points
(SD = 0.63). In general, the best aspect of the game is the clarity
of the rules (Q4). The healthy group also highlighted the easiness
of use (Q3). The worst aspect is the fun level of the game (Q1).
In the informal debriefing after the sessions, users declared being
pleased with the game, but suggested some enhancements such
as introducing variations in the animation of the rat, which is

always the same, and adding new auditory stimuli. The attention
and somnolence in stroke patients are always a problem, which
is not always discussed and should be considered in the design
of experiments. In this case, patients agreed that the activity
had the proper duration to avoid these problems. Stress was
not quantitatively measured. However, in the debriefing session,
patients did not mention any change in the level of fatigue and
stress using the gamified version of training.

Finally, no significant correlation was found between the
questionnaire score and accuracy.

DISCUSSION

The objective of this experiment was to explore how the proposed
serious game can affect users’ concentration and performance of
a BCI system for stroke functional rehabilitation.

Although the Healthy and Stroke groups presented significant
differences in age, this unevenness does not seem to harm
the analysis, because there is no lineal correlation between
age and accuracy (Pearson’s test; rho = −0.195, P = 0.505).
However, the number of subjects is too small to generalize this
conclusion. In future experiments, with more subjects, ages will
be stratified. Furthermore, there was no differences in the MI
accuracy between the Healthy group and the Stroke group (t-test,
t-value = |1.475| and P = 0.166).

The BCI performance has been studied through a multiple
comparison analysis using the MI accuracy calculated after
each run using different avatar versions. The comparison
using repeated measures ANOVA test, showed no significant
results, in the mean accuracy as well as in the maximum
accuracy (Tables 2, 3 and Figure 3). The results of this first
analysis demonstrate that there is no negative effect in the BCI
performance when it is combined with a new gamified avatar.
However, as shown in Figure 3A, the point cloud of T1-S2
and T2-S2 are slightly higher than T1-S1 (MI accuracy baseline
measure). This difference is more evident in the mean accuracy
plot (Figure 3C). The most probable explanation for that is that
the pop-up scoring window can encourage the user to be more
focused in the MI task.
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TABLE 2 | Multiple comparison of MI accuracy using repeated measures ANOVA.

SumSq df MeanSq F p-Value p-ValueGG p-ValueHF p-ValueLB

Maximum accuracy

Intercept 72.272 2 36.136 1.4213 0.265 0.266 0.266 0.261

run2_ses1 49.236 2 24.618 0.96826 0.397 0.374 0.382 0.348

Error 508.50 20 25.425

Mean accuracy

Intercept 72.508 2 36.254 1.3514 0.284 0.280 0.281 0.275

run2_ses1 48.422 2 24.211 0.90249 0.423 0.385 0.392 0.367

Error 482.88 18 26.827

FIGURE 3 | BCI performance using different visual feedback.

TABLE 3 | Summary of MI accuracy of each group.

C-S1 T1_S1 T2_S1 T1_S2 T2_S2

Maximum accuracy

All (mean) 80.09 (10.76) 78.86 (11.47) 78.49 (13.32) 82.03 (12.48) 82.08 (11.61)

Healthy (mean) 84.78 (12.9) 85.70 (14.25) 83.68 (16.9) 86.42 (15.39) 88.42 (11.41)

Stroke (mean) 78.21 (9.91) 76.12 (9.65) 75.02 (9.9) 79.11 (10.02) 77.86 (10.22)

Mean accuracy

All (mean) 71.53 (12.82) 74.29 (11.47) 73.07 (14.15) 76.09 (12.33) 76.45 (11.63)

Healthy (mean) 80.40 (17.77) 81.86 (14.26) 77.84 (18.17) 81.93 (14.37) 83.77 (11.83)

Stroke (mean) 68.87 (10.71) 71.27 (9.31) 69.88 (10.75) 72.20 (9.73) 71.57 (9.07)
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TABLE 4 | Summary of questionnaire results based on group and gaming experience.

n Mean (SD) P1 P2 P3 P4 P5 P6 P7 P8

All 16 4.20 (0.45) 3,31 3,75 4,44 4,69 4,38 4,25 4,25 4,50
Healthy 6 4.15 (0.68) 2,83 3,83 4,83 4,83 4,33 3,83 4,00 4,67
Often 3 4.54 (0.56) 3,33 4,33 5,00 5,00 4,67 4,33 4,67 5,00

Sometimes 2 3.81 (0.80) 2,50 3,50 4,50 4,50 4,50 3,50 3,00 4,50

Never 1 3.63 (1.06) 2,00 3,00 5,00 5,00 3,00 3,00 4,00 4,00

Stroke 10 4.23 (0.37) 3,60 3,70 4,20 4,60 4,40 4,50 4,40 4,40
Often 1 3.75 (1.04) 3,00 2,00 4,00 4,00 3,00 5,00 4,00 5,00

Sometimes 3 4.13 (0.56) 3,00 3,67 4,00 4,33 4,67 4,67 4,33 4,33

Almost never 1 3.13 (0.83) 3,00 2,00 2,00 4,00 4,00 3,00 4,00 3,00

Never 5 4.6 (0.24) 4,20 4,40 4,80 5,00 4,60 4,60 4,60 4,60

The bold values differentiate between the two groups of users that participate in the experiment. People that have suffer the stroke and healthy people.

The results obtained from the questionnaire show a high
satisfaction level from the users (see Figure 4). In one hand,
the easiness of use and the clarity of the rules are the features
best scored by both groups. It is important to point out that
previous experience on gaming is not related with better user
experience or a better BCI performance. All users also reported
that this new avatar helped them to improve their concentration
(Q6) and reduce their boredom (Q7). This is consistent with the
results obtained in Figure 3C. On the other hand, all participants
gave the lowest score to the entertainment level (Q1) and visual
attractiveness (Q2). As observed in previous experiments (Lledó
et al., 2016), visual attractiveness is a desired objective but
sometimes patients prefer simpler versions of a task. Future
versions of the game could provide different versions of the game
appearance. The difficult part is to improve the entertainment
level of the game without increasing the cognitive task and,
consequently, decreasing the BCI performance. Hence, other
narrative threads could be tested and stratified into levels to
assess how a story impacts on users’ performance and motivation.
Moreover, the game difficulty level could be adapted to the

FIGURE 4 | Questionnaire results.

user’s performance: the better the results, the higher the correct
response threshold.

The main limitation of the study is small number of subjects
and the age difference between groups. In addition, more sessions
are needed to evaluate if the results observed in this pilot study
are generalizable. Furthermore, new variables can be considered
such us stress and fatigue, frequent in this type of rehabilitation.
Finally, some emotional variables can be included to compare
with the user performance.

Nevertheless, the idea of introducing games combined with
BCI therapy seems to be an promising step to take to improve
user experience, increase adherence to treatment and improve the
functional outcome of patients.

CONCLUSION

A game-based rehabilitation instrument has been developed as
an improvement of the existing recoveriX system for post-stroke
upper limb rehabilitation. A pilot study has been carried out to
test the impact of the game in the rehabilitation process. Sixteen
subjects were recruited (6 healthy and 10 stroke patients) to
perform 2 sessions of BCI therapy using different visual feedback
modalities. The first run (80 trials) of each session was used to
calibrate the system creating a personal LDA classifier. In the
second run of the first session (T1-S1) all participants performed
80 trials using the “standard” VR avatar. In the third run of the
first session (T2-S1) the participants used a new animated version
based on the standard avatar. In the second run of the second
session (T2-S2) users trained with the new avatar combined with
a pop-up window that was appearing for a short period every 10
min showing the score. In the third run of the second session (T2-
S2) the appearance was like the T2-S2, but the score window was
appearing all the time. The objective of these last two runs was
to add more cognitive responses to improve the concentration
without harming the MI accuracy.

The results show there is no significant difference in the
MI accuracy baseline between the healthy group and the stroke
group. Moreover, there were no significant differences either
between training with or without game. Results also show that
there are no significant differences in the accuracies using the
different forms of scoring feedback. Thus, the added stimuli of
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scoring and time does not affect performance. Concerning
users’ opinions, they were all positive about the game level of
entertainment, clarity of rules, narrative and visual attractiveness.
Participants declared not having been affected by the game to
create a mental image but having felt less bored. Finally, there was
a consensus about the interest of gamifying stroke rehabilitation
sessions. The main limitation of this study is the small size of the
sample and small number of rehabilitation sessions. However, the
results are encouraging to continue investigating how to bring
gamification elements to post-stroke rehabilitation.
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