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The immune system is essential for maintaining homeostasis, as well as promoting
growth and healing throughout the brain and body. Considering that immune cells
respond rapidly to changes in their microenvironment, they are very difficult to study
without affecting their structure and function. The advancement of non-invasive imaging
methods greatly contributed to elucidating the physiological roles performed by immune
cells in the brain across stages of the lifespan and contexts of health and disease.
For instance, techniques like two-photon in vivo microscopy were pivotal for studying
microglial functional dynamics in the healthy brain. Through these observations, their
interactions with neurons, astrocytes, blood vessels and synapses were uncovered.
High-resolution electron microscopy with immunostaining and 3D-reconstruction, as
well as super-resolution fluorescence microscopy, provided complementary insights
by revealing microglial interventions at synapses (phagocytosis, trogocytosis, synaptic
stripping, etc.). In addition, serial block-face scanning electron microscopy has provided
the first 3D reconstruction of a microglial cell at nanoscale resolution. This review
will discuss the technical toolbox that currently allows to study microglia and other
immune cells in the brain, as well as introduce emerging methods that were developed
and could be used to increase the spatial and temporal resolution of neuroimmune
imaging. A special attention will also be placed on positron emission tomography
and the development of selective functional radiotracers for microglia and peripheral
macrophages, considering their strong potential for research translation between
animals and humans, notably when paired with other imaging modalities such as
magnetic resonance imaging.

Keywords: microscopy, microglia, fluorescence microscopy, electron microscopy, positron emission
tomography, magnetic resonance imaging

INTRODUCTION

The immune system of the central nervous system (CNS) is essential to maintain its homeostasis
[reviewed in Tay et al. (2017)]. Typically, this task is mainly performed by the resident immune
cell population, microglia (Ginhoux et al., 2010; Tay et al., 2019). The role of microglia and other
immune cells in the brain was uncovered using innovative methods allowing to image them
in situ (Savage et al., 2019a) and in vivo (Davalos et al., 2005; Herz et al., 2012). Considering
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that immune cells like microglia are highly sensitive to
changes in their microenvironment, non-invasive techniques
that prevent their reaction during tissue preparation and
imaging are necessary (Cătălin et al., 2017; Augusto-Oliveira
et al., 2019). Immune cell reactivity can be assessed using
morphological features (Savage et al., 2019a) or more sensitively
by ultrastructure (El Hajj et al., 2019; Savage et al., 2019c). Overall,
imaging techniques revealed that microglia play essential roles
in the brain: as immune sentinels that clean toxic extracellular
debris and repair damage to neighboring cells, but also as
glial cells regulating neuronal and astrocytic/oligodendrocytic
cell survival, differentiation, maturation, migration, as well as
network formation and refinement with relation to neuronal
activity (Ter Veer et al., 2017; Bordeleau et al., 2019; Tay
et al., 2019). Once reactive, microglia play important roles in
neuroinflammation –beneficial or detrimental depending on the
context of disease or injury (Plemel et al., 2020). These roles
of reactive microglia are exerted in cooperation with other glial
and other innate immune cells (e.g., monocytes, neutrophils) as
well as endothelial cells forming the blood-brain-barrier (BBB)
(Sofroniew, 2015; Van Dyken and Lacoste, 2018; Bellver-Landete
et al., 2019). Although monocytes were not shown to be present
in the healthy adult mouse brain (Ginhoux et al., 2013; Prinz
and Priller, 2014, 2017) they can be recruited rapidly in a
wide panoply of contexts (D’Mello et al., 2009; Wohleb et al.,
2015; Varvel et al., 2016; Niraula et al., 2018; Schneider et al.,
2019). Once in the brain, monocytes tend to adopt a similar
morphology as microglia and are often referred to as microglia-
like cells even if they have a different origin, from the bone
marrow while microglia come from the embryonic yolk sac
(Leone et al., 2006; Varvel et al., 2012; Katsumoto et al., 2014). The
adaptive immune system is also highly complex, with multiple
cell types such as lymphocytes (T cells, B cells, and NK cells)
playing a possibly important role in brain development, activity
and plasticity notably through their secretion of neurotrophins
(Kipnis et al., 2004; Lewitus and Schwartz, 2009; Morimoto and
Nakajima, 2019). T cells in particular are often seen in the brain
parenchyma in multiple sclerosis, both in human samples and its
animal models of experimental autoimmune encephalomyelitis.
In these autoimmune diseases, T cells are considered to change
their behavior in a destructive way that causes demyelination
and inflammation (Lehmann, 1998). Here, we will review the
main imaging techniques that are currently available to study
brain immunity, focusing on microglia as they are mainly studied,
but also on monocytes and T cells, while providing examples of
their complementary applications, and discuss the power of their
combination into integrative studies.

IMAGING THE HOMEOSTATIC BRAIN
USING PHOTONS

Microscopy techniques (brightfield, fluorescence, confocal,
multiphoton, etc.) are commonly used in neuroimmunology to
analyze the density, distribution and morphology of different
cell types, including microglia, and their interactions one with
another (Savage et al., 2019a). The examined cells often require

markers to be visualized. Immunostaining is widely used to
label the cells of interest across various types of samples, from
animal models to human postmortem CNS. For example, double
immunostaining against IBA1 and TMEM119 can be used to
distinguish microglia (double positive; derived from embryonic
yolk sac) from infiltrating peripheral macrophages (expressing
IBA1 but not TMEM119; from bone marrow) (González Ibanez
et al., 2019). One should note that TMEM119 expression is
not stable in early development (until P20 in mouse) and can
change in disease context such as multiple sclerosis, highlighting
the importance of using a combination of markers including
Fcrls, siglec-h, sall1, P2RY12 and more recently HEXB to identify
microglia (Butovsky et al., 2014; Buttgereit et al., 2016; Konishi
et al., 2017; Zrzavy et al., 2017; Masuda et al., 2020). Fluorescence
can also label immune cells directly, without immunostaining,
when markers are biologically expressed in transgenic animals
(Martell et al., 2017; Daigle et al., 2018). Fate mapping of immune
cells origin and trajectory, from the embryonic yolk sac or bone
marrow to the CNS, and then function in the CNS can then be
performed (Gomez Perdiguero et al., 2015). Reporter mice are
especially useful when they are crossed one with another. As
an example, the CX3CR1+/GFP;Thy1H+/YFP model (Feng et al.,
2000; Jung et al., 2000) labels microglia and neurons including
synapses in two different colors. It allows to study dynamic
relationships between the two cell types, which is particularly
relevant for studying microglia-synapse structural interactions
(Tremblay et al., 2010). Furthermore, fluorescent dyes can be
injected in vivo, while cells can be stained ex vivo and introduced
back into animals, which can be transgenic, to allow for their
discrimination (Helmchen and Denk, 2005). Many different
mouse models, discussed in detail in a comprehensive review
(Theret et al., 2019), were developed to study the function of
resident microglia and macrophages within the CNS. Parallel
to this, photonic microscopy greatly evolved, providing always
improved images, bypassing the spatial resolution limit from
350 nm to around 65 nm with super-resolution microscopy
(Klar et al., 2001; Evilsizor et al., 2015), which is especially
useful for studying synaptic interactions. We will next explore
the main microscopy techniques that are commonly used in
neuroimmunology and present emerging ones that could provide
new insights. Advantages and limitations are compared in
Table 1.

Slide Scanning
When answering questions about immune cell functions without
knowing the specific CNS regions of interest involved, one
can turn to high throughput imaging techniques such as slide
scanning. This very convenient technique uses a mobile stage
to automatically image regions of interest, from a series of CNS
sections mounted on an entire microscopy glass slide, with a
theoretical resolution of 900 nm (x-y). Whole mounts of mouse
brain (Roetzer et al., 2019) and spinal cord (Bellver-Landete
et al., 2019) were successfully imaged using this technique. It
is ideal to perform quantitative analysis of microglial density
and distribution, for instance, across large CNS tissue areas,
as proposed within an experimental workflow in Figure 1A.
One edge of the technique is the large amount of information
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TABLE 1 | Comparison of light microscopy techniques based on their advantages and limitations.

Method Tissue
preparation

Spatial
resolution

Depth Main uses In vivo
imaging

Advantages Limitations References

Epifluorescence -Fixation -In vivo:
cranial window

350–500 nm <200 µm Rapid
verifications (i.e.
staining
outcome,
morphology,
distribution)

Possible, but
not typically
used

-Easy use -Low
cost -Rapid
-Multi-channels
-Optical
sectioning not
required

-Light diffraction limit
-Out-of-focus
background
fluorescence detection

Yang and
Yuste, 2017;
Bayerl et al.,
2019

Slide scanner
microscopes
(brightfield or
fluorescent)

-Fixation -Slide-
mounted

350–500 nm <200 µm -Cell
distribution,
density and
morphology
-Surface area
-3D
reconstructions
(whole brain or
serial sections)

No -Easy use
-High-speed
scanning of
large tissue
sections
-Multi-channel

-Light diffraction limit
-Out-of-focus
background
fluorescence detection

Mikula et al.,
2007; Chen
et al., 2014;
Yang and
Yuste, 2017;
Roetzer et al.,
2019

Confocal -Fixation -Tissue
clearing

200–800 nm <100 µm -2D imaging of
tissue sections
-3D
reconstructions
(z stacks)

Possible, but
not typically
used

-Reduction of
out of focus
background
fluorescence
detection
-Multi-channels

-Photobleaching -Slow
speed: not suitable for
following rapid changes
in dynamic phenomena

Graf and
Boppart, 2010;
Pérez-Alvarez
et al., 2013;
Oreopoulos
et al., 2014;
Villaseñor and
Collin, 2017

2-photon -Fixation -In vivo:
thinned-skull or
cranial window
-Chronic in vivo:
canula insertion

400–900 nm >300 µm
>500 µm

in vitro

-Live in vivo
imaging
-Time-lapse
imaging -3D
reconstructions

Yes -Reduction of
out of focus
background
fluorescence
detection
-Reduction of
light scattering
-Increased
spatial and
temporal
resolution
-Multi-channels

-Photobleaching (less
than confocal
microscopes) -Slightly
decreased resolution
due the use of larger
wavelengths

Santi, 2011;
Pérez-Alvarez
et al., 2013;
Oreopoulos
et al., 2014

STED -Fixation -In vivo:
thinned-skull or
cranial window
-Chronic in vivo:
canula insertion

65–100 nm 10–15 µm -Synapse and
dendritic spine
dynamics

Yes -Subcellular
resolution
-Multi-channels

-High cost and difficult
equipment accessibility
-Low tissue-penetration
depth

Klar et al.,
2001; Westphal
et al., 2008;
Berning et al.,
2012; Chéreau
et al., 2015

Light-sheet -Fixation -Tissue
clearing
-Organotypic
cultures

270–1000 nm 750 µm (live
tissue)

2 mm (cleared
tissue)

-Whole small
organisms
imaging (i.e.
mouse
embryos) or
brain -Overview
of cellular
networks -3D
reconstructions

No -High-speed
scanning of
large tissue
sections
-Reduced
photobleaching
-High tissue-
penetration
depth

-Not suitable for large
organisms such as
adult mice (i.e. suitable
for mice up to P14)
-Depth limit established
by autofluorescence
-Limited number of
channels (max. 2–3)

Dodt et al.,
2007; Santi,
2011; Fiolka,
2019; Wang
et al., 2019

provided in slide scanning images. Being formed of multiple
tiles, these images allow the user to zoom in and out to
visualize cellular density, distribution, morphology, intercellular
relationships and other features of interest. The mosaic can
be used to see the bigger picture of the cellular alterations
or phenotypic changes as mentioned in Figure 1B. It can
also be used to create new files containing smaller regions of
interest with softwares such as QUPATH that could also be used

for automatic analysis of density, distribution or morphology
and intercellular relationships with machine learning (Bankhead
et al., 2017). For instance, automatic analysis of slide scanning
images was performed to characterize IBA1-immunopositive
microglia/monocytes in traumatic brain injured mice at the site
of injuries. The mosaic generated was used to count and classify
these cells as “ramified” or “amoeboid” using machine learning, in
less than 15 min compared to 5 h for a manual analyst. This faster

Frontiers in Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 903

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00903 September 19, 2020 Time: 8:22 # 4

Carrier et al. Imaging the Neuroimmune Dynamics

FIGURE 1 | Proposed thorough structural analysis of the immune cells in the
brain, exemplified with microglia. Optimal analysis of microglial density,
distribution, morphology and ultrastructure using 4 different imaging
modalities can allow to evaluate their cellular network, organellar function and
health status. (A) Slide scanning can be performed to image microglial density
and distribution throughout the brain (scale bar = 100 µm) while discriminating
between different regions and layers of interest (B). Microglial morphology can
be assessed in (C) using confocal microscopy to measure quantitative
changes in their cell body and arborization area (scale bar = 20 µm) to be
then classified, as illustrated starting from the top in (D) into ramified, rod
shape, hypertrophic and dystrophic phenotypes, an assessment not always
feasible by slide scanner imaging due to the lower resolution and lack of 3D
information. Microglial dynamics can be investigated using non-invasive
two-photon in vivo imaging of CX3CR1+/GFP reporter mice (scale bar = 10
µm), as shown in (E) with a thinned-skull preparation allowing to assess
microglial cell body mobility (red arrow in F) and process motility (black arrows)
during normal physiological conditions in the intact mouse cerebral cortex.
The ultrastructure of microglial cell body and processes can be analyzed using
(G) transmission electron microscopy, as illustrated by a pseudocolored
microglia (scale bar = 1 µm) that displays peroxidase staining in its cell body
and processes against the IBA1 protein (red arrows). Cytologic events that can

(Continued)

FIGURE 1 | Continued
be quantified in microglia using different electron microscopy techniques are
illustrated in (H) and include, notably, 1. Lysosomal inclusions, 2. Lipid bodies,
3. Lipofuscin granules, 4. Elongated or altered mitochondria, 5. Extracellular
space pockets, 6. Extracellular digestion, 7. Endoplasmic reticulum/Golgi
dilation, 8. Synaptic contacts, and 9. Phagolysosomal inclusions.

process suggests strong potential for similar high-throughput
analysis using human brain slices (Kyriazis et al., 2019). Slide
scanning combined with machine learning is then a prime
choice method for whole slices imaging in animal and human
postmortem samples (Budde and Annese, 2013), considering that
it removes the human bias when counting or tracing the contour
of infiltrating monocytes or microglia from hundreds of slices.

Confocal Microscopy
The biggest foe of fluorescent microscopy is light scattering,
which limits its spatial resolution to about 300 nm (x-
y) and 600 nm (z) at best. To circumscribe this problem,
confocal microscopes increase resolution by only detecting the
fluorescence emitted by the sample at the focal point. This feat
is achieved by using a pinhole to reject light originating from
outside the focal plane (Elliott, 2020). In neuroimmunology,
confocal microscopy is commonly used to image the morphology
of immune cells in three dimensions (3D), by acquiring z-stacks
as presented in Figure 1C. Z-stacks are the key functionality
of confocal microscopy. Allowing the 3D analysis of immune
cells can give deeper insight when characterizing the shape of
microglia, monocytes and T cells (Perego et al., 2013; Mittal
et al., 2019). In Alzheimer’s disease pathology, for instance, T cell
morphology can be 3D rendered in relation to neurons, which
allowed the identification of “emperipolesis,” a phenomenon
by which the T cell is actually inside the neuron, which
might suggest neuronal damage associated with the foreign cell
entry (Lodygin et al., 2019). In injuries, the morphology of
microglia can also be effectively assessed from 3D reconstruction
where the ramification density and arborization area can be
analyzed for microglia close to injury site versus located in
the periphery (Otxoa-de-Amezaga et al., 2019). Such changes
in morphology, associated with microglial surveillance capacity
and interactions with other parenchymal elements, including
synapses, can be missed in typical epifluorescence images as
smaller ramifications are difficult to discern with the reduced
resolution. Thus, confocal microscopy is an effective tool to
reveal the morphology of microglia and other cell types in 3D, as
required to identify phenotypic changes, cellular alterations and
functions, as illustrated in Figure 1D. In the case of microglia,
their morphology is considered a direct indicator of their activity.
For instance, amoeboid microglia tend to migrate in the brain
while hypertrophic microglia tend to perform more phagocytosis
than surveillant ones (Savage et al., 2019a; Tay et al., 2019).
Using confocal microscopy, researchers can analyze various
morphological changes like the formation of phagocytic cups
at the end of microglia/monocyte processes, associated with the
removal of engulfed newly proliferated cells and responsible for
the development of juvenile play in adolescent rat (Sierra et al.,
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2010; VanRyzin et al., 2019). However, confocal microscopy is
not often used in in vivo applications because of its limited
penetration depth, which depends on the usable excitation
wavelength (Graf and Boppart, 2010).

Stimulated Emission Depletion (STED)
Microscopy increases image resolution by overcoming the
light diffraction limit. Similar to other commonly used
fluorescence microscopy approaches, STED involves the
detection of fluorescence by point-scanning. A doughnut-
like shape beam is used to deplete surrounding fluorophores
in order to only read the fluorescence of the fluorophore
of interest (Hell and Wichmann, 1994; Tardif et al., 2019)
STED microscopy’s nanoscale resolution (65 nm in x-y and
150 nm in z) resulted in multiple applications, including the
structural imaging of microglial and synaptic dynamics in
fixed and live thick brain slices (Hein et al., 2008; Chéreau
et al., 2015). Recent progresses further allowed to generate
the first STED able to image efficiently in vivo, by adding
components of a two-photon system. The use of a pulsed
laser source provided better penetration, combined with
the high spatial resolution of STED microscopy. With this
approach, a greater number of small dendritic spines was
imaged than with conventional two-photon microscopy,
thus allowing to show a higher turnover of dendritic spines
than previously envisioned (Pfeiffer et al., 2018). Other high-
resolution microscopy techniques have been developed such as
structured illumination microscopy (SIM) that uses a spatial
modulation pattern to illuminate the sample, in which a software
demodulation and filtering allows to overcome the diffraction
limit with a factor two (Schermelleh et al., 2008). Stochastic
optical reconstruction microscopy (STORM), where only a
portion of fluorophores are excited on each cycle of laser
emission, gives insight into their precise location at the nanoscale
(Rust et al., 2006).

Light-Sheet
While super-resolution techniques revolutionized the use of
fluorescence microscopy by increasing its spatial resolution,
light-sheet microscopy is a technique that was developed for
faster imaging. It allows to perform high speed scanning of large
CNS tissue volumes. The system requires a fluorescence detection
setup that differs slightly from epifluorescence microscopy,
since detection is performed transverse to the illumination
by a thin sheet of laser light (Keller and Ahrens, 2015).
This non-destructive imaging technique prevents sectioning
interpretation artifacts. These artifacts arise when cells are cut
in cross-section by vibratome, freezing microtome or cryostat.
In addition, it offers the possibility to perform molecular
analyses after imaging the fixed tissue (Glaser et al., 2017).
Light-sheet fluorescence microscopy achieves a resolution of
∼26 µm (x-y) (Colombelli and Lorenzo, 2014) with 3D
optical sectioning (up to ∼300 nm in z) and high-speed of
imaging (2.7 × 104 µm3s−1) (Lu C.-H. et al., 2019) that
limits the effects of photobleaching compared to confocal
microscopy (Santi, 2011; Power and Huisken, 2017). Light-sheet
microscopy was used to visualize the entire adult mouse brain

in health (Qi et al., 2019) and Alzheimer’s disease pathology
(Liebmann et al., 2016). This emerging technique showed the
3D-distribution of neurons, microglia, the vasculature and tau
proteins, throughout the entire brain parenchyma, using IDISCO
to clear the tissue (Qi et al., 2019). Further iterations of
IDISCO such as FDISCO or SHIELD could be employed as
well (Renier et al., 2014; Park et al., 2018). However, light-
sheet imaging techniques with in vivo whole mouse brain
imaging capacity were not yet proposed (Dodt et al., 2007;
Susaki et al., 2014).

Multiphoton Microscopy
Is currently the technique of choice in neuroimmunology for
in vivo studies. This technique uses a femtosecond pulsed
laser that produces a very high density of photons in a
very short time allowing for 2 or 3 photons, respectively,
to play the same excitation role as a single photon of full
energy. These 2 or 3 photons have half or one third of the
quantum energy of a single photon since their wavelength
is about two or three times longer than a single excitation
photon (typically 800–950 nm for two-photon and 1100–
1300 nm for three-photon microscopy) (Svoboda and Yasuda,
2006). Because longer wavelengths are more penetrating, one
can explore phenomena deeper into biological tissues (Wang
et al., 2018). The addition of energy from several photons
takes place at the focal plane of the objective where a large
number of photons is needed to make emerge this rare
phenomenon, in a single point instead of a large double
cone-like structure for single photon excitation. Therefore, the
multiphoton technique preserves tissue integrity outside of
the focal plane. With two-photon microscopy, the single focal
point achieves a spatial resolution approximating 0.42 µm (x-
y) and 0.81 µm (z) according to the numerical aperture of
the objective (Soeller and Cannell, 1996; Diaspro et al., 2005;
Zheng et al., 2019).

Seminal findings that dramatically changed the field of
neuroimmunology were obtained with two-photon in vivo
microscopy. A pioneer experiment conducted with this
technique, in healthy conditions versus after a focal lesion
generated with a two-photon laser, debunked the previous
paradigm. Microglia are not resting cells in the absence of
injury. Instead, they are extremely dynamic, with their processes
constantly surveying the entire brain parenchyma with a time
course that reaches 5.5 h in adult mice (Davalos et al., 2005;
Nimmerjahn et al., 2005). In this seminal work conducted in
anesthetized CX3CR1+/GFP reporter mice, time-lapse images
of fluorescent microglia were obtained through the skull, using
minimally invasive thinned-skull method (Marker et al., 2010;
Parkhurst et al., 2013). This achievement is reproduced in
Figure 1E. A growing technology for two-photon microscopy
is the resonant scanner, which allows acquisition speed to reach
30 frames per second. This high imaging speed is particularly
useful for studying the real time activity of neuronal and glial
cell populations via in vivo calcium imaging (Grewe et al., 2011;
Olmedillas del Moral et al., 2019; Verkhratsky et al., 2019). Other
types of microscopy techniques providing time-lapse imaging
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with high temporal resolution are extensively reviewed here
(Mondal, 2014; Ueda et al., 2020).

BEATING THE SPATIAL RESOLUTION
LIMIT USING ELECTRONS

Electron microscopy (EM) generates images by interrogating
a dehydrated sample with a beam of electrons, which are
transmitted (transmission electron microscopy; TEM)
or bounced back (scanning electron microscopy; SEM)
using specialized detectors. The resulting beam reveals the
ultrastructure of the investigated object, e.g., structure of protein,
organelle, subcellular compartment or cell. By uncovering
these elements from the atomic to the millimeter (and even
centimeter) level, ultrastructural techniques have provided
important information in neuroscience and neuroimmunology
(Genoud et al., 2006; Knott and Genoud, 2013; Savage et al.,
2018, 2019a). EM has allowed to shed light on microglia-neuron
communication, revealing that 94% of microglial processes
directly contact synaptic elements in the healthy adolescent
mouse visual cortex (Tremblay et al., 2010). These ultrastructural
insights and others contributed to defining the role of microglia
in developmental synaptic pruning (Tremblay et al., 2010;
Paolicelli et al., 2011; Schafer et al., 2012). The quadripartite
synapse model, in which microglia and astrocytes regulate
together synaptic function and plasticity, also arose from
ultrastructural observations (Bennett, 2007; Tremblay et al.,
2011, 2014; Schafer et al., 2013; Sierra and Tremblay, 2014).

TEM
Electron microscopy can reach the resolution at <50 pm
(x-y) for TEM compared to 3 Å for cryo-EM (Earl et al.,
2017). This allows TEM to provide fine details regarding
immune cells morphology, from cell body to finest and
most distal processes. As illustrated in Figures 1G,H, this
nanoscale resolution allows to identify signs of ‘intracellular’
activity (e.g., organellar changes, phagosomal inclusions) and
extracellular activity (e.g., extracellular digestion of cellular
debris, intercellular contacts with other glial cells, neurons,
and synapses). The quantification of events for each cell
type studied is essential to assess the situation of the cell,
whether it is in steady state or overwhelmed by phagocytic
inclusions requiring digestion, accumulated misfolded proteins
in the endoplasmic reticulum or Golgi apparatus, stressed
mitochondria or making increased synaptic contacts as
previously evaluated for microglia across a range of contexts,
including Huntington’s disease pathology (Savage et al., 2020).
Additionally, an increasing body of evidence supports the
idea that the microglial population is composed of diverse
subpopulations endowed with unique intrinsic properties that
perform different functions, and display a high degree of spatial
and temporal specialization (Stratoulias et al., 2019). Evidence
of this microglial heterogeneity was notably provided with TEM.
The dark microglia, identified at the ultrastructural level by
their electron dense cytoplasm and other markers of cellular
stress, as well as extensive interactions with synapses (Bisht

et al., 2016b), are rare in healthy young adult mice, but increase
in number up to 10-fold with chronic unpredictable or social
defeat stress, aging and other pathological contexts, including
Alzheimer’s disease pathology (St-Pierre et al., 2020), showing
the importance of this approach for the in situ study of microglial
functional diversity.

SBF-SEM
3D-EM allows to reconstruct organelles, cytoskeletal elements,
subcellular compartments, and cellular relationships, among
different cell types including immune cells in situ (Bolasco
et al., 2018). Blocks of CNS tissue can be imaged using serial
block face SEM, in which the tissue is sequentially imaged at a
resolution of ∼10 nm (x-y), cut (25–50 nm thick)(z) with an
ultramicrotome mounted inside the SEM chamber, realigned and
imaged, to automatically generate z-stacks of serial images (Denk
and Horstmann, 2004; Briggman and Bock, 2012; Peddie and
Collinson, 2014; Yamasaki et al., 2014). This allows SBF-SEM
to reconstruct multiple immune cells, neurons and astrocytes
at the nanoscale (Calì et al., 2019). This technique is much
faster than the method used in pioneering studies: serial section
TEM to image synapses (Fiala and Harris, 2001) or microglial
processes interacting with synapses (Tremblay et al., 2010),
by aligning and segmenting series of ultrathin sections cut
manually and reconstructed semi-manually with Reconstruct
(Fiala, 2005). This method allowed the accurate comparison of
nucleus to cell body ratio and mitochondrial distribution among
the different brain cells, including between individual microglial
cells, giving insight into the functional status of microglia and
other cells in their 3D microenvironment (Savage et al., 2018).
Microglial mitochondria analysis is promising based on reports of
mitochondria defects in multiple neurodegenerative disease such
as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease
and amyotrophic lateral sclerosis (Chaturvedi and Flint Beal,
2013). This whole cell analysis was further used to discriminate
monocyte-derived cells from microglia based on their distinctive
ultrastructural features in the brain of experimental autoimmune
encephalomyelitis mouse models of multiple sclerosis. This
distinction between microglia and monocyte-derived cells is
normally difficult to achieve in a 2D plane but was possible in
3D while showing the specific interaction of monocytes at the
Ranvier node, where they could be initiating the demyelination
(Yamasaki et al., 2014).

FIB-SEM
3D-EM is also possible using focused ion beam scanning electron
microscopy (FIB-SEM) that removes as little as 3 nm of tissue
after each block face image acquisition to create z-stack of images.
FIB-SEM produces a higher 3D resolution reaching 3–5 nm (x, y,
and z) (Briggman and Bock, 2012), which is required to study the
fine geometry of organelles, phagosomes and autophagosomes
and cytoskeletal elements at the expense of having a reduced
field of view and slower acquisition speed compared with SBF-
SEM (Heymann et al., 2006; Knott and Genoud, 2013; Peddie
and Collinson, 2014; Savage et al., 2019b). With this level of
resolution, FIB-SEM imaging of immune cells allows to discern
between cellular elements that are partially surrounded by a
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microglial process, for instance during synaptic stripping, from
the ones that are fully engulfed and internalized (phagocytosed).
Different steps of phagocytosis process could be identified,
from partial to complete engulfment, given the observation
of microglia nibbling small pieces of axon terminals (i.e.,
performing trogocytosis) in the postnatal mouse hippocampus
(Weinhard et al., 2018).

Correlative Light and Electron
Microscopy (CLEM)
Has seen its usage escalating over the past years (Begemann
and Galic, 2016). Combining the minimally invasive in vivo
imaging capacity of two-photon imaging with the nanometer
resolution of serial section TEM revealed microglial ability to
interact actively with pre- and post-synaptic elements, while some
microglial cells had synaptic elements inside their phagosomes
under normal physiological conditions (Tremblay et al., 2010). In
the context of studying Alzheimer’s disease pathology, brightfield
microscopy combined with TEM also allowed to image microglial
diversity around amyloid plaques (Bisht et al., 2016a; El Hajj
et al., 2019). Figure 1 proposes a correlative approach that
combines four different modalities of microscopy to paint the
most insightful portrait of microglial diversity. CLEM is a most
promising method for investigating in 2D and even 3D microglial
relationships with synapses throughout life, from development
(Schafer et al., 2012) to aging (Beckman et al., 2019). Synapses can
be imaged using confocal microscopy and their ultrastructural
relationships with microglia and other immune cells can be
imaged using TEM or even SEM with array tomography. This
workflow with array tomography allows the captured images to
be stitched into larger 2D mosaic, thus providing a better view
of their general organization within CNS regions and layers.
These images can be correlated with the evaluation of cognitive
decline by measuring the loss of synapses but also the integrity
of their structure in the prefrontal cortex of human donors
(Henstridge et al., 2018). Other important protocols such as
the Nanobody-Assisted Tissue Immunostaining for Volumetric
Electron microscopy (NATIVE) can provide enhanced staining
using single-domain nanobodies with better penetration into the
tissue for large scale 3D reconstruction over the entire mouse
hippocampus (Fang et al., 2018), and would allow to correlate
data from the nanoscale to the brain-region level.

CLINICAL VIEW ON NEUROIMMUNE
IMAGING

Studying the human brain offers a different set of challenges
compared to studying animal models. Several non-invasive
techniques developed between 1960 and 1980 (Nutma et al.,
2019), especially, allow to have a look at immune system activity
inside the human brain. Some of the techniques currently
used are positron emission tomography (PET) (Harrison et al.,
2014) and magnetic resonance imaging (MRI) (Arnò et al.,
2014; Harrison et al., 2015; Rollins et al., 2018) to analyze the
integrity of the brain parenchyma and BBB (Kenk et al., 2015;
Montagne et al., 2016).

PET
Allows to visualize microglial activity by measuring the dynamic
coupling of the radiotracer [11C]PBR28 or [11C]PK11195 to
the translocator protein (TSPO). This protein localized to
microglial mitochondria can be used as a proxy of their
neuroinflammatory and phagocytic activity (Sandiego et al.,
2015; Sucksdorff et al., 2019). This makes PET imaging useful
to study immune cells in vivo using these radiolabels, but
it lacks in spatial resolution (Albrecht et al., 2016). While
[11C]PBR28 or [11C]PK11195 tracers are widely used, a range
of different microglial receptors and signaling proteins can be
targeted via PET radiotracers (Tronel et al., 2017). This approach
allowed to observe live changes in microglial activity (notably
associated with phagocytosis and/or release of pro-inflammatory
mediators) in the human brain after peripheral injection of
lipopolysaccharide, a bacterial endotoxin, that was studied to
determine how the adaptive immune response exerts a direct
effect on behavior between health and disease (Sandiego et al.,
2015). For PET imaging, the nature of the radiotracer targets
and their low expression levels at steady-state generally limit
their use to study reactive functions (e.g., neuroinflammation
and exacerbated phagocytosis), and not microglial functions in
normal homeostatic conditions (Owen et al., 2012). Using PET
in schizophrenic patients with [18 F]-FEPPA, another ligand for
TSPO, neuroinflammation was assessed in schizophrenia patients
after antipsychotic treatment, revealing no difference, thus
suggesting that neuroinflammation happens in earlier stages of
the pathology (Kenk et al., 2015). Efforts to find and develop new
tracers for the study of non-inflamed microglia would represent
a step of major importance for the future investigation of the
microglial subpopulations engaged in different functions across
a variety of homeostatic and neuroinflammatory states (Beaino
et al., 2017; Villa et al., 2018). Other innate immune cells such
as monocytes have also been imaged using PET with the tracer
[111Indium] oxyquinoline which enters leukocyte cell membrane
and provides an effective visualization in the mouse and human
blood (Kircher et al., 2008). More mouse PET investigations
have shown T cells which can also be labeled by [111Indium]
oxyquinoline in animal models (Gong et al., 2011). Further
investigation of monocytes and T cells is required in human to
translate the findings from animal research. Clinical investigation
using high spatial resolution imaging typically uses MRI.

MRI
Is an established non-invasive imaging technique that is used
in clinical and preclinical research studies, with various animal
models, making it an excellent tool for translational research
(Desjardins et al., 2019). MRI with gadolinium has been used
in rodents to study BBB integrity and its role in depression
together with blood oxygenation dynamics. This is particularly
interesting as the BBB is emerging as an active interface between
the periphery and the brain that modulates neuroimmune
interactions differently between health and disease conditions
(Menard et al., 2017). Further than BBB investigation, MRI
is a crucial tool that provides a high-resolution view of brain
structures across the whole parenchyma in the same session
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(Ladd et al., 2018). While it is not able to directly image
immune cells, MRI is used to image the whole human or
animal brain during neuroinflammation, giving insight into
immune cells effects on the disruption of the neurovascular unit,
demyelination as well as gray and white matter volume reduction
(Quarantelli, 2015; Albrecht et al., 2016). One MRI imaging
method, diffusion MRI, is widely used to image white matter
tracts. This is achieved by measuring water molecule arbitrary
movements in the parenchyma to map the cellular architecture
of the white matter (Le Bihan and Iima, 2015). This technique
was used similarly to PET for the analysis of neuroinflammation
in schizophrenia patients. By measuring free-water abnormities
with the MRI machine, authors showed limited extracellular
space indicating less inflammation in the parenchyma during late
schizophrenia stages (Pasternak et al., 2015), which supports the
previous evidence.

With its ability to image during the lifetime of the subject,
whether animal or human, MRI can be used in experimental
settings to investigate disease progression longitudinally, which
can then be correlated with postmortem immunostaining for
microglia and monocytes (Neuwelt et al., 2009), in addition
to various disease hallmarks (Justicia et al., 2008; Jacobs et al.,
2012; Tang et al., 2018; Yi et al., 2019). In a rat model
of glioma, tumors were imaged during growth progression
while studying the microglial/macrophagic changes visualized
using ultrasmall superparamagnetic iron oxides (USPIOs).
Microglia/macrophages store iron, a mineral necessary for
oxidative metabolism, synaptic plasticity, myelination and
neurotransmitter synthesis (Nnah and Wessling-Resnick, 2018).
USPIOs is also internalized by microglia and macrophages,
making the USPIOs-filled cells appearing as dark spots on MRI
images. The observations were then correlated with confocal
imaging of microglia/macrophages taking up Texas Red-labeled
USPIOs in the tumor zone using high spatial resolution confocal
imaging (Fleige et al., 2001). Ultimately, correlative [18F]DPA-
714-PET and MRI-USPIOs together with confocal imaging
allowed to investigate microglia/macrophage properties in an
experimental autoimmune encephalomyelitis mouse model of
multiple sclerosis. This work showed that microglia/macrophages
upregulate TSPO and IBA1 in the demyelinating regions during
acute phases, suggesting their dysfunction as a contributing factor
to the inflammation seen in multiple sclerosis (Coda et al., 2020).

CONCLUSION

A Case for Correlative Microscopy and
New Development
Research focusing on the neuroimmune component of the
CNS is fundamental to provide further information on the
properly functioning system with the goal of identifying
and understanding the complex subcellular, cellular and
intercellular processes that become compromised, dysregulated,
or exacerbated in disease, whether the involved cells are stressed,
degenerating or senescent. There is a tremendous need to pair
clinical PET and MRI together with postmortem CLEM, notably
using slide scanning, confocal, TEM or SEM together within

an integrative investigation. CLEM can bring researchers closer
to the goal of providing further insights into the mechanisms
that govern brain immunity and its important consequences
on neuronal circuits and behavior across life. This collaborative
endeavor aims to maintain health, as well as prevent and
treat cancer, but also neurodevelopmental, neuropsychiatric,
neurological and neurodegenerative diseases, in which the innate
and adaptive immune cells have been critically implicated (Sierra
and Tremblay, 2014; Rangachari et al., 2017; Lecours et al., 2018;
Bordeleau et al., 2019). By bringing together complementary
imaging approaches CLEM can allow researchers to pair the
observations in order to provide unprecedented insights into
the mechanistic underpinnings of CNS development, function
and plasticity. From slide scanning and confocal microscopy to
more specialized tools like two-photon imaging and the different
emerging types of 3D-EM modalities (Briggman and Bock, 2012;
Peddie and Collinson, 2014), STED and light-sheet microscopy,
which are now on the rise, will likely become common practice as
the technology becomes more accessible.

The perspective of the field is now at a point where
several new technologies are just waiting to be used in
neuroimmunology. One example of new technology that could
provide insights into the role of T cells, in particular, is 4D
electron microscopy. This cutting-edge type of microscopy
detects photon-induced near-field signals measured at T cell
surfaces. This principle allowed the evaluation by electromagnetic
measurement of T cell activation and to correlate this finding
with the major compatibility binding complexes measured
from the near-field signals at the cell surface. These results
demonstrated structural changes that serve as biomarkers
of T cell sensitivity to immune challenges (Lu Y. et al.,
2019). Other techniques are still not offering their advantages
in neuroimmunology yet, such as holographic microscopy
which brings the resolution of electron microscopy to the
order of the Armstrong. This would raise the imaging of
phagosomal inclusions highlighted in Figure 1H to a new
level, where could be determined the content of these vesicles.
Multi-isotope imaging mass spectrometry would also bring
many possibilities to the field. This imaging technique is
able to image and quantify molecules in the samples, which
presents great potential to identify new molecular targets in
the neuroimmunology field (Arrojo E Drigo et al., 2019;
Madan et al., 2019).
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