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Inter-subject transfer learning is a long-standing problem in brain-computer interfaces

(BCIs) and has not yet been fully realized due to high inter-subject variability in the

brain signals related to motor imagery (MI). The recent success of deep learning-based

algorithms in classifying different brain signals warrants further exploration to determine

whether it is feasible for the inter-subject continuous decoding of MI signals to provide

contingent neurofeedback which is important for neurorehabilitative BCI designs. In

this paper, we have shown how a convolutional neural network (CNN) based deep

learning framework can be used for inter-subject continuous decoding of MI related

electroencephalographic (EEG) signals using the novel concept of Mega Blocks for

adapting the network against inter-subject variabilities. These Mega Blocks have the

capacity to repeat a specific architectural block several times such as one or more

convolutional layers in a single Mega Block. The parameters of such Mega Blocks

can be optimized using Bayesian hyperparameter optimization. The results, obtained

on the publicly available BCI competition IV-2b dataset, yields an average inter-subject

continuous decoding accuracy of 71.49% (κ = 0.42) and 70.84% (κ = 0.42) for two

different training methods such as adaptive moment estimation (Adam) and stochastic

gradient descent (SGDM), respectively, in 7 out of 9 subjects. Our results show for the

first time that it is feasible to use CNN based architectures for inter-subject continuous

decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for

practical purposes.

Keywords: convolutional neural network (CNN), deep learning, motor imagery, brain-computer interface (BCI),

electroencephalography (EEG), adaptive learning, SGDM, ADAM

1. INTRODUCTION

The practical applications of brain-computer interfaces are often hindered by the need for
repeated calibration for each individual participant due to large inter-subject variability in the
EEG signal. Even when different sessions on the same participant are considered, BCI systems
need recalibration due to the non-stationary nature of the EEG signals leading to inter-session
inconsistency (Chowdhury et al., 2018b). BCIs are often used for neurorehabilitation and for
developing control and communication systems for patients suffering from various neurological
disorders. Often the problem is exacerbated due to the presence of varying brain lesions among
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users. Studies conducted on patient population alongside healthy
individuals have shown such patterns where the variation in BCI
performance was more in patient population than in healthy
population (Spüler et al., 2012; Chowdhury et al., 2019). With
regards to neurorehabilitation especially, the time-consuming
calibration process leads to user frustration and a lack of
motivation which can hinder the recovery process. This is evident
from the work of Morone and colleagues who found a significant
correlation between motivation and BCI performance (Morone
et al., 2015) which is further found to be strongly correlated
with motor recovery (Bundy et al., 2017). General sources of
intra- and inter-subject variability leading to the covariate shifts
in the dataset include different emotional and mental processes
happening in the background of the MI (Saha and Baumert,
2020). Other sources may include the neuroanatomy of the
brain for different subjects and the inter-subject difference in the
cognitive style of performing a motor-task over time (Seghier
and Price, 2018). The volume conduction may also play a major
role in covariate shifts in the EEG data (Chowdhury et al.,
2018b). Previous attempts to solve this problem involved (1)
attempting to discover globally relevant EEG features and (2) the
use of adaptive EEG classifiers (Lotte et al., 2018). Recent studies
also utilized some BCI performance Predictors to augment the
transfer learning process (Saha et al., 2018; Saha et al., 2019).

An extensive detail of transfer learning approaches for BCIs
has been given in Jayaram et al. (2016). Transfer learning is often
implemented by transferring stationary and/or discriminative
information invariant across the subjects (Wang et al., 2015; Gaur
et al., 2019a). Apart from globally relevant feature representation,
other approaches to transfer learning involve ensemble learning,
sparse subset of spatial filters, and classifiers (Fazli et al., 2009;
Tu and Sun, 2012; Raza et al., 2019), and domain adaptation
of classifiers (Vidaurre et al., 2011). A variant of the popularly
used common spatial pattern (CSP) based spatial filtering,
called composite CSP, proposed by Kang and colleagues, was
one of the earliest efforts of inter-subject transfer learning
using EEG signals (Kang et al., 2009). Regularized CSP filters
derived from other subjects also gave significant performance
improvement for inter-subject transfer learning (Devlaminck
et al., 2011; Lotte and Guan, 2011). Another popular method
of intra- and inter-subject transfer learning is covariate shift
adaptation by combining the unlabeled test data with the
labeled training data which corrects the covariate shifts arising
from the changes of marginal distribution between different
subjects/sessions (Li et al., 2010; Arvaneh et al., 2014). Some
different approaches are also proposed for inter-subject transfer
learning where event-related cortical sources are estimated from
subject independent EEG recordings (Saha et al., 2019) which
can compensate for the changes in head morphology and
electrode positioning (Wronkiewicz et al., 2015). In a recent
study, a Riemannian geometry-based approach is successfully
applied for cross-subject and cross-session transfer learning
which significantly improved BCI performance (Zanini et al.,
2018; Gaur et al., 2019a). Others have also used novel filtering
techniques using multivariate empirical mode decomposition
(MEMD) along with CSP features for subject independent
learning and have shown improved performance on BCI

Competition IV-2a dataset (Gaur et al., 2019a,b). Halme and
colleagues compared several different methods for cross-subject
decoding of MI and passive movements using both EEG and
MEG signals. They found better cross-subject accuracy in
MEG as compared to EEG for an MI task (70.6%) (Halme
and Parkkonen, 2018). Transfer learning was also realized
using a covariate shift adaptation technique for session-to-
session transfer, although their effect on inter-subject learning
is still uncertain (Chowdhury et al., 2018b). Other attempts of
suppressing subject-specific calibration include Kalman filter-
based decoder (Sussillo et al., 2016) and actor-critic based
reinforcement learning (Pohlmeyer et al., 2014; Prins et al., 2017).
So far the evidence of high performing inter-subject transfer
learning models is scarce and mostly concentrates on event-
related potentials (Jin et al., 2013; Kindermans et al., 2014). Of
late, the use of a Sparse Group Representation Model showed
promising results for inter-subject decoding which compensated
reduced recoding from the same subject by making use of
previously recorded data from other subjects (Jiao et al., 2019).

Conventional methods of inter-subject transfer learning
mentioned above are heavily dependant on feature engineering
techniques which limit their capacity to be applied on a large
variety of subjects. Recently, following the success of deep
learning-based algorithms in image processing applications,
inroads have been made in the field of biomedical engineering,
especially in the classification of brain signals where reliable and
stable performance is still a challenge aftermore than two decades
of research (Roy et al., 2019).

Lu and colleagues proposed a deep belief network
method using a restricted Boltzmann machine (RBM) for
MI classification (Lu et al., 2017). Different architectures of
deep convolutional neural networks (CNNs) have also been
explored for decoding EEG signals (Schirrmeister et al., 2017).
A CNN with stacked autoencoders (SAE) has been shown to
achieve better classification accuracy on BCI competition IV-2b
dataset than the traditional classification approaches (Tabar and
Halici, 2016; Zubarev et al., 2018; Roy et al., 2019a). Recently,
Bayesian extreme learning was also proposed for improving
the performance of MI-BCIs (Jin et al., 2020). However, none
of these deep learning-based decoders addressed the issue of
inter-subject transfer learning in BCI, except for some recent
studies (Lawhern et al., 2018; Fahimi et al., 2019; Kwon et al.,
2019). Even in these studies, the issue of continuous feedback
was not addressed while it is of utmost importance that a
BCI, especially for neurorehabilitation applications, should be
capable of providing continuous neurofeedback contingent to
task-dependent neural activity. The paper therefore proposes the
novel concept of Mega Blocks for adapting a CNN architecture
to tackle inter-subject variabilities, and validates for the first time
the feasibility of such a CNN-based architecture for inter-subject
continuous decoding of MI-related EEG signals. The study is
important as it paves the way for calibration-free BCI designs
based on CNN which can be used for vital practical purposes
such as providing neurofeedback in a rehabilitative BCI setting
reducing the user frustration related to the need to recalibrate.
Another important aspect of this study is that it utilizes publicly
available data for the validation which means that the work
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FIGURE 1 | Construction of STFT images by sliding window of size 2 s with a shift/hop of 200 ms is divided into 256 ms sub-windows (with 56 ms shift/hop) for

calculating STFT of the MI period within the trial.

can be reproducible and serve as a benchmark for further
development in a similar direction. The results of intra-subject
and single-trial classification accuracies using the same CNN
architectures are also provided for the sake of comparability.

2. MATERIALS AND METHODS

2.1. Dataset
BCI competition IV-2b is a well-known dataset and is used as
a benchmark for testing new algorithms in the area of MI-
based BCI (BCI-Competition, 2008). The dataset comprises of
EEG data recorded from 9 healthy participants. The data were
recorded in 5 sessions, where the first 3 sessions are for calibrating
an EEG decoder and the last 2 sessions are for evaluation
purposes. Three channels on the primary motor cortex, C3, Cz,
and C4 were used for the bipolar recording of EEG signals at
the sampling rate of 250 Hz. Signals were band-passed between
0.1 and 100 Hz with a notch filter at 50 Hz set at the time
of recording using signal acquisition hardware. Each session
consists of equally distributed trials of left and right hand MI
classes. The timing diagram (Figure 1) shows that each trial
started with a fixation cross for 3 s, after which a cue appears as
an arrow for 1.5 s instructing the participant to do left or right-
hand MI. After the MI period of 4 s, there was a short break of
a few seconds until the start of the next trial. The only difference
between the trials at the calibration and evaluation phase is that
for the evaluation phase a happy or sad smiley was shown during
theMI period as feedback. In our study, we have trained the CNN

classifier on the trials of the first 3 sessions’ data (total 420 trials)
and tested on the last 2 sessions’ data (total 320 trials).

2.2. Input Image Construction
The traditional approach of classifying EEG signals is based
on extracting time-frequency based features and training using
traditional classifiers such as linear discriminant analysis (LDA),
or support-vector-machine (SVM) (Chowdhury et al., 2018a).
A CNN typically takes the input as an image; it is well-known
that vital information is contained within the time-frequency
spectrogram of EEG signals popularly known as event-related
desynchronization/synchronization (ERD/ERS) in the context
of MI (Chowdhury et al., 2019). Hence, a similar approach
was followed for constructing input images for CNN, wherein
short time Fourier transform (STFT) was used for obtaining
the time-frequency spectra of the MI related changes in the
EEG signal. The STFT is evaluated on a time period of 2 s
within the MI period of a trial (i.e., between 3 and 7 s),
which is shifted by 200 ms, thereby generating 11 input images
per trial. In our previous study on the clinical effect of BCI
based continuous anthropomorphic multimodal neurofeedback
on stroke patients (Chowdhury et al., 2018a), the shift between
the two consecutive windows was set as 500 ms which was
sufficient but suffered from high latency. In order to reduce the
latency by making it closer to real-time, in the present study
we decreased the shift by 300 ms to set it as 200 ms. Although
some studies used latencies as low as 72 ms (Foldes et al., 2015),
we made a trade-off between the amount of overlap and latency
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FIGURE 2 | Example of input images for left and right MI. The input images are formed by combining the theta-alpha and beta band STFT images vertically. The three

EEG channels: C3, Cz, and C4, are stacked depthwise, the same as an RGB image. These images are then fed into the CNN for classification purposes.

to avoid reducing it further. The choice of the time window
motivated by the fact that, as we have considered frequencies
as low as 4 Hz, i.e., time period of 250 ms, we kept the size
of the time window sufficiently high (i.e., 2,000 ms) to allow 8
oscillations of the lowest frequency for proper bandpass filtering.
Thus the combination of a 2 s time window and 200 ms shift
makes 11 segments within the 5 s MI period producing 11 images
in a single trial. This design would be useful when it comes to
providing continuous neurofeedback in a more intuitive way and
for which having low latency is an essential criterion (Foldes
et al., 2015). But unlike these previous studies (Foldes et al.,
2015; Chowdhury et al., 2018a) which are primarily based
on within-subject learning, we have shown how continuous
feedback could be incorporated into a CNN based inter-subject
transfer learning setting which can then contribute to calibration-
free neurorehabilitative BCI designs without compromising the
richness of the neurofeedback. As the sampling frequency of the
EEG signal is 250 Hz, a 2 s signal is composed of 500 samples.
We have chosen a window size of 64 samples, with an overlap
of 50 samples between the consecutive windows. The number
of fast-Fourier-transform (FFT) points was 512. Thus the size
of the spectrogram was 257 × 32, where 257 was the number
of frequency components and 32 was the number of time
points. Event related desynchronization (ERD) and event-related
synchronization (ERS) phenomena typically occur over the
frequency ranges 8–13 and 13–32 Hz, respectively (Pfurtscheller
and da Silva, 1999). In one of the earlier works on CNNbasedMI-
BCI, Tabar and Halici (2016) have used the 6–13 Hz frequency
band for STFT plots with satisfactory accuracy. This shows a
partial inclusion of theta band (4–7Hz) along with the alpha (8–
13 Hz) band for generating STFT plots. Hence, in our approach,
we have combined the entire theta and alpha band (4–13 Hz)
along with the beta band (13–32 Hz) to capture all possible
neurodynamics related to the MI. From this spectrogram, we
first choose the theta-alpha-spectrogram for 4–13 Hz which
was of the size 20 × 32. Then we choose beta-spectrogram
for 13–32 Hz, which was of size 41 × 32. To match the sizes

of these two sub-spectrograms (by sub-spectrograms we mean
the theta-alpha-spectrogram and beta-spectrogram as they are
the subsets of the initial spectrogram of size 257 × 32 after
STFT) we used cubic interpolation on the beta-spectrogram and
reduced it to size 20 × 32 so that the effect of both the bands
remained the same on the final input to the CNN. A similar
approach can also be found in Tabar and Halici (2016) where
the same cubic interpolation was applied to match the sizes of
the two spectrograms. The theta-alpha-spectrogram and beta-
spectrogram are concatenated vertically to get a spectrogram of
size 40× 32. Thus the spectrograms of size 40× 32 are calculated
for each of the three EEG channels C3, Cz, and C4. The final
image is constructed by concatenating these three spectrograms
on a third dimension orthogonal to the time-frequency plane. So,
the size of the final image becomes 40 × 32 × 3, where Nf = 40,
Nt = 32, and Nch = 3. This construction process of the STFT
images is shown in Figure 1. An example of input images formed
out of the STFT images, for left and right-hand MI is shown in
Figure 2. The frequency ranges stacked on top of each other are
the 4–13Hz range (combining the theta and alpha bands) and the
13–32Hz range (the beta band). The colors in Figure 2 represents
the mixed intensity of three EEG channels C3, Cz, and C4 which
are stacked depthwise similar to RGB images. These input images
are then decoded by the CNN for generating the neurofeedback.

2.3. Architecture-1 for Intra-Subject
Learning
The Architecture-1 is defined with 16 filters of size 3 × 3
with a stride of 1 for the first convolutional layer. An input
image of 40×32×3 was used as an input to this convolutional
layer. After the first convolutional layer, batch normalization and
maxpooling were performed using a filter of 3× 3 and a stride of
2. Again, for the next convolutional layer, 32 filters were used of
size 3× 3 and similarly, maxpooling was performed with a factor
of 3 and a stride 2. After that, another convolutional layer was
added with 64 filters of 3× 3 size and a stride of 1. Finally, a fully
connected layer average pooling was performed with a factor of
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TABLE 1 | Parameters for Architecture-1 for intra-subject learning.

Layers Filters Size Options

Descriptions of the design parameters for Architecture-1

Image input [40, 32, 3]

layers

Convolution 16 [3, 3] Stride = [1,1]

2D layer

Batch norm 10−5

ReLU layer

Maxpooling 2D [3, 3] Stride = [2,2]

layer

Convolution 32 [3, 3] Stride = [1, 1]

2D layer

Batch norm 10−5

ReLU layer

Maxpooling 2D [3, 3] Stride = [2, 2]

layer

Convolution 64 [3, 3] Stride = [1, 1]

layer

Batch norm 10−5

ReLU layer

Average pooling [8, 8] Stride = [1, 1]

layer

Fully connected 192

layerlayer Softmax layer

Classification Loss =

output layer cross entropyex

8 and a stride of 1. For learning the parameters of the CNN two
different training methods used are stochastic gradient descent
method (SGDM) and adaptive moment estimation (Adam).

The k-th feature map at a given layer can be represented as:

hkij = f (a) = f ((wk × x)ij + bk) (1)

where x is the input image, wk is the weight matrix and bk is the
bias value for k = (1, 2, ..., 30). The output function f is selected
as rectified linear unit (ReLu) function and it is approximated as
softplus function defined as,

fa = ReLU(a) = ln(1+ ea) (2)

The Gradient descent method attempts to minimize an objective
function J(θ) which is parameterized by a model’s parameter
(where θ ∈ R

d) by updating the parameters in the steepest
descent direction from the gradient of the objective function
∇θ J(θ). The learning rate is defined by the size of steps considered
to reach a local minimum. However, at each step, gradient
descent requires evaluation of n derivatives, which is expensive. A
popular modification is SGD (Johnson and Zhang, 2013), where
at each iteration (t = 1, 2,...) wt is defined as follows:

wt = w(t−1) − η∇ψ(w(t−1)) (3)

where η is the learning rate andψ represents the loss function. In
a simpler way, learning of the model parameters can be expressed
as Equation (4), where parameters perform an update for each
training example x(i) and label y(i).

θ = θ − η.∇θ J(θ; x
(i); y(i)) (4)

The advantage of SGDM is that computation time is 1/n of
standard gradient descent as every step depends upon a single
derivative ∇ψi(·). The Momentum (Qian, 1999) method helps
SGD to accelerate in applicable direction by damping oscillations
through the addition of the fraction µ of the update vector to
the current update vector. As shown in Equation (5), µ can be
considered as a momentum decay coefficient where µ ∈ [0, 1),
which controls the rate at which old gradients are discarded.

vt+1 = µ.vt − η.∇l(θ) (5)

θt+1 = θt + vt+1 (6)

Architecture-1 has a convolutional 2D layer with l2
regularization of 0.0014 and ReLU-activation. The details
of the parameters are shown in Table 1. Batch normalization
was done and the model was trained for 55 epochs with a batch
size of 40. For validation, 500 samples were randomly used.
The learning rate for the model was 6.7929e−04 and the initial
momentum was 0.9799. The dropout rate was 0.1 and the drop
period was 20. The loss function was cross-entropy which was
expressed as Loss =

∑N
i=1

∑K
j=1 tij ln yij. The hyperparameters

are chosen using Bayesian optimization. Apart from SGDM
we have also used Adam as an optimizer on the same CNN
architecture (Architecture-1) for tuning the hyperparameters.
This is because for some participants (participants 2 and 3) the
data were particularly noisy which made the convergence of
SGDM very slow. Hence, the experimentation was also done
using Adam as an optimizer for faster convergence using a large
learning rate. It is to be noted that aside from the change in the
optimizer (i.e., from SGDM to Adam) the layers of the CNN
Architecture-1 were exactly the same as described in Table 1.
The corresponding architecture diagram is shown in Figure 3.

Adam can be understood as a combination of SGDM
with momentum and Root Mean Square Error Propagation
(RMSprop). It is an adaptive learning rate method, where the
learning rate is computed from different parameters. Adam keeps
exponentially decaying the average of past gradientsmt similarly
to momentum.

Adam uses an exponentially moving average which is
computed on the current mini-batch gradient:

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)g
2
t (8)

where mt and vt are an estimation of the mean and uncentered
variance of gradient (g) and β1 and β2 are new hyperparameters.
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FIGURE 3 | Visualization of Architecture-1 for intra-subject classification. Lines represent the connection between the feature maps. The network starts with 3D input

to the convolution which is represented as (image height, image width, and number of channels), i.e., 40 × 32 × 3, and afterward 2D convolution is performed with

parameters shown in Table 1.

The update rule for Adam is

θt+1 = θt −
η

√

v̂t + ε
m̂t (9)

where θ is themodel parameter, θ ∈R
d, and η is the learning rate.

The proposed default values are 0.9 for β1, 0.999 for β2, and
10−8 for ǫ (Kingma and Ba, 2014). It was shown empirically that
Adam is effective in practice and quite popular as compared to
other adaptive learning-method algorithms. For Adam, the initial
learning rate was 0.01 using a batch size of 50 and the model was
trained for 15 epochs.

The Bayesian optimization method was used for selecting the
best hyperparameters for the model. The range of parameters
for the convolutional layer was set from 1 to 5, the learning
rate ranged from e−06 to e−02, the momentum in the case of
SGDM was from 0.6 to 0.98, and the L2 regularization was from
e−10 to e−02 for a total of 30 different objective functions to
evaluate. The Bayesian optimization method tries to minimize
the scalar objective function f (x) for x in a bounded set. The
deterministic or stochastic function can obtain similar/different
results for evaluation of the same point x. There are several steps
to minimize, which include Gaussian process model of f (x), and
acquisition function a(x) based on the model of f (x) which is
maximized for the next point x for evaluation. The acquisition
functions evaluate the “goodness” of a point x based on the
posterior distribution function Q (Gelbart et al., 2014). Bayesian
optimization estimates the smallest feasible mean of posterior
distribution by sampling several thousand points within variable
bounds and improving them using local search.

Expected improvement (EI) of acquisition function evaluates
the acquisition function, ignoring values responsible for the
increase in the objective. EI can be expressed as:

EI(x,Q) = EQ[max(0,µQ(xb)− f (x)] (10)

where xb is the location of the lowest posterior mean and µQ(xb)
is the lowest value of posterior mean.

The Probability of improvement (PI) optimization function
calculates the probability of a better objective function value by
a new point x which is modified by a margin parameter m. PI is
given as,

PI(x,Q) = PQ(f (x) < µQ(xb)−m) (11)

where m is considered as the estimated noise standard deviation
and the probability is evaluated as,

PI = 8(vQ(x)) (12)

Here8(.) is the unit normal Cumulative Density Function and

vQ(x) =
µQ(xbest)−m− µQ(x)

σQ(x)
(13)

where σQ is the posterior standard deviation of the Gaussian
process at x.

2.4. Architecture-2 for Inter-subject
Transfer Learning
In the case of transfer learning, the dataset was huge as
the classifier needed to learn from all 8 subjects over 5
sessions. Since we have a mixed dataset it was important to
account for variability over the sessions and over subjects. For
performing transfer learning, huge networks are often used such
as ResNet50 (He et al., 2016), AlexNet (Krizhevsky et al., 2012)
in the case of image classification. But in the domain of BCI,
data collection is a slow process and hence limited in size.
Therefore, we needed to design an adaptive system to account
for the noise and non-stationarity arising across various sessions
and subjects. Thus, we designed Mega Blocks which has the
capacity to repeat the specific architecture block over time. For
example, in oneMega Block, we can put one or more convolution
layers, the parameters of which are exactly the same as the
corresponding Mega Block in the number of filters, filter size,
activation function, and L2 regularization. The fixed parameters
can be replicated for every convolution block inside Mega Block,
which ranges from 1 to 5 in our case, and can be extended further.
It is advised to add one or more Mega Blocks instead of adding
more than 5 convolutional layers inside a Mega Block as the
addition of more convolutional layers inside a Mega Block will
increase the training parameters significantly. Also, the addition
of more Mega Blocks will help in learning more micro-features.
After everyMega Block, there can bemaxpooling/averagepooling
layer whose output is given as the input to the next Mega Block.
The parameters of a Mega Block are optimized using Bayesian
hyperparameter optimization, which includes, the number of
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TABLE 2 | Design Parameters for Architecture-2 for inter-subject transfer learning.

Layers Filters Size Activation Options

Image input

layer

[40, 32, 3]

Mega Block 1 9 [5,5] relu Stride = [1,1]

bnm = 10−5

Maxpooling

layer

[3,3] Stride = [2,2]

Mega Block 2 18 [3,3] relu Stride = [1,1]

bnm = 10−5

Maxpooling

layer

[3,3] Stride = [2,2]

Mega Block 3 36 [3,3] relu Stride = [1,1]

bnm = 10−5

Average

pooling layer

[8,8] Stride = [1,1]

Fully

connected

layer

108

Softmax layer

Classification

output layer

2 Loss =

cross

entropyex

convolution layers, learning rate, momentum, and regularization.
Using this methodology we have observed that the trained
model is less vulnerable to noisy subjects’ data considering
the amount of good data is significantly higher. The model
can be further modified by introducing skip layers much like
ResNet50 inside Mega Blocks. One Mega Block can extend itself
from 1 convolution block to 5 convolution blocks with similar
properties. Each convolution block has a convolutional layer
connected with a batch normalization layer and a ReLU layer.
After every Mega Block, a maxpooling layer was added whose
output was fed to the next Mega Block input. Finally, the average
pooling layer is connected with a fully connected layer, softmax
layer and classification. The loss for training was set to cross-
entropy. The design parameters of Architecture-2 are shown
in Table 2.

It is to be noted that similar to Architecture-1, Architecture-2
was also trained using both the optimizers: SGDM and Adam.
Table 3 shows the number of convolution blocks used inside
Mega Blocks 1, 2, and 3 in the case of training methods as SGDM
and Adam. The number of maximum epochs for training was 50
andmini-batch size was 64. The learning rate drop rate factor was
0.1 and the drop period was 40. A general overview of the CNN
architecture used here is shown in Figure 4 which evolves into
Architecture-1 (for intra-subject learning) or Architecture-2 (for
inter-subject learning) depending upon the choice of parameters
given in Tables 1, 2, respectively.

2.5. Training and Continuous Decoding
CNN was evaluated for continuous decoding of MI meaning
that rather than making a decoding once within a trial, we are

TABLE 3 | Number of convolutional layers for each subject used in Architecture-2

for inter-subject transfer learning purpose (MB = Maga Block).

Subjects
No. of conv. blocks (SGDM) No. of conv. blocks (Adam)

MB 1 MB 2 MB 3 MB 1 MB 2 MB 3

S01 1 1 1 1 1 1

S02 3 3 3 1 1 1

S03 1 1 1 1 1 1

S04 3 3 3 5 5 5

S05 3 3 3 3 3 3

S06 1 1 1 1 1 1

S07 1 1 1 1 1 1

S08 2 2 2 4 4 4

S09 1 1 1 1 1 1

decoding multiple times. To facilitate this we divided the trial
into multiple windows of size 2 s, which were shifted by 200 ms
(i.e., 1,800 ms of overlap). Thus every trial was divided into 11
segments and the decoding was done by the CNN based classifier
for each of the segments. To keep parity in the signal processing
of the training and feedback stages, similar segmentation was
also performed for training data also. All the 11 segments of a
particular training trial were assigned the same class-label while
feeding into the CNN. One advantage of such segmentation
is that we can increase the training instances for CNN, as we
know that the deep learning classifiers require a larger training
data set. Thus rather than having 420 training examples for
420 trials, we had 420 × 11 = 4,620 training examples. In this
way, the CNN classifier can generate decodings every 200 ms
interval within a trial and can provide continuous feedback to
the participant accordingly.

The performance of the CNN architectures is evaluated
by calculating the classification accuracies in three different
manners, gross classification accuracy (CAgross), single-
trial classification accuracy (CAST), and optimal time-point
classification accuracy (CAopt). The CAgross is defined as the
percentage of correctly classified feedback instances among all
the available feedback instances (i.e., 320 × 11 = 3,520, the
number of all feedback instances, where 320 is the number
of feedback trials across two sessions and 11 is the number
of segments into which a single-trial was divided). Next,
CAST is calculated as follows. To consider a single-trial to
be classified correctly, we counted how many segments out
of the 11 segments of a single-trial were classified correctly.
If the number is 6 or more (i.e., half of the total number of
segments are correct) then the feedback trial is considered to
be classified correctly. Following this rule, CAST is defined as
the percentage of correctly classified feedback trials among all
the available feedback trials.The rationale behind the choice
of such a CAST calculation lies in the fact that here we have
compared the accuracies of continuous decoding (CAgross) with
the single-trial decoding (CAST) and this comparison would
be inconsistent if we define two different time windows for
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FIGURE 4 | Visualization of Architecture-2 for inter-subject classification. Lines represent the connection between the feature maps. The Mega Block is the

combination of 5 convolution blocks of the same size and number of filters. The number of convolution blocks required is learned through Bayesian optimization. The

network can extend itself from 3 convolution layers to 15 or more convolution layers, depending on the amount of data and noise level. The optimization works by

defining the objective function and finding its minimum observed value. The network designed is useful for representing the input data in small dimensional

representation to avoid noise.

calculating CAgross and CAST . Therefore, we needed to come up
with a solution for calculating the CAST while making use of
the same segmentation as in the case of continuous decoding.
It is to be noted that the CAST and CAgross measurements are
designed in such a way so that they should not be a redundant
evaluation of performance. This is because CAgross deals with all
the segments from all trials and does not consider an individual
trial separately, which means that it is trial agnostic. On the other
hand, CAST weighs how many segments (out of 11) within a trial
decoded to be a particular class in majority and thereby takes
the decision as to how to label that trial. So, it does not consider
how many segments across all the trials are classified but how
the individual trials are classified. Finally, for CAopt we have
considered only the time segment of maximum accuracy out of
the 11-time segments. This means we calculated the accuracy
taking one time-segment at a time and assigned the maximum
as CAopt for a particular participant. The reason we presented
the performance of the inter-subject transfer learning based
on three different accuracy measures CAgross (for continuous
neurofeedback), CAST (for single-trial neurofeedback), and
CAopt (for neurofeedback at optimum time point) is that we
wanted to validate its feasibility across different BCI paradigms.
Some BCI paradigms use continuous neurofeedback, for
example in hand rehabilitation where a gradual change in grasp
aperture is used (Chowdhury et al., 2018a). To the best of
the authors’ knowledge, an inter-subject continuous feedback
approach based on CNN based transfer learning using the
novel concept of Mega Blocks is presented for the first time
in this paper. Moreover, it is also worth mentioning that the
proposed methodology is also feasible for real-time decoding as
the time required for calculation of STFT, image construction,
and classification requires approximately 9.32 ms. The optimum
time-point for single trial-based decoding is also calculated so
that the proposed methodology can be feasible for triggered
feedback (Chowdhury et al., 2018b; Chowdhury et al., 2019). The

number of trainable parameters in Architecture-1 is 23,269 and
for Architecture-2 is between 7,578 and 40,914 depending on
the number of convolutional layers inside a Mega Block, which
are much smaller than the DeepConvNet architecture (trainable
parameters = 152,219,104) (Schirrmeister et al., 2017), Subject-
Independent CNN (Kwon et al., 2019) (trainable parameters =
72,264,076) and comparable to the ShallowConvNet architecture
(trainable parameters = 40,644) (Schirrmeister et al., 2017). The
training time for Architecture-1 (intra-subject) is 794 s which
is less than (Tabar and Halici, 2016) where the training time is
1,157 s. The training time for Architecture-2 (inter-subject) is
1934 s which is also less than other inter-subject architecture
such as Kwon et al. (2019) where the training time is 12 min.
The single-trial decoding time in Tabar and Halici (2016) was
400 ms and in Kwon et al. (2019) it was 150 ms, whereas in
the current study the single-trial decoding time is 102.52 ms
which is much smaller than others. Thus, it shows that the
computational complexity of the proposed CNN architectures
is less or comparable to other competitive architectures given
in previous studies. It is to be noted that for intra-subject
classification the classifier was trained on session 1, 2, and 3 and
tested on session 4 and 5 for individual subjects. Additionally,
while calculating the accuracy for a particular subject in inter-
subject transfer learning case, we have trained the CNN using
the session 1 to 5 data from the rest of the subjects. For example,
CNN for subject 1 is trained using the data from subject 2
to subject 9. The chance level of these binary classification
problems is 50% as there are equal numbers of left and right
hand MI trials.

3. RESULTS

The performance of the deep learning-based architecture for
mental task decoding using EEG is evaluated by calculating the
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TABLE 4 | Performance of intra-subject learning for continuous decoding.

ID

CAgross

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 67.57 0.35 68.31 0.37

2 55.83 0.12 55.10 0.10

3 51.88 0.04 54.61 0.09

4 90.82 0.82 91.14 0.82

5 80.65 0.61 80.17 0.60

6 71.78 0.44 72.23 0.44

7 68.28 0.37 67.79 0.36

8 87.77 0.76 88.65 0.77

9 79.12 0.58 80.23 0.60

Mean 72.63 0.45 73.13 0.46

Std 13.35 0.27 14.82 0.26

TABLE 5 | Performance of inter-subject learning for continuous decoding.

ID

CAgross

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 68.23 0.36 68.02 0.36

2 55.41 0.10 54.33 0.09

3 54.20 0.08 54.15 0.08

4 81.42 0.64 80.75 0.61

5 65.40 0.28 64.62 0.29

6 71.59 0.38 68.88 0.38

7 68.53 0.37 67.98 0.36

8 72.13 0.48 72.50 0.45

9 73.13 0.47 73.14 0.46

Mean 67.78 0.35 67.15 0.34

Std 8.60 0.18 8.62 0.17

accuracy and the kappa value both for intra- and inter-subject
settings. As mentioned in section 2.5, the classification accuracies
are calculated in three categories CAgross, CAST , and CAopt ,
the results are also presented separately for each one of these.
The CAgross for intra-subject learning is shown in Table 4. The
average CAgross across the trial for Adam was 72.63% ± 13.35.
The maximum CAgross was observed for participant 4 (90.82%),
while the minimum observed was 51.88% for participant 3.
Indeed, 5 out of 9 participants crossed the BCI performance
threshold of 70% (Blankertz and Vidaurre, 2009) in this case.
The performance of SGDM for this category resulted in an
average classification accuracy of 73.13% ± 14.82, while the
maximum accuracy was observed for participant 4 (91.14%)
and the minimum observed for participant 3 (54.61%). There
was no statistically significant difference (Wilcoxon signed-rank
test) between Adam and SGDM performance (CAgross) for intra-
subject learning.

FIGURE 5 | Variation of model loss with the number of epochs for

participant 4.

The CAgross for inter-subject transfer learning is shown in
Table 5. Interestingly, although the average CAgross in the case
of Adam (67.78% ± 8.60) is only slightly higher than average
CAgross in the case of SGDM (67.15% ± 8.62), the difference
between these two methods (Adam and SGDM) was statistically
significant (p <0.05, Wilcoxon signed-rank test). The maximum
CAgross for inter-subject learning was observed for participant 4
for both the methods: 81.42% for Adam and 80.75% for SGDM.
The minimum CAgross was 54.20% in Adam and 54.15% in
SGDM; both for participant 3. It is to be noted that the number
of participants crossing the BCI performance threshold (70%)
for inter-subject learning is 4 in Adam and 3 in SGDM, which
is less than what is observed for intra-subject learning. Figure 5
displays the loss vs. epoch for the participant 4. To analyse
number of epochs and learning rate for all the participants, data
of participant 4, session 1, 2, and 3 were trained, keeping 33%
of the cumulative data as validation set. The plot clearly shows
that the model does not overfit or underfit as the test errors are
converging. For this specific subject a divergence of validation
loss be seen at nearly 50 epochs. However, the plot clearly
indicates fluctuation which may be due to the low amount of data
to train and validate. It is noteworthy that overfitting preventive
measures such as batch normalization and dropouts are duly
taken while designing the CNN architectures as described in
sections 2.3 and 2.4.

The performance of the intra- and inter-subject learning
for CAST is shown in Tables 6, 7, respectively. The average
CAST and kappa in SGDM for intra-subject learning are found
to be 77.31% ± 14.90 and 0.55 ± 0.30, respectively. The
maximum performance using SGDM was observed in subject 4
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TABLE 6 | Performance of intra-subject learning for single-trial decoding.

ID

CAST

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 74.92 0.50 72.73 0.45

2 57.04 0.14 54.15 0.08

3 54.42 0.09 55.83 0.11

4 94.65 0.89 95.60 0.91

5 87.50 0.75 85.94 0.72

6 76.90 0.54 77.98 0.56

7 72.84 0.46 73.80 0.48

8 93.23 0.86 92.90 0.86

9 85.63 0.71 86.88 0.74

Mean 77.46 0.55 77.31 0.55

Std 14.52 0.29 14.90 0.30

(CAST = 95.60%, κ = 0.91), while the minimum was observed
in subject 2 (CAST = 54.15%, κ = 0.08). In this case, 7 out
of 9 participants qualified for the BCI literacy threshold. The
average CAST and kappa for inter-subject learning with Adam
was 77.46% ± 14.52 and 0.55 ± 0.29, respectively. The best and
worst performance for Adam in inter-subject learning was found
in participant 4 (CAST = 94.65%, κ = 0.89) and participant
3 (CAST = 54.42%, κ = 0.09), respectively. The BCI literacy
threshold was crossed by 7 out of 9 participants in this case.
Inter-subject transfer learning performance on the basis of CAST

resulted in an average accuracy of 70.94% ± 9.89 with kappa 0.42
± 0.20 for Adam and the average 70.22% ± 9.45 with kappa
0.40 ± 0.19 for SGDM. The maximum accuracy occurred in
the case of participant 4 in both the methods with 86.26% (κ =

0.73) for Adam and 83.95% (κ = 0.68) for SGDM. There was
no statistically significant difference (Wilcoxon signed-rank test)
betweenAdam and SGDMon the basis ofCAST and in both cases,
6 out of 9 participants qualified for the BCI literacy threshold.

Tables 8, 9 represent the performance of intra- and inter-
subject learning accordingly based on CAopt . The classification
accuracy of all the participants for all the 11 time instants (5
to 7 s with an interval of 0.2 s) is shown column-wise. The
maximum accuracy occurring out of these 11 time instants is
the CAopt for individual participants. For example, in Table 8

the first row represents accuracies achieved for participant 1
for all the 11-time instants out of which the accuracy at 5.8 s
was the highest (71.16%). So, the CAopt for participant 1 is
71.16% observed at 5.8 s. Thus we can see that CAopt for intra-
subject learning was found between 5.2 s and 5.8 s across all
the participants, with an average of 76.37% ± 13.91 observed at
5.8 s. A maximum CAopt of 95.91% was found in participant 4 at
5.6 s, while a minimum CAopt (55.83%) was found in participant
3 at 5.6 s. Thus, on the basis of CAopt , 7 out of 9 participants
performed beyond the BCI literacy threshold. Again, for inter-
subject learning the average CAopt was found to be 69.69% ±

9.23 at 5.4 s, which was significantly (p < 0.05, Wilcoxon signed-
rank test) lower than average CAopt for intra-subject learning,

TABLE 7 | Performance of inter-subject learning for single-trial decoding.

ID

CAST

Adam SGDM

Test Kappa Test Kappa

(%) (Test) (%) (Test)

1 73.30 0.47 72.04 0.44

2 57.54 0.15 55.18 0.10

3 55.00 0.10 55.76 0.12

4 86.26 0.73 83.95 0.68

5 66.25 0.33 68.74 0.38

6 74.62 0.49 73.54 0.47

7 71.59 0.43 70.18 0.40

8 76.73 0.53 75.78 0.52

9 77.19 0.54 76.77 0.54

Mean 70.94 0.42 70.22 0.40

Std 9.89 0.20 9.45 0.19

although very close to the BCI literacy threshold. The maximum
performance was found in participant 4 (CAopt = 86.80% at
5.6 s), while the minimum performance was found in participant
2 (CAopt = 56.80% at 5 s). Again, 6 out of 9 participants crossed
the BCI performance threshold of 70% in this case. The accuracy
of decoding throughout different time instants within the trial
is also shown in Figure 6 for intra- and inter-subject learning,
which shows that the performance was significantly higher (p <
0.05, Wilcoxon signed-rank test) in the case of intra-subject
than in inter-subject learning, while the CAopt occurred earlier
in the inter-subject case than in intra-subject. Interestingly, the
accuracy curves in both the cases peaked in the middle and
gradually reduced at the end of the trial. It is to be noted that
the optimum time point of feedback for CNN based inter-subject
transfer learning for the dataset used is 5.4 s (i.e., +2.4 s after cue),
yielding an average accuracy (CAopt) close to 69.69% (Table 9).
This observation is also according to the ERD pattern of the
MI-datasets (Tangermann et al., 2012) where the bandpower
of sensorimotor rhythm reaches its bottom and stabilizes until
the MI is stopped. This indirectly shows the neurophysiological
relevance of the features generated by the CNN.

A typical example of features generated at different layers
of CNN has been shown in Figure 7. The features for left
and right hand MI are shown one on top of the other for
successive layers of convolutional and ReLU layers. Although
such representations of the activations are not relatable
directly with the neurophysiological interpretation due to
several transformations on the original image, these are better
interpretable by the trained CNNmodel.

4. DISCUSSION

This paper establishes the feasibility of CNN based architectures
in inter-subject continuous decoding of MI-related EEG
signals while adapting CNN architecture against inter-subject
variabilities using a novel concept called Mega Blocks. So far, the
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TABLE 8 | Performance of intra-subject learning for CAopt (highlighted in bold for each subject id).

Accuracy (%) at different time instants within a trial

ID 5s 5.2s 5.4s 5.6s 5.8s 6s 6.2s 6.4s 6.6s 6.8s 7s

1 68.03 67.71 67.40 68.65 71.16 68.03 67.71 68.03 68.65 68.03 68.03

2 56.68 55.96 56.32 55.60 58.48 53.07 51.62 57.76 51.99 52.71 55.96

3 56.54 56.18 56.18 55.83 56.18 55.12 53.36 53.71 51.94 50.88 54.77

4 91.19 93.40 95.28 95.91 95.60 94.65 92.14 88.05 88.99 85.22 82.08

5 78.13 79.69 77.50 83.75 84.06 82.50 81.56 79.06 79.38 77.81 78.44

6 74.01 75.09 73.29 74.01 73.65 71.84 72.20 71.12 70.40 69.68 69.31

7 67.73 69.01 71.57 71.57 70.93 64.86 66.77 70.61 64.86 66.77 61.02

8 89.03 92.26 92.58 92.58 92.26 91.61 88.71 87.42 84.84 81.29 82.58

9 74.69 78.44 80.31 86.25 85.00 84.06 80.31 80.31 78.44 77.50 77.19

Mean 72.89 74.19 74.49 76.02 76.37 73.97 72.71 72.90 71.05 69.99 69.93

Std 12.29 13.55 13.82 14.74 13.91 15.12 14.36 12.06 13.27 12.02 10.85

The bold values represent the maximum value in the respective rows of the table, which means at what time point the maximum accuracy is reached for a particular subject.

TABLE 9 | Performance of inter-subject learning for CAopt (highlighted in bold for each subject id).

Accuracy (%) at different time instants within a trial

ID 5s 5.2s 5.4s 5.6s 5.8s 6s 6.2s 6.4s 6.6s 6.8s 7s

1 67.04 71.21 69.82 70.51 68.98 67.73 67.45 65.51 66.34 67.59 66.06

2 56.80 54.73 55.77 53.11 55.18 54.73 53.85 51.92 54.59 52.37 54.59

3 55.30 56.21 57.42 55.45 55.30 53.48 54.09 52.88 52.88 51.52 51.06

4 81.63 84.76 85.31 86.80 84.76 83.13 78.91 78.37 75.51 74.42 74.69

5 63.76 66.11 66.11 66.67 66.67 65.28 66.11 64.45 61.83 61.13 62.66

6 69.08 70.77 69.08 72.00 69.08 68.92 68.46 66.77 67.69 68.62 67.23

7 73.00 73.98 72.15 71.17 68.21 66.24 67.37 65.68 64.56 63.99 61.46

8 75.10 76.60 75.51 75.78 73.33 73.33 73.61 72.24 69.39 66.39 66.26

9 71.63 72.74 76.08 74.83 74.69 73.85 73.99 73.71 73.30 70.38 69.40

Mean 68.15 69.68 69.69 69.59 68.47 67.41 67.09 65.73 65.12 64.05 63.71

Std 8.52 9.51 9.23 10.32 9.23 9.26 8.49 8.83 7.69 7.82 7.30

The bold values represent the maximum value in the respective rows of the table, which means at what time point the maximum accuracy is reached for a particular subject.

issue of inter-subject transfer learning has not been addressed
with regards to continuous neurofeedback as the previous studies
have mostly concentrated on single-trial classification. Here, we
have shown inter-subject transfer learning performance of CNN
based architectures for continuous decoding on the standard
EEG dataset of BCI Competition-IV using two popular methods:
Adam and SGDM. Earlier attempts at classifying MI signals
using CNN were limited to intra-subject learning (Tabar and
Halici, 2016), while our study deals with inter-subject transfer
learning. The significance of designing an inter-subject transfer
learning paradigm over intra-subject learning is that we can
save the calibration time by making use of the data recorded
in previous sessions. Some recent papers have reported inter-
subject classification using CNN (Lawhern et al., 2018; Zubarev
et al., 2019). Lawhern et al. (2018) in their EEGNet model argued
that a single CNN can perform over multiple EEG paradigms
such as P300, ERN, MRCP, and SMR, although EEGNet did not
perform significantly better than conventional FBCSP approach.
Additionally, DeepConvNet (Lawhern et al., 2018) is shown
to have performed significantly lower than FBCSP whereas

in our case the Mega Block based deep learning architecture
(Architectre-2) performed as good as FBCSP (Raza et al., 2016)
and further showed validity for inter-subject learning. Moreover,
the performance of EEGNet was shown based on cross-validation
over the training data, whereas the performance of Architecture-
2 is shown on the test data. However, the work in Zubarev
et al. (2019) was focused on inter-subject learning in MEG,
and showed significantly better performance than other CNN
based classification techniques in BCI, although the performance
was not reported on EEG. An advantage of the proposed CNN
model is that it can be applied for continuous decoding within
a trial, while the models in Lawhern et al. (2018) and Zubarev
et al. (2019) are shown to have performed well for a single-trial
decoding. Most importantly, these studies have not shown how
CNN can be used for continuous decoding, an area that is vital for
contingent neurofeedback for restorative BCI applications, while
the proposed technique provides a complete solution for CNN
based MI-BCI combining inter-subject transfer learning with
continuous decoding. Another aspect of our model is automatic
parameter optimization during training using the implemented

Frontiers in Neuroscience | www.frontiersin.org 11 September 2020 | Volume 14 | Article 918

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Roy et al. Deep Learning for Continuous MI-BCI

FIGURE 6 | The average accuracy across the subjects for each time instants

are shown for intra- and inter-subject learning. The vertical lines show the

time-point where is accuracy is maximum for intra- and inter-subject learning,

i.e., the average CAopt.

Bayesian optimization. The training time (approx. 1,796 s) of
Architecture-2 is comparable to a shallowConvNet, although
unlike shallowConvNet here the number of trainable parameters
doesn’t increase with the number of channels used. The average
kappa value for intra-subject classification reported by Gandhi
et al. (2015) on BCI competition IV 2b dataset was 0.54 and
0.51 on the evaluation set 04E and 05E, respectively although
they used a recurrent quantum neural network (RQNN). In our
case, the average kappa for intra-subject classification is 0.55
(see Table 6) for both Adam and SGDM. However, we know
that the poor outcome in the case of subject 2 and subject 3
is mostly due to the poor quality of the data as evident by
the BCI competition results (BCI-Competition, 2008), wherein
these two subjects performed worst in all top 6 submissions.
Hence, if we remove these two subjects from the calculation
then average kappa for intra-subject classification turns out to
be 0.67 for both Adam and SGDM, while the same in Gandhi
et al. (2015) is 0.55 (excluding subject 2 and 3) for combined
evaluation set 04E and 05E. Thus we can see that the performance
of CNN for intra-subject learning is far better than RQNN and
also the difference is statistically significant (p < 0.05, Wilcoxon
signrank test). More importantly, it should be noted that our
paper is focused on giving an acceptable solution for inter-subject
transfer learning in MI task in which case the proposed method
gives a satisfactory average kappa value of 0.42 (including all 9
subjects, see Table 7) and 0.50 (ignoring subject 2 and subject 3).
It is to be noted that in Gandhi et al. (2015) there was neither
evaluation for inter-subject transfer learning performance nor for
continuous decoding.

The classification accuracy results highlight an important
finding that it is the tuning of the hyperparameters of CNN,
which is more effective than the choice of the adaptive training
method. This is revealed from the fact that there were no

significant (p < 0.05) differences between the performance of
Adam and SGDM, except in the case of CAgross in inter-subject
learning wherein the average difference in average accuracy is
only 0.62%. A probable reason for this can be found from the
comments made by Wilson et al. (2017), which states that the
choice of the adaptivemethod (such as Adam and SGDM), makes
a difference in optimization-free iterative search procedures
(such as GANs and Q-learning). This indicates that as we have
used an optimization dependent learning architecture such as
CNN, the hyperparameter tuning plays a more vital role in the
performance of the classifier.

The inter-subject transfer learning performance was also
compared against the intra-subject classification to determine
howmuch compromise is needed in terms of accuracy in order to
avoid subject-specific calibration and whether this compromise is
worthwhile. The performance of inter-subject transfer learning
is found to be significantly lower (p < 0.05) than the intra-
subject learning both in terms of continuous decoding (CAgross)
and single-trial decoding (CAST) irrespective of the adaptive
training methods (Adam or SGDM) used. A possible reason for
the lower performance could be the use of a large amount of
pooled data from the rest of the 8 participants in the leave-
one-out method while some participants (especially participant
2 and 3) had poor quality of data which may have impacted
the trained models. However, the average inter-subject transfer
learning accuracy for CAST was found to be higher than 70%, the
BCI performance threshold. Single-trial decoding is sufficient for
issuing triggered neurofeedback, which is a widely used paradigm
for the rehabilitation of motor functionality (Buch et al., 2008;
Ramos-Murguialday et al., 2013; Ono et al., 2014). Thus we
can say that the proposed transfer learning architecture can
be incorporated into motor rehabilitation paradigms without
compromising on an acceptable performance criterion. Another
important point to be noted is that the worst-performing subjects
(subject 2 and subject 3), and the best performing subject
(subject 4) are consistent across intra- or inter-subject learning
conditions, which may indicate poor quality of the data and
not the strength of the algorithm which negatively affected the
average accuracy of inter-subject transfer learning. Hence, if we
ignore subject 2 and 3, the performance of inter-subject transfer
learning increases further both in terms of CAgross (Adam:
70.84% and SGDM: 71.49%), and CAST (Adam: 75.13% and
SGDM: 74.43%).

Previous literature on inter-subject transfer learning using
CSP yielded the best average accuracy of 79% on BCI
Competition III, dataset IVa, where the number of subjects was
5 (Devlaminck et al., 2011). Tangent space features drawn from
the Riemannian geometry framework were used for transfer
learning using BCI competition IV, dataset 2a, which achieved
an average leave-one-subject-out-cross-validation accuracy of
75.52% (Gaur et al., 2019a). In a recent study, Halme and
Parkkonen reported inter-subject transfer learning accuracy in
EEG of 67.7% on their own experimental data using CSP with
logistic regression (Halme and Parkkonen, 2018). Although a
direct comparison is not possible here as the datasets used
in Gaur et al. (2019a), Halme and Parkkonen (2018), and
Devlaminck et al. (2011) were different but the average of 7
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FIGURE 7 | Left hand MI (Top panel) and right hand MI (Bottom panel) features generated at different layers of CNN, (A) Convolutional Layer 1, (B) ReLU Layer 1, (C)

Convolutional Layer 2, (D) ReLU Layer 2, (E) Convolutional Layer 3, (F) ReLU Layer 3.

out of 9 subjects [ignoring subject 2 and subject 3 due to
poor data quality as revealed by BCI competition results (BCI-
Competition, 2008)] in our case achieved an average single-
trial classification accuracy close to 75% (Adam: 75.13% and
SGDM: 74.43%). It is noteworthy that previous studies on inter-
subject transfer learning mentioned above did not deal with
continuous decoding and used traditional approaches rather than
deep learning. The work also shows that inter-subject transfer
learning in MI with CNN based architecture is more sensitive to
the tuning of hyperparameters rather than the choice of adaptive
training methods as both Adam and SGDM performed equally
well in this case.

Potential applications where the obtained results can be
useful include primarily the neurorehabilitative BCI systems
where continuous and meaningful neurofeedback is essential
for motor recovery (Chowdhury et al., 2018a). Apart from
that, the asynchronous BCI uses for activities of daily
living (ADL) by the completely locked-in patients can also
make use of such techniques for controlling assistive robotic

devices (Bhattacharyya et al., 2017; Tariq et al., 2018).
Another important application could be the telepresence robot
control by the motor-disabled patients towardz enhanced
independence (Carlson et al., 2013) which needs continuous
decoding with minimal calibration overhead.

One of the limitations of this study is that we combined
the EEG channels depthwise similar to RGB images which
could cause problems in very high dimensional datasets
such as in magnetoencephalography (MEG) or very high
dimensional EEG recordings. Possible future work to avoid
such a problem is to use dimensionality reduction techniques
such as ReliefF (RF) or Infinite Latent Feature Selection
(ILFS) (Roy et al., 2019b) before input image generation. Also,
to increase the number of training examples to feed into the
CNN, Generalized Adversarial Networks (GAN) (Goodfellow
et al., 2014) could be used rather than the segmentation
of trials for creating training examples. Another limitation
of using CNN based architectures is that the generated
features are not relatable directly with the neurophysiology.
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Therefore, we need better visualization techniques to enhance
the interpretability of activations found in different layers
which could have some neurophysiological significance. Other
future works may involve making deep learning models more
explainable to address the generalizability of inter-subject
decoding. Another important challenge is to make them
usable for large-scale real-world deployment for complex BCI
problems (Zhang et al., 2019).

5. CONCLUSION

This paper presents the feasibility of inter-subject continuous
decoding utilizing CNN based deep learning frameworks using a
novel concept calledMega Blocks whichmakes it adaptive against
inter-subject variabilities in the EEG data. The study addresses
the long-standing issue of making an MI-BCI calibration-free
as well as suitable for continuous decoding, which so far has
not been addressed using a CNN-based learning approach.
This could spawn the next generation of MI-BCI systems,
especially in the domain of neurorehabilitation, where reducing
the calibration needs and providing continuous feedback play
a vital role in enhancing user-experience and thus leverage
rehabilitative potential.
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