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A continual learning system requires the ability to dynamically adapt and generalize to

new tasks with access to only a few samples. In the central nervous system, across

species, it is observed that continual and dynamic behavior in learning is an active result

of a mechanism known as neuromodulation. Therefore, in this work, neuromodulatory

plasticity is embedded with dynamic learning architectures as a first step toward realizing

power and area efficient few shot learning systems. An inbuilt modulatory unit regulates

learning based on the context and internal state of the system. This renders the

system an ability to self modify its weights. In one of the proposed architectures,

ModNet, a modulatory layer is introduced in a random projection framework. ModNet’s

learning capabilities are enhanced by integrating attention along with compartmentalized

plasticity mechanisms. Moreover, to explore modulatory mechanisms in conjunction with

backpropagation in deeper networks, a modulatory trace learning rule is introduced. The

proposed learning rule, uses a time dependent trace to modify the synaptic connections

as a function of ongoing states and activations. The trace itself is updated via simple

plasticity rules thus reducing the demand on resources. The proposed ModNet and

learning rules demonstrate the ability to learn from few samples, train quickly, and perform

few-shot image classification in a computationally efficient manner. The simple ModNet

and the compartmentalized ModNet architecture learn benchmark image classification

tasks in just 2 epochs. The network with modulatory trace achieves an average accuracy

of 98.8%±1.16 on the omniglot dataset for five-way one-shot image classification task

while requiring 20x fewer trainable parameters in comparison to other state of the art

models.

Keywords: neuromodulation, ModNet, one-shot learning, dynamic learning, mushroom body output

neurons (MBONs)

1. INTRODUCTION

Biological brains are capable of processing massive amounts of information for learning, retaining,
and performing cognitive decision making. Moreover, the brains are endowed with the ability to
learn continuously and adapt quickly to changes in the inputs or the environment in an energy
efficient manner. The extraordinary computational capabilities of biological neural systems has
motivated researchers to explore the structural and functional aspects of the brain, in order to
build intelligent systems capable of solving complex tasks (Mead, 1990; Rumelhart et al., 1995;
Kar, 2016; Hassabis et al., 2017). Using the brain as a source of inspiration, researchers have
successfully demonstrated networks with the ability to solve complex learning tasks. For example,
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convolutional neural networks (Lawrence et al., 1997; Huang
et al., 2017) have demonstrated remarkable performance for
image recognition tasks, recurrent neural networks (Williams
and Zipser, 1989; Gers et al., 2002; Greff et al., 2017; Sak and
Senior, 2018) have been able to perform classification, prediction,
and anomaly detection on temporal tasks, and few reinforcement
learning based systems (Sutton and Barto, 1998; Silver et al.,
2016) are able to learn complex cognitive tasks.

While such state-of-the-art networks perform well on narrow
sets of well-defined tasks, they are generally not very good at
generalizing, and they are not able to learn from few samples
(Bengio et al., 2015; Rosenfeld et al., 2018). To address these
issues, biological brains havemechanisms that dynamically adjust
its own parameters for learning in new environments. These
mechanisms play a key role in reacting and responding to
stimulus based on context in a quick and efficient way. It has
been observed in many species—from insects to humans—, that,
in addition to synaptic plasticity, neuromodulation plays a key
role in the facilitation of learning (Decker and McGaugh, 1991).
Brains also use neuromodulation to modify neural connectivity
in response to inputs and internal states. Neuromodulation
is the physiological process by which a given neuron uses
one or more neurotransmitters to regulate a population of
neurons (Katz and Edwards, 1999). This contrasts with classical
synaptic transmission, in which one presynaptic neuron directly
influences a single postsynaptic partner. Neuromodulators
secreted by a small group of neurons diffuse through large areas
of the nervous system thus affecting multiple neurons. Reports
have shown that neuromodulation affects synaptic plasticity,
neural wiring, and attention (Katz, 1999; Doya, 2002).

In this work, we develop computationally efficient dynamic
learning systems inspired from neuromodulatory mechanisms
in the brain wherein a modulatory unit regulates the learning
according to the context and the internal state of the system.
Here, the internal state of the system refers to the activations
of the neurons in response to the current input. When we refer
to dynamic learning, we focus on the capability of associative
learning; where the system learns to discriminate its input
based on a context, which can either be internal to the system
or triggered by an external input, such as a reinforcement
or a modulatory signal. In addition to implementing dynamic
learning capabilities, our architecture needs an attention
component responsible for meta-learning: its main function
is to evaluate when, what, and how much to learn based on
the context. Thus one approach toward solving this problem
is by incorporating the heterosynaptic (neuromodulatory)
mechanisms in conventional neural networks.

Some researchers have incorporated the concept of
neuromodulated plasticity into network models for solving
tasks in dynamic reward-based scenarios. Soltoggio et al. (2008)
proposed an architecture where they introduced the concept
of modulatory neurons that enhances or dampens the neural
plasticity of the target neurons to boost the memory and learning
capabilities. The concept of gated plasticity in Soltoggio et al.
(2008) enabled dynamic targeted update of synapses in the
network, thus leading to more efficient learning. The work in
Miconi et al. (2020), demonstrates that adding neuromodulatory

plasticity mechanisms trained using gradient descent exhibit
superior performance on reinforcement learning and non-
trivial supervised learning tasks like few shot learning, pattern
memorization, and image reconstruction. They also explain that
self-modifying capabilities in the brain play an important role
in learning and adaptation. This work shows that incorporating
these learning mechanisms along with an architecture inspired
from insects enables learning dynamically and from few samples
in a computationally efficient fashion.

The key contributions of this work are:

• Incorporating architectural and functional methods inspired
from the insect brain to enable neuromodulatory interactions
in conventional neural networks.

• Adaptive local learning rules with built-in attention
mechanisms that endow the networks with the capability to
learn from few-samples.

• A compartmentalized network architecture akin to the
mushroom body in the drospohila to process the information
in a scalable and resource efficient way.

• A modified modulatory trace learning rule capable of learning
and efficiently processing inputs from the internal state
of the system.

2. RELATED WORK

2.1. Neuromodulated Plasticity in Neural
Networks
In the brain, the neurons communicate with each other
by releasing neurotransmitters when the axon potential of
the neuron reaches a synapse. Depending on the type of
the neurotransmitter, the receiving neuron can be in either
excitatory or inhibitory state. Neurotransmitters can sometimes
cause an electrical signal to be transmitted down the cell
(excitatory), whereas in other cases, the neurotransmitter can
actually block the signal from continuing, thereby preventing
the message from being carried on (inhibitory). Some of
the neurotransmitters that have spatially distributed and
temporally extended effects on the recipient neurons and circuits,
are called Neuromodulators (Katz and Edwards, 1999). The
best examples of neuromodulators are dopamine, serotonin,
noradrenaline (also called as norepinephrine) and acetylcholine.
Doya (2002) hypothesized the role of different neuromodulators
in the context of reinforcement learning in the brain. His
hypothesis was as followed: Dopamine acts as the global
control and learning signal for the network for predicting
rewards and reinforcement of actions. Serotonin modulates
the balance between the short-term and long-term prediction
of rewards. Similarly, noradrenaline modulates the attention
mechanism in the network in the sense that it controls
the balance between wide exploration and focused execution.
Acetylcholine handles the memory and controls memory storage
and renewal of memory. It modulates the learning wherein,
based on acetylcholine release, learning new tasks and rate
of forgetting of previously learned tasks is handled. Following
that, there have been several other hypotheses on similar lines
(Bargmann, 2012; Pedrosa and Clopath, 2017; Shine et al., 2019)
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regarding the functional role of the neuromodulators in the
brain. Taking inspiration from this, several researchers have
incorporated neuromodulation in deep learning frameworks.
Kondo (2007) proposed a diffusion-reaction based model
using neuromodulation. The neuromodulators via those actions,
regulate the synaptic connectivity and strength. This mechanism
was able to demonstrate online learning capabilities for mobile
robotic control. The concept of neuromodulated spike timing
dependent plasticity in spiking neural networks is introduced
by Frémaux and Gerstner (2016). These gated plasticity based
learning rules show how neuromodulatory signals interact
with the neural activity to bias learning and behavior, and
respond to novelty. Kolouri et al. (2019) proposes an attention
based selective plasticity approach that is based on cholinergic
modulation in the brain to address catastrophic forgetting. The
central idea in most of the previous works portrays the ability
of neuromodulators to impact plasticity predominantly through
gating of plasticity and up-regulation of neuronal activity. These
features or effects of neuromodulators are observed across
multiple species not only including mammals and reptiles, but
also insects.

There is an active research aiming to understand how
smaller brains can be highly capable of learning and cognition
(Montgomer et al., 2018). Despite having brains that are a million
times smaller, insects are able to exhibit almost half the distinct
cognitive behaviors as that of certain mammals like dolphins
(Changizi, 2013; Theobald, 2014) (59 for honeybees compared
to 123 for dolphins). For example, bees build honeycombs and
operate in swarms via symbolic communication, wasps exhibit
chemical communication, termite colonies perform climate
control, etc. The neural circuitry found in insect brains is able to
exhibit complex cognitive behaviors similar to mammals albeit
with a lower resolution and reduced information processing
(Lihoreau et al., 2012). Moreover, cognitive ability does not
necessarily result from greater numbers of neurons but rather it
is the new links between different bundles of neurons that lead to
tangible changes in behavior (Chittka andNiven, 2009). Yanguas-
Gil et al. (2019) shows that architectures inspired from insect
brain are capable of exhibiting context-dependent processing
and learning. Therefore, models based on small brains can still
offer a good baseline of intelligent tasks in a resource and power
efficient manner.

2.2. Few Shot Learning
Several real-world application domains like healthcare, robotics,
etc., operate on irregular and sparse datasets. To address this
issue, few shot learning is becoming a prominent area of
research. However, learning and adapting from few examples
is very challenging. The conventional approaches for image
classification involving convolutional neural networks trained
using backpropagation are unable to offer a satisfactory solution
for learning new concepts rapidly from little data. Hence, there
have been few works that were particularly inclined toward
solving this problem and have been able to achieve good
performance on few shot learning tasks. The Siamese network
model (Koch et al., 2015), tries to approach the problem of
few shot learning by giving the model two samples and then

training it to guess whether the two samples belong to the same
category or not. Another approach to the few shot learning
task is specified in Matching Networks (Vinyals et al., 2016).
Matching Nets use novel attention mechanisms and embedding
functions to enable rapid learning and train the network by
showing only few examples per class. They train the network by
randomly selecting k labeled examples fromN classes that haven’t
previously been trained upon. The task is then to classify a batch
of unlabeled examples into one of these N classes. The model
proposed inMishra et al. (2017) currently achieves state of the art
performance for few shot learning tasks. The authors introduced
temporal convolution (TC) and causal attention layers in the
network, wherein the TC layers provides the context over which
the attention layers operate.

Apart from the prior specified techniques, researchers have
proposed meta-learning based techniques. The work proposed
by Santoro et al. (2016) uses a novel sophisticated memory
based system. It uses Long Short-Term Memories (LSTMs) as
a memory controller that interfaces with the input and outputs
through complex memory accesses. The network learns a general
strategy for the types of representations it should place into
memory and how it should later use these representations
for predictions. Recently, Finn et al. (2017) proposed Model-
Agnostic Meta Learning for fast adaptation of Deep networks,
that introduces a meta learning algorithm that can be trained
with any model with gradient descent and can be used to
solve a variety of problems like classification,regression and
reinforcement learning. Researchers (Doya, 2002; Soltoggio
et al., 2008; Miconi et al., 2020) have studied the role of
neuromodulatory and heterosynaptic update mechanisms for
endowing networks with meta-learning capabilities. In this work,
the authors use plasticity based rules to encode the context and
drive the update of parameters in the network in conjunction
with backpropagation.

3. MODULATION INSPIRED LEARNING
METHODS

In the proposed work, the efficacy of adding neuromodulation
to the neural networks is observed. The first approach couples
synaptic local learning rules with error driven modulation to
enable learning on the edge. The second approach incorporates
neuromodulation in conjunction with backpropagation wherein
a context driven modulatory trace regulates the short term
plasticity of the connections.

3.1. ModNet
The proposed architecture, Modulatory Network (ModNet),
Daram et al. (2019) derives its inspiration from the mushroom
body in the insects and the learning mechanism is inspired
from the neuromodulatory mechanisms in the brain.
Neuromodulators closely affect synaptic plasticity, neural
wiring and the mechanisms of long term potentiation (LTP)
and long-term depression (LTD). The realization that Hebbian
learning is not the only way that synapses are modified (Cooper,
2005) has led to growing interest in neuromodulation. Studies
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on mollusks and insects (Carew et al., 1981; Roberts and
Glanzman, 2003) have shown that in addition to Hebbian
learning, neuromodulatory mechanisms are also involved with
associative learning and synaptic changes.

The learning rule proposed in our architecture derives from
the aforementioned heterosynaptic mechanisms and uses the
concept of Hebbian plasticity for the synaptic weight update. The
pre-synaptic and post-synaptic neurons determine the polarity of
change in the connection while the modulatory neurons regulate
the rate at which the weight is updated.

The mushroom body output neurons (MBONs) in the
Drosophila play a key role in discriminating between stimuli,
learning their predictive value and further using that information
to modify their behavior (Aso et al., 2014). Additionally,
dopaminergic modulation alters the balance within the MBON
network for those stimuli. The input layer in the ModNet
corresponds to the antennal lobe projection neurons (sensory
stimuli). These antennal lobe neurons are sparsely represented
in the Kenyon cells and a similar property is used in ModNet, as
shown in Figure 1 (Daram et al., 2019), the inputs are randomly
projected into a sparse hidden space. Sparsity ensures greater
feature separability and distinctive representation of the inputs.
The Kenyon cells then converge into multiple MBONs and the
plasticity of those connections is regulated by neuromodulation
based on stimuli. Similarly, in ModNet, the hidden layer is
fully connected to the output layer and the plasticity of those
connections is regulated by a modulatory layer. This modulatory
layer takes as input the error calculated at the output layer
and uses it to regulate the plasticity of the hidden-to-output
layer weights.

The network consists of two units, the processing unit which
is responsible for learning the features and the distinctive

representations, and the neuromodulatory layer which is
responsible for learning the context. In the processing unit, the
input features are lifted onto a higher dimensional hidden layer
which extract the spatial features. These features are processed
through sigmoid activation function at the hidden layer and
are learned at the output layer. The learning error from the
output neurons, with respect to a one-hot encoded label as input,
are passed as inputs to the modulatory layer. The modulatory
neurons compensate the error by updating the trainable weights
from the hidden to output layer neurons. During the training
phase, the output neurons have a set of two activations each,
namely the standard activation and the modulatory activation.
The standard activations are computed as sum of the products
of hidden-neuron activations and the hidden-to-output layer
weights. The modulatory activations are computed as sums of
products of the modulatory inputs to the modulatory weights.
The standard and the modulatory activations are calculated as
shown in (1) and (2).

Ai = Sigmoid
(

∑

wijxj

)

(1)

Mi =
∑

w′
ijx

′
j (2)

where wij corresponds to the hidden to output layer weights

from the ith neuron in the output layer to the jth neuron
in the hidden layer, and xj corresponds to the hidden layer

activations. w′
ij corresponds to modulatory weights from the ith

neuron in the output layer to the jth neuron in modulatory
layer and x′j correspond to inputs to modulatory neurons (error

computed at the output layer) ,respectively. Once the activations

FIGURE 1 | The neural circuit formed between the antennal lobe projection neurons, Kenyon cells and lateral horn MBONs (left) in the mushroom body of insects is

akin to the ModNet network architecture proposed (right).
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are calculated, the standard and modulatory weights are updated
as shown in Equations (3) and (6), respectively.

1wij = Sigmoid(
Mi

nij
)× δij (3)

The weight update equation has two components with the first
part being the magnitude component and δij being the plasticity
and direction term. In (3), nij is a scaling parameter that is tuned
while training. The plasticity term δij is realized according to
Equation (4),

δij = ηij
(

β1xixj + β2(xj − xi)+ β3

)

(4)

where ηij is the adaptive learning parameter that is updated while
training, xi and xj are the pre and post-synaptic activations, and
β1, β2, and β3 are the tunable parameters for the network. The
weight update equation has a correlation term β1, a difference
term β2 and a constant term β3 as a bias. The constant term
allows for update of the synapse even in absence of pre or
post synaptic activation. The polarity of ηij is changed based on
the difference between the activations and the polarity of the
connecting weight. Hence in this learning rule, the modulatory
component regulates the magnitude of the rate of weight change
and the plasticity component determines the sign or direction of
the weight update for the given connection. This term selects and
strengthens the set of connections contributing toward learning
a particular task. The adaptive learning rate is updated according
to Equation (5).

ηij = ηin
ei

xi
, (5)

where ηin corresponds to the initial value of the learning rate
and ei and xi correspond to the error and the activation at the
observed output neuron. In the case when ei or xi are 0, then the
ηij is set to ηin. Having the output activation as a divisive factor
enables a more optimized rate of change in learning rate based
on how far it is from correctly learning the associations. The
same equation is also used for updating the modulatory weights,
with the error and the activation terms switching positions.
This mechanism is similar to attention mechanism in neural
networks. The magnitude term that depends on the modulatory
interactions, is also affected by the division term which changes
the dynamic range of the sigmoid by flattening the curve. The
modulatory weights are updated based on Equation (6),

1w′
ij = η′ij(scale) (6)

where η′ij is an adaptive learning parameter and scale is a tunable

magnitude parameter. The sign and magnitude of η′ij is updated

as a function of the network response and the output activations.
The sign of the learning parameter is directly correlated with the
error and the magnitude is increased or decreased based on the
value of output activation. The learning rule proposed inModNet
(Equations 3 and 4) consists of Hebbian update coupled with
a modulatory regularizer wherein the rate of weight change is
either enhanced or dampened with respect to the hidden layer

neurons’ contribution toward learning. The proposed learning
rule enables dynamic learning in the systemwith exposure to only
few samples. But having a sparse hidden layer can lead to many
redundant and unused neurons and synapses. Thus, to make the
algorithm more efficient, a dynamic attention based mechanism
is proposed.

3.2. Region Based Attention Mechanism
ModNet essentially shows a baseline network incorporating
hetero-synaptic interactions in neural networks. But the network
can be designed to be more dynamic to solve complex tasks in
a further efficient fashion. Thus a mechanism to add attention
in the hidden layer is introduced in this section. The algorithm
implements an attention mechanism that distinctly selects
populations of excitatory or active neurons while inhibiting and
filtering the less active ones. This separation enables efficient
distribution of information within the network. Thus, the hidden
layer in the ModNet is divided into regions based on a scaling
factor α to perform selective filtering and inhibition. This
mechanism is adopted while training. The activities of the
neurons in different regions are measured and a normalized
average of neuronal activities in every region is computed. The
activity factors of the regions are computed periodically for every
100 samples. If aik is the activation value of a neuron in kth
region, then the average activity factor of the region is given
by Equation (7).

Ak =

1
amax

∑

aik

N
(7)

where amax is the maximum activation value in the given region
and N represents the number of hidden neurons in the region.
Based on the activity factor, the weights of every region are
further updated according to the Equation (8).

w′
ik = wik − Ak1wik, (8)

where Ak controls the rate of change in synaptic strength and
boosts the strength of the connections for themore active regions.
If the activity (Ak) is less than a threshold value δ, then the
weights of the neurons in those regions are further updated
according to the Equation (9).

w′
ik =











wik − |Ak1wik| when wik > 0

wik + |Ak1wik| when wik < 0

0 otherwise

(9)

As shown in Equation (9), in the regions with lower average
activity or smaller activity factor, the connections of the neurons
in those regions are inhibited and the weights are made to
converge to 0 thereby making those regions sparser. Thus, the
region based attention mechanism is able to determine the
active and inactive regions during training and is dynamically
able to drop out connections and neurons while retaining
the performance. This mechanism further enables introducing
a more complex and mushroom body inspired architectural
formulation known as compartmentalization.
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FIGURE 2 | The mushroom body (left) in insects are organized in a compartmentalized fashion to encode and bias the behavior. Compartmentalized ModNet

architecture (right) incorporates this design aspect to perform selective filtering and resource efficient processing of information.

3.3. Compartmentalized ModNet
In the mushroom body, the MBONs are able to encode the
valence and bias the behavior in a highly compartmentalized
fashion (Aso et al., 2014). Every compartment in the mushroom
body lobe acts as an independent valuation module with different
and changing modular functions. Thus this idea is translated
to a deeper version of the region based ModNet, with each
region actively learning and acting as independent modules in
the network. The core idea behind compartmentalization is to
generate a modular network capable of adapting to different tasks
with different regions learning to respond to certain tasks with
only few data samples. Figure 2 shows the neural architecture
of the compartmentalized organization in the mushroom body
output neurons in insects.

An additional hidden layer is added to the ModNet
architecture. The layers are split into explicit multiple
compartments competing to learn the features and eventually
gating the less active ones. The net activity factor of each
compartment is measured and the connectivity is updated based
on the rule presented in Equations (8) and (9). The net activity
factor for each compartment is measured as a factor of the
activation values of the population of neurons in the respective
compartment. The local connections between the neurons in
the compartments are trained via local plasticity rules. Unlike
gradient descent where the correlations between hierarchical
layers are retained by gradients, the problem with having
multiple rules across layers causes an issue of uncorrelated
knowledge transfer. Hence, an unsupervised covariance based
learning rule as shown in Equation (10), is utilized which actively

updates the synapses based on correlations between the pre and
post synaptic neurons.

1wij = η′[(xpre − s1)(xpost − s2)× w] (10)

In Equation (10), s1 and s2 are hyperparameters that define the
threshold for activations for the pre and post synaptic neurons
to either strengthen or weaken the connection. Moreover, to
alleviate the problem of oscillation of neuronal activity due
to multiple learning rules, the covariance based learning rule
is operated on a slower timescale, thus being updated after
every N inputs wherein N can be set as a hyperparameter. The
preliminary results demonstrate superior performance than the
ModNet architecture on the Fashion-MNIST dataset.

3.4. Modulatory Plasticity in Deep
Networks
ModNet architecture represents one way of introducing
modulatory dynamics to a network and training via modulatory
and plastic learning rules. However, the problem with ModNet
lies in that being a shallow network, the capabilities of ModNet
is limited to solving simpler classification tasks. However, the use
of a gradient descent mechanism like backpropagation in neural
networks has shown to achieve spectacular results in solving
complex tasks. Thus, it would be interesting to add modulatory
plasticity to these non-plastic backpropagation based neural
networks. This way, not only will the weights be optimized
while training via backpropagation but, also the plasticity in
each connection is updated via neuromodulation. To test the
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FIGURE 3 | The input is passed through a convolutional embedding and at the final layer, based on the activations from the feature layer and the output layer, the

network determines the context and modulates the plasticity of those connections.

advantage of having neuromodulated plasticity in the context of
lifelong learning, the task of performing efficient one-shot and
few-shot learning is considered.

Figure 3 shows the concept of incorporating modulatory
dynamics into a CNN for solving the task of few shot learning.
Thus, to train a modulatory network with backpropagation,
a formulation is considered in which each connection has
a standard component and a modulatory component. This
formulation is inspired from the work in Miconi et al. (2018),
wherein the author considers the network to have a fixed
and a plastic component for training. However, the plasticity
component in Miconi et al. (2018), does not account for the full
internal state of the network and thereby does not encode the
global context while updating weights in the network. Hence, the
connection between any neuron i in layer l and another neuron
j in layer l-1 will have a regular connecting weight wij which
constitutes the standard component, and a modulatory trace
Modij which changes based on the current inputs and outputs
to the network. Thus the total weight of the connection between
any two neurons is given by the sum of the regular weight and the
modulatory trace. This is specified in Equation (11).

Wtot = wij + δijModij, (11)

where δij is the modulatory learning factor that can be
either constant for all the connections or different for
each. The role of the modulatory trace is to perform
heterosynatic weight update of the connections in the network.
Hence the output activation is computed as a sum of
products passed through a non-linear activation function
of the input activations and the Wtot as represented in
Equation (12).

xout = σ (
∑

inputs

[wij + δijModij]xin), (12)

where xout corresponds to the output activation value and xin
corresponds to the input activations feeding into the output
neuron. Here, σ corresponds to the non-linear activation
function and the inputs correspond to the input activations from
the previous layer.

The modulatory trace is a time dependent quantity for the
connections in the network. The trace is updated based on

the input and the output activations and a modulatory context
which is responsible for handling the short term memory in the
network. The modulatory trace is computed according to the
Equation (13).

Modij(t) = Modij(t−1)+αij[xout(xin−xoutModij(t−1))], (13)

where Modij(t) is the currently computed trace value and
Modij(t-1) corresponds to the initial trace value or the trace value
for the previous iteration. The modulatory trace is initialized to
zero at the beginning of each epoch or episode. The parameters
wij and δij are trained across all the training epochs and
episodes. These parameters are updated and optimized using
backpropagation during the training process. αij is defined by the
Equation (14).

αij = γ σ ′([
∑

outputs

xout]/n), (14)

where σ ′ is the non-linear activation function, sigmoid in this
case and n is the number of output neurons in the layer and γ

is a hyperparameter to regulate the rate of update. The outputs
correspond to all the output activations. The α term appears
as the modulatory context term which evaluates the network
response to encode the global context to the trace.

The parameter α determines the speed at which new
information is incorporated into the trace and the plastic
component of the network while δ determines the magnitude
of effect of the trace on the respective connection. The Modij
term or the trace is accumulated over time but gated by the
modulatory context term and the output activation. The Modij
term is an episodic quantity, in the sense that it is reset to zero
after every training episode. The modulatory context term and
the weights are lifetime quantities as they are updated throughout
the training procedure. The modulatory trace in the output layer
evaluates the internal state of the system allowing for stable
memories, thus enabling the connections to learn the associations
between the inputs during the episode. This corresponds to
the short term effect of the trace while training during the
episode. The modulatory learning factor regulates the long term
effect of the trace on the connections in the sense that, being
a lifetime parameter, the context term encodes how much, the
heterosynaptic update is required for the given task or episode.
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TABLE 1 | Experimental setup and hyperparameters for evaluating the ModNet

architecture.

Network features ModNet

Datasets MNIST Fashion-MNIST

Network size 100 × 1,000 × 10 784 × 1,000 × 10

Hyperparameters
β1 β2 β3 η

0.1 0.2 0.001 0.001-0.01

Training epochs/Episodes 2

Runs 10

The modulatory context term reinforces the connectivity and
quickly updates the weights in the final layer to adapt to the newer
inputs and thus differentiate between the incoming input features
from n selected classes in a n-way k-shot learning scenario. This
learning mechanism is thus able to perform competitively on
the few shot learning task on the Omniglot dataset. This can
be attributed to the long term and short term effects of the
heterosynaptic mechanisms on the network that are responsible
for understanding the context and regulating the response to the
encoded context.

4. RESULTS AND ANALYSIS

In the proposed work, the ModNet architecture and the
Modulatory trace learning method are evaluated and tested
on different datasets based on the applications. The ModNet
architecture is tested on the MNIST (LeCun et al., 1998)
and the Fashion-MNIST (Xiao et al., 2017) image recognition
benchmarks for classification, and the Modulatory trace learning
method is verified on the Omniglot dataset (Lake et al., 2015) for
few-shot classification task. In this section, the proposed network
architectures are analyzed for performance and efficiency.

4.1. Image Classification Tasks
The ModNet architecture coupled with the learning and
architectural mechanisms proposed in Sections 3.1-3.3 are
evaluated for resource efficient dynamic learning on image
classification benchmarks.

4.1.1. Benchmarks and Experiment Setup
Two spatial datasets are used to study the capability of ModNet
in learning from few samples. Both the datasets consist of 60,000
training and 10,000 testing images. The MNIST dataset images
are normalized and reshaped from 28×28 to 10×10. The images
from the Fashion-MNIST dataset are only normalized and not
reshaped to 10×10 to prevent loss of useful features.

Table 1 shows the network setup for evaluating the ModNet
architecture. The ModNet architecture configuration is set to
100 (input) ×1,000 (hidden) × 10 when testing on the MNIST
dataset. The input layer size is updated to 784 while testing on
the Fashion-MNIST dataset. In the case of Compartmentalized-
ModNet, an additional hidden layer of size 1,000 is added to the
ModNet network and analyzed.

4.1.2. ModNet Performance
As observed in Figure 4, the network is able to attain a test
accuracy of∼91% while training for just 2 epochs on the MNIST
dataset and ∼81% on the Fashion-MNIST dataset. Figure 4A
shows the training performance of ModNet with respect to
the number of samples shown. The network is compared to
a similar shallow random projection based network, called the
Extreme Learning Machine (ELM) (Huang et al., 2004) which
is unable to learn quickly as ModNet. This is a result of the
effect of modulatory activations on weights in the network which
initially try to reward and penalize neurons at a much higher
rate as compared to the later stages when learning begins to
saturate. Figure 4B shows how higher dimensionality leads to
better performance, which correlates well with the biological
counterpart in which themushroom body projection neurons are
lifted in the Kenyon cells. Higher dimensionality in the hidden
layer results in a greater feature separation amongst the inputs.

On the contrary, the network performance does not improve
significantly after increasing the size of the hidden layer past
2,500 neurons. However, the larger network performs better
if it is trained longer. This is a result of the inability of the
shallow network to capture certain distinctive features that could
be realized by increasing the depth of the model. Therefore,
the compartmentalized topology of ModNet and the attention
mechanism are evaluated to address the depth of the network and
efficient processing for shallower networks, respectively.

4.1.3. Exploiting Sparsity for Efficient Processing
To test the efficacy of compartmentalization with attention on
ModNet, the network is re-evaluated on the Fashion-MNIST
dataset. For the compartmentalized network, another hidden
layer is added with the network configuration being 784 (input)
× 1,000 (hidden1)× 1,000 (hidden2)× 10 and selective attention
in the compartments in the hidden layers. The network is able to
classify with an accuracy of∼91% on the Fashion-MNISTmodel.
Figure 5A shows how selective filtering using attention with
compartmentalization and gating allows efficient processing.
Turning off least responding compartments and keeping only
active compartments while training the network thus ensures
greater resource and power efficiency.

Figure 5B shows the effect of region based attention
mechanism and sparse initialization on the performance for
the shallow ModNet architecture. We can observe similar
performance for a 20–30% sparsely gated network in comparison
to the fully connected network. However, other than sparse
initialization, the attention mechanism also induces sparsity into
the network. To find out the optimal sparsity for the network
to perform comparably to the fully connected counterpart, and
realize the effect of the aforementioned mechanisms, further
analysis is performed as shown in Figures 6, 7.

Figure 6 shows the percentage of connections pruned while
training using attention and compartmentalized topologies.
Compartmentalization induces greater sparsity as the network
has more connections, and a modular topology leads to
compartments shutting off after falling below minimum
activity threshold. Moreover, to observe the behavior of these
mechanisms for already sparse or gated networks, the network
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FIGURE 4 | (A) The training accuracy (blue) on the MNIST dataset with respect to the number of trained samples and the change in absolute modulatory activation

values (red) for a hidden layer of size 1,000. (B) Test accuracy with respect to the number of hidden layer neurons and the initialized value of the adaptive learning

parameter when trained for 2 epochs on the MNIST dataset for the ModNet architecture.

FIGURE 5 | The test accuracy (averaged over 5 runs each) (A) of compartmentalized ModNet with respect to the number of epochs and epsilon (initial % of randomly

selected active neurons) for performing classification on the Fashion-MNIST dataset and (B) of ModNet with attention (without compartmentalization) with respect to

the number of epochs and the initial percentage of the active regions (α) on the MNIST dataset.

sparsity after one epoch for these networks is observed. Based
on the results in Figure 7, the optimal sparsity point is observed
to be ≈ 30% for compartmentalized ModNet and ≈ 40%
for region based attention mechanism. This demonstrates the
efficient adaptation aspect of the proposed learning topologies.
The learning mechanisms adapt to the different network
initializations and try to converge to the optimal sparsity
point necessary for performing the task without degrading
the performance. However, increased sparsity also affects the
network performance in other aspects. Thus, an ablation study
is conducted to observe the problems and advantages of each of
the proposed mechanisms.

4.1.4. Ablation Study
Table 2 presents the ablation study to demonstrate the efficacy
of incorporating different mechanisms in addressing learning
from few samples. The results shown in the table are averaged
over 10 runs and the number of samples to reach initial
convergence are an approximated average of the values over
the runs. Coupling attention with the modulatory learning rule
ensures reaching convergence quickly while saving on resources
by increasing sparsity in the network. As discussed in section
4.1.3, compartmentalization is able to make the network more
sparse, but it takes longer to converge as compared to the shallow
counterparts. This is also attributed to increased depth and
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FIGURE 6 | The behavior of the network connectivity with respect to the two

plasticity topologies when trained on the MNIST dataset. Compartmentalization

induces greater sparsity in the network as a result of increased parameters

and finds the optimal sparsity configuration for the given task.

FIGURE 7 | The network sparsity observed after one epoch with respect to

the number of active neurons in the network. Compartmentalization is able to

find an optimal space despite the variance in the network inactivity and it is

observed that the optimal sparsity is achieved at ≈ 30% for compartmentalized

ModNet and ≈ 40% for ModNet with attention (Evaluated on the

MNIST dataset).

learning using multiple learning rules. However, it compensates
by showing improved performance. Enforcing sparsity in the
network enables better distribution of information and thereby
compartmentalization can be extended to a multi task learning
scenario with different subsets of compartments responding to
different tasks.

4.2. Few Shot Learning Tasks
One criticism of ModNet and the proposed learning mechanisms
is regarding their ability to perform well on larger and more
complex problems. Therefore, to evaluate the advantages of using

heterosynaptic interactions for complex tasks, we select the few
shot learning task.

4.2.1. Benchmarks and Experimental Setup
The modulatory trace learning rule is tested for few shot
learning on the Omniglot corpora. The Omniglot dataset Lake
et al. (2015), as shown in Figure 8 contains examples from 50
alphabets ranging from well-established international languages
to lesser known local dialects. It consists of a total of 1,623
characters with letters from each alphabet varying from about 15
to upwards of 40 characters. Each of these are hand drawn by 20
different people. Moreover, each character in Omniglot is a 105×
105 binary image. Thus the dataset has 1,623 classes with 20 (105
× 105 images) examples per class.

Figure 9 shows the baseline CNN architecture used for few
shot learning task. It consists of a stack of modules, each of
which is a 3 × 3 convolution with 64 filters followed by batch
normalization, a ReLU non-linear activation function, and a 2 ×
2 max-pooling layer. The images are resized to 28 × 28 so that,
when 4 modules are stacked, the resulting feature map is 1 × 1
× 64. This output is a 64 sized vector which then feeds into a N-
way softmax layer. Concurrently, the label of the target character
is fed as a one-hot encoded value to the softmax layer, guiding the
correct output when a label is present.

The task is modeled as an N-way, k-shot classification setup,
similar to most of the previous works for few shot classification.
This problem thus can be formalized as follows: pick N unseen
character classes and K examples of each class from those N,
independent of the alphabet and let that set be N, K (Vinyals et al.,
2016) as shown in Figure 8B. Each of these instances together
with the class labels (from 1 to N) are presented to the model.
Then a new unlabeled instance from one of the N classes is
presented to the model. The model’s performance is defined as
the model’s accuracy in classifying this unlabeled example. The
baseline configuration is tested for N = 5 and K = 1(five way, one
shot learning).

The effect of modulatory mechanisms in deeper networks
is evaluated for the task of few shot learning on the
omniglot dataset (Lake et al., 2015). Modulatory plasticity is
introduced in the baseline architecture in Figure 9 for the
weights connecting the final feature layer to the softmax
layer. The rest of the convolutional embedding does not have
modulatory plasticity associated to it. Thus, across the training
episodes, the convolutional architecture is expected to learn an
adequate discriminant between arbitrary handwritten characters.
Meanwhile, the weights between the convolutional network and
the softmax should learn to memorize associations between
observed patterns and outputs, which are directly influenced by
the modulatory context and the labels. Table 3 lists details on the
network configuration and hyperparameters used for few-shot
learning task. Similar to previous works (Finn et al., 2017; Mishra
et al., 2017; Miconi et al., 2018), the dataset is divided into 1,523
classes for training and 100 classes for testing. The network is
trained using anAdam optimizer with a learning rate of 3× 10−5,
multiplied by 2/3 every 100,000 episodes) over 500,000 episodes.
To evaluate the final performance, multiple models with different
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TABLE 2 | Ablation study of the proposed learning methods for ModNet on the MNIST and the Fashion-MNIST datasets.

Network Datasets

MNIST F-MNIST

Samplesa Train Accb Test Accc Samples Train Acc Test Acc

ModNet 8,000 92.87 87.25 12,000 80.87 74.13

ModNet + Attention 9,500 91.46 86.47 13,000 78.65 72.93

ModNet + Attention + Compartment 11,000 93.82 90.86 15,500 90.85 84.73

ModNet + Sparsity* 14,000 91.39 85.82 23,000 78.76 74.27

*The network is initialized with 30% sparse input and output connections.
aRefers to the number of samples to reach initial convergence.
bThe mean training accuracy observed where the network initially converges.
cThe test accuracy of the network when trained for the number of samples specified.

FIGURE 8 | (A) A snapshot of some of the classes in the Omniglot dataset. (B) The sample N way, K-shot problem set. In this figure N is 20 and K is 1. The network

should be capable to classify the unlabeled example from the N character classes.

FIGURE 9 | The convolutional architecture used as the baseline. The modulatory trace is applied to the weights connecting the fully connected feature vector to the

N-way softmax layer.

random seed initializations are trained and then tested on the
previously unseen classes for 200 episodes.

4.2.2. Performance Analysis
To understand how few shot learning networks train and how
the loss varies when presented with new distributions of inputs
in a N-way,k-shot learning task, the moving average of median

loss, and themean loss across the training procedure is visualized.
Figure 10A shows the moving average of the median loss across
multiple runs. The mean is calculated across points after different
milestones spaced evenly for every 50,000 episodes. The average
loss is computed and saved after 100 episodes to create a net
loss matrix. The median of losses along the milestone axis is
computed and the moving average along those median values
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is plotted. The overall median loss decreases as the network is
trained longer. This plot shows how few shot learning task does
not have a standard loss gradient when presented with more
samples as the training involves accessing new set of inputs
every time.

Figure 10B represents how the loss actually varies during the
training phase. The repeated spikes in the loss is due to the way
the network is trained. Since, there are 1,523 classes and 5 classes
are randomly selected and moreover, randomly permuted and
rotated, the high loss scenarios occur mostly when the randomly
selected samples are almost similar. Thus, the loss is higher in
some episodes as a result of being trained on new and difficult
episodes. The 5 samples have very few distinctive features and
thus learning the associations might be difficult in that case. This
type of learning is consistent across multiple runs with different
random initializations as shown in the plot.

The results in Figure 11 show the performance of the
proposed network in comparison to the accuracies reported in
the recent literature. Other than the memory networks, all the
other works make use of the baseline convolutional network
that has been described previously. The accuracy of the model
is almost similar to the computationally intensive MAML (Finn
et al., 2017) approach which optimizes for the loss function

TABLE 3 | Experimental setup and hyperparameters for evaluating the

modulatory trace learning rule.

Network features Modulatory trace learning

Datasets Omniglot

Network size 4 Conv, 1 FC

Hyperparameters
LR γ δ

3 × 10-5 0.02 0.01

Training episodes 500,000

Runs 5

Data augmentation Rotations (Multiples of 90o)

using gradient descent. The results are almost similar to the
Matching networks (Vinyals et al., 2016), Differentiable Plastic
networks (Miconi et al., 2018) and Meta networks (Munkhdalai
and Yu, 2017). The results reported in SNAIL (Mishra et al.,
2017) outperform all the other networks and are currently
state of the art but the difference is barely significant. The
SNAIL approach trains a whole temporal convolutional layer and
causal layers on top of the baseline convolutional embedding
leading to a significant increase in the number of parameters.
The proposed network performance is near state of the art
accuracy for an additional 330 (66×N, with N=5) parameters.
The network has a total of 112,065 parameters. The proposed
model requires ≈10x fewer training episodes than Differentiable
Plastic networks.

4.2.3. Resource Efficiency Through Quantization
To further optimize the resource usage in ModNet, we study
the impact of reducing the bit precision. The convolutional
embedding is pretrained offline and few-shot learning is
performed on a quantized version of the model.

PLA(x) =



















1, when abs(x) ≥ 3

0.06abs(x)+ 0.815, when 1.5 ≤ x < 3

0.443abs(x)+ 0.24, when 0.5 ≤ abs(x) < 1.5

0.924abs(x), otherwise

(15)

Tanh(x) =

{

PLA(x), when x ≥ 0

−PLA(x), otherwise
(16)

The features in the quantized model include inputs and weights
represented in 16-bit fixed-point format with 6 bits for signed
integer and 10 bits for fractional part, along with 32-bit partial
sum accumulators which are again rounded to 16-bit. The tanh
activation is replaced by a piecewise linear approximation as
shown in Equations (15) and (16). One interesting observation
is that the bit-precision of the output layer made a significant
impact on the accuracy. The network performance degraded

FIGURE 10 | The average loss is computed in the interval of 100 episodes along milestones set after every 50,000 episodes. The (A) moving average of the median

loss and (B) the mean loss along the milestone axis, across 10 runs with different random initializations are shown.
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FIGURE 11 | 20-way and 5-way, 1-shot and 5-shot classification accuracies on Omniglot dataset. The proposed model achieves comparable accuracy to

state-of-the-art SNAIL architecture while requiring 20x fewer trainable parameters and fewer training episodes as compared to MAML.

FIGURE 12 | (A) The weight distribution of the output feature vector for 16-bit fixed point quantized weights (blue) and 32-bit floating point precision weights (green).

(B) Variation in network performance with respect to changing bit precision. The performance degradation is minimal for 12-bit precision weights and inputs.

substantially (from ≈ 98 to 47%) when quantized to 16-bit fixed
point. However, the accuracy remained the same as the 32-bit
floating point when the output layer is not quantized. Figure 12
shows the weight distribution of the output feature vector for
the quantized and the 32-bit operations. The plot shows that
the quantized version is able to generate almost similar output
feature activations with low quantization error of 1.254%.

5. CONCLUSIONS

This work shows that incorporating neuromodulatory
mechanisms in neural networks is effective toward realizing
dynamic learning systems that are able to learn associations and
discrimination in the input stream, based on a context. The main
contributions of this work are the design of an architecture and

adaptive learning rules to introduce modulatory dynamics in the
neural networks. The proposed architecture uses simple plasticity
rules with a modulatory control mechanism for learning instead
of using backpropagation. The ModNet architecture is capable
of learning quickly and from fewer samples. This work also
introduces a neuromodulation-inspired training technique
to self-modify weights in a network. These simple plasticity
mechanisms when combined with conventional gradient descent
approaches are able to solve non-trivial tasks like few shot
learning of different human written characters.

ModNet and compartmentalized ModNet, despite being
shallow networks are able to train on the complete MNIST
and Fashion-MNIST dataset in just 2 epochs and reach
convergence within 8,000 samples of MNIST with 91%
accuracy and 12,000 samples of Fashion-MNIST with 89%
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accuracy. Furthermore, the modulatory trace learning rule
in tandem with backpropagation shows accuracy of 98.8%
with a 95% confidence interval on the non-trivial few shot
learning task on the Omniglot dataset for an additional 325
trainable parameters. These experiments prove that compact
and simple meta learning approaches via neuromodulation can
perform as well as current computationally intensive methods.
Compartmentalization integrated with multiple local plasticity
rules might alleviate catastrophic forgetting in neural networks
and enable multi-task learning.
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