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With the burgeoning of wearable devices and passive body/brain-computer interfaces
(B/BCIs), automated stress monitoring in everyday settings has gained significant
attention recently, with applications ranging from serious games to clinical monitoring.
With mobile users, however, challenges arise due to other overlapping (and potentially
confounding) physiological responses (e.g., due to physical activity) that may mask the
effects of stress, as well as movement artifacts that can be introduced in the measured
signals. For example, the classical increase in heart rate can no longer be attributed solely
to stress and could be caused by the activity itself. This makes the development of mobile
passive B/BCIs challenging. In this paper, we introduce PASS, a multimodal database
of Physical Activity and StresS collected from 48 participants. Participants performed
tasks of varying stress levels at three different activity levels and provided quantitative
ratings of their perceived stress and fatigue levels. To manipulate stress, two video
games (i.e., a calm exploration game and a survival game) were used. Peripheral physical
activity (electrocardiography, electrodermal activity, breathing, skin temperature) as well
as cerebral activity (electroencephalography) were measured throughout the experiment.
A complete description of the experimental protocol is provided and preliminary analyses
are performed to investigate the physiological reactions to stress in the presence of
physical activity. The PASS database, including raw data and subjective ratings has
been made available to the research community at http://musaelab.ca/pass-database/.
It is hoped that this database will help advance mobile passive B/BCIs for use in
everyday settings.
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1. INTRODUCTION

Brain-computer interfaces (BCIs) are systems that provide
communication and control abilities to users without relying
on the brain’s normal output pathways (Wolpaw et al., 2000).
BCIs are typically divided into two categories (Tan and Nijholt,
2010): active or passive. Active BCIs are systems where users
must actively modulate their brain responses in order to control
the BCI. Passive BCIs, in turn, monitor the user’s implicit states,
thus do not require the user to perform any specific task.
More recently, some researchers have started to use the term
“Body/brain-computer interfaces” (B/BCIs) to extend the inputs
of BCI to the rest of the physiological system (e.g., Feng et al.,
2016).

Physiological measures and passive body/brain-computer
interfaces offer tremendous possibilities for monitoring
individual functional states. In recent years, several works have
shown that physiological measures can be used to assess e.g.,
the operator functional state of workers (i.e., workload, stress,
fatigue), videogame player fun level, or even health markers
(Banaee et al., 2013; Gagnon et al., 2016; Harrivel et al., 2017;
Fortin-Côté et al., 2018). Moreover, it has been demonstrated
that such assessment can be leveraged to augment interactions
with intelligent systems, such as adaptive videogames or adaptive
workload management systems (Parnandi and Gutierrez-Osuna,
2015; Aricò et al., 2016). Wearables further push this progress
by increasing portability and accessibility of neurophysiological
measures, while reducing the cost associated with such systems.

There are many challenges, however, with relying on
neurophysiological measures and passive B/BCIs in realistic
settings where the user is mobile and multi-tasking. The
first relates to the question of multidimensionality of
psychological states (Matthews et al., 2015) where different
emotions and psychological conditions are combined. While the
multidimensionality of psychological states can be well-captured
with questionnaires, it becomes harder with metrics derived
from neurophysiological models. One example of this is the
overlapping of e.g., physical activity and stress on heart rate and
heart rate variability. An additional challenge lies on the artifacts
that are generated once experiments are performed outside
controlled laboratory settings with sensors that are sensitive to
e.g., movement artifacts (Sun et al., 2010; Falk et al., 2016).

The first goal of this project is to provide a multimodal dataset
where affective stress and physical activity are both modulated.
To date, there are no publicly-available datasets that explore the
concurrent modulation of affective stress and physical activity
and the impact it has on physiological measures and on artifact
generation. We aim to fill this gap. The second goal of this
article is to provide a dataset that mimics realistic settings to
support “in-the-wild” B/BCI development. To do so, we used
a realistic task setting (i.e., playing video games) and used off-
the-shelf wearable devices. Modalities used in this study include
electroencephalography, cardiac activity, electrodermal activity,
breathing information, and skin temperature.

In this paper, we describe PASS, a multimodal database
of Physical Activity and StresS. Here, we present the
experimental protocol used, descriptive statistics of the recorded

neurophysiological signals under the varying conditions, and
also introduce preliminary results on the use of machine learning
to model stress that is robust to different physical activity
confounding factors. The database has been made publicly
available at http://musaelab.ca/pass-database/, along with stress
and physical fatigue questionnaire responses provided by
the participants.

In the remainder of this paper, we first provide background
on the theory and physiological measures of stress in section
2, followed by a description of the current challenges in
stress monitoring in section 3. Next, a full description of the
experimental design and the methodology used to perform the
data collection is presented in section 4. Validation of the dataset
is presented in section 5, including analyses on the physiological
and subjective data gathered. Results are then discussed in
section 6 and conclusions drawn in section 7.

2. BACKGROUND

2.1. Theory of Stress
Stress is a psychological concept that has received a tremendous
level of scientific attention throughout its history. One could
argue that this attention is well-placed, as stress is well-
known to have several negative effects on individual health and
performance. While many definitions of stress exist, it can be
generally defined as an ensemble of coping responses to react to
a perceived threat (Lazarus and Folkman, 1984).

While some amount of stress is inevitable, extended or
acute exposure to stress is known to be associated with several
health problems such as cardiovascular diseases, respiratory
diseases, and autoimmune diseases (Schneiderman et al.,
2005). Investigations of occupational stress in many countries
have shown that a large proportion of the population is
exposed to detrimental levels of stress through their work
environment (Jones et al., 2016), increasing absenteeism and
turnover intention (Jamal, 2007). Finally, stress is associated with
psychological disorders like depression (Caspi et al., 2003).

Besides health considerations, several researchers have
described intricate links between stress and human performance.
Stress has been shown to influence cognitive performance,
such as memory. Authors suggest that high arousal could
enhance memory consolidation, but could hamper memory
recall (Wolf, 2009). Anxiety is also linked with poorer manual
dexterity (Kneller et al., 2012; Skirbekk et al., 2012). In
job settings, stress is associated with lower job performance
(Jamal, 2007). Despite these results, some findings suggest
that stress might be beneficial in some circumstances. Using
a crisis management simulation, authors investigated the link
between stress (i.e., time pressure) and team communication.
They found that stress increases communication quantity and
efficiency. They do, however, underline that frequent requests
for information are associated with poorer task performance
(Pfaff, 2012). Stress also influences academic performance. A
recently published longitudinal study showed that children
and adolescents undergoing an anxiety treatment therapy were
associated with better academic performance (Swan et al., 2018).
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In the literature, stress is conceptualized in various ways.
First, stress can refer to shorter-term activation, caused by
more immediate situations (e.g., solving a problem). On the
other hand, stress can also relate to longer-term straining states
(i.e., chronic stress, occupational stress), caused by adverse
life or job situations (e.g., disease, mourning, layoff) or by
prolonged exposure to short-term stress (Schneiderman et al.,
2005; Schubert et al., 2009). In experimental settings, most
researchers use validated stressors to induce stress in participants.
For example, the cold-pressor test which requires participants to
submerge limbs in near-frozen water for a short period of time
has been used in several studies investigating stress (McRae et al.,
2006; Duncko et al., 2009; Dierolf et al., 2017).

Validated stressors can elicit two forms of stress: mental
stress and affective stress. Mental stress refers to situations
that require reflection and problem-solving abilities (Sun et al.,
2010; Al-Shargie et al., 2016). For example, the stroop task
or mental arithmetic task, are designed to stress individuals
by requiring mental effort (Visnovcova et al., 2014). Mental
stress is closely tied to the concept of mental workload. Mental
workload can be difficult to define (Young et al., 2015). In
general, it can be considered as the level of mental resources
required to meet a specific performance (Young et al., 2015).
On the other hand, affective stress relates to anxiety, fear or
discomfort. Such stressors include the Trier Social Stress Task
(Kudielka et al., 2007). The Trier Social Stress Task requires
individuals to perform tasks, such as oral presentations or mental
arithmetic, in front of fake experts. Affective stress is generally
associated with emotions of negative valence (Hwang et al., 2018),
with various levels of arousal. Therefore, affective stressors also
include viewing emotionally loaded stimuli, such as pictures,
movies, or sentences (Wolf, 2009).

2.2. Physiological Measures of Stress
Stress can be assessed using subjective measures. Various
questionnaires have been developed to measure stress related to
tasks (Matthews and Campbell, 2010) or anxiety (Spielberger,
2010). Subjective measures have the advantage of being simple
and to offer direct access to cognition; however, they are also
known to be biased. Furthermore, they require interruptions.
Physiological measures, on the other hand, are objective and
can be taken continuously, without interruptions. As such,
several recent studies have proposed physiology-based models,
sometimes achieving fairly high detection accuracy (Smets et al.,
2019).

2.2.1. Neurophysiological Measures
Stress generates a wide range of physiological reactions that
can be leveraged to measure its intensity in individuals. It can
be assessed using electroencephalography (EEG), but elicited
patterns are very dependant on the type of stressor used. Task
demand and temporal pressure are often associated with a
decrease in the alpha band power in various cerebral regions,
including frontal, central and parietal, and associated with
an increase in theta at frontal and parietal regions (Borghini
et al., 2014; Al-Shargie et al., 2016). Individuals performing
the Montreal Imaging Stress Task (mental arithmetic combined

with negative social feedback) have been shown to exhibit
greater relative gamma band power in prefrontal, temporal,
and parietal regions (Minguillon et al., 2016). Similarly, the
gamma band is associated with worry. Individuals suffering
from generalized anxiety disorder undergoing a worry task (self-
selected worrying thought) exhibited greater gamma power in
temporal and parietal lobes (Oathes et al., 2008). In another
study, prefrontal asymmetry of participants performing a virtual
reality surveillance task was investigated (Brouwer et al., 2011).
During stressful moments (i.e., a bomb explosion combined with
negative feedback), alpha asymmetry of prefrontal regions (F7-
F8) was significantly higher than during non-stressful moments.
Prefrontal asymmetry was also associated with stress in other
studies, such as participant performing the Maastricht Acute
Stress Task (Quaedflieg et al., 2015). While not investigated
directly in studies involving stress, amplitude modulation
features of EEG have shown discriminative power for valence and
arousal measurement (Clerico et al., 2018), as well as workload
(Albuquerque et al., 2018). Stress is also known to influence
event-related potentials, for example, during sustained attention
tasks (Righi et al., 2009). Apart from EEG, stress can be measured
using other neurophysiological measures, such as functional
near-infrared spectroscopy (Al-Shargie et al., 2016; Parent et al.,
2019a).

2.2.2. Cardiac Measures
Stress is well-known to increase heart rate. Heart rate is often
derived from the electrocardiography (ECG) signal. ECG consists
of placing electrodes on the skin tomeasure the voltage difference
caused by the electrical activity of the heart. Heart rate can also be
measured using photoplethysmography by measuring variations
of the light absorption of the skin. Apart from heart rate, stress
is known to influence heat-rate variability (Kreibig et al., 2007;
Castaldo et al., 2015). Heart rate variability is the analysis of the
changes in heart rhythm. Heart rate variability does not usually
refer to a specific feature, but a family of features, each describing
various aspects of cardiac activity. As such, stress is known to
increase the standard deviation of inter-beat intervals (SDNN)
or reduce the root mean square of inter-beat intervals (RMSSD)
(Castaldo et al., 2015). Stress also influences frequency-domain
features of heart rate variability, as the ratio between low and high
frequency power (Castaldo et al., 2015). Blood pressure is also
influenced by stress. Fear is known to increase both systolic and
diastolic blood pressure (Kreibig et al., 2007). In a simulation of
computer work containing stressful and non-stressful sessions, it
was shown that blood pressure increased during work sessions
compared to rest, but did not decrease during non-stressful
sessions (Hjortskov et al., 2004).

2.2.3. Breathing Measures
Breathing rate increases under stress (Rainville et al., 2006;
Homma and Masaoka, 2008). Furthermore, anxious individuals
tend to breathe faster during anticipatory stress than less anxious
individuals (Homma and Masaoka, 2008). Studies have also
shown that respiratory variability is higher and more random
during mental stress and worry (Vlemincx et al., 2013). In the
same line of thought, fear is associated with higher standard
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deviation of breathing amplitude (Rainville et al., 2006). Sighing
seems more present during stress (Vlemincx et al., 2013). It is
suggested that sighing might act as a reset to irregular respiration
pattern encountered during stress.

2.2.4. Electrodermal Measures
Stress also has effects on sweating, which can be measured using
electrodermal activity (EDA). EDA is described as the electrical
conductance of the skin, which is modulated by the level of
sweat. Sweat is well-known to be influenced by physical activity.
However, it is suggested that sweat glands are controlled by
the sympathetic system. EDA is thus considered as a proxy to
observe the sympathetic activation of individuals. Besides the
electrodermal level (i.e., the “amount” of sweat on the skin), EDA
can be described in greater details by analyzing electrodermal
responses. Electrodermal responses are brief “peaks” of sweat
that occurs in response to a stimulus. They can be specific (i.e.,
related to a known event) or non-specific (Boucsein, 2012).
Typically, short-term stressors used in laboratory settings, such
as the cold pressor or stroop task, or fearful states tend to
increase electrodermal level, non-specific response frequency,
as well as response amplitude (Kreibig et al., 2007; Reinhardt
et al., 2012; Posada-Quintero et al., 2016b, 2018a). While still not
very common, some authors have investigated frequency domain
features of the EDA. Overall, results suggest that the stressors
influence mostly the 0.045 to 0.15 Hz band (Posada-Quintero
et al., 2016a). Frequency domain features of EDA are said to be
sometimes more sensitive to stress than classical time-domain
features (Posada-Quintero et al., 2016b, 2018a).

2.2.5. Thermal Measures
In reaction to stress, mammals, including humans, typically
have a reduced temperature in peripheral regions, while the
temperature of the face and core region rises (Marazziti et al.,
1992; Vianna and Carrive, 2005; Kreibig et al., 2007; Nakamura,
2011). It is theorized that this reaction is caused by a constriction
of the peripheral arterioles, which could reduce blood loss if a
wound occurred.

3. CURRENT CHALLENGES

3.1. Multidimensionality of Stress
It is challenging to fully separate mental stress from affective
stress, as all mental tasks will still trigger even a low amount of
anxiety in individuals. Conversely, affective stress will probably
trigger even a small amount of mental activity, whether it is
due to assessing the threat, planning a response or simply
diverting attention to less stressful states. Yet, both types of
stress have different implications. For example, authors suggest
that mental forms of stress (like engagement) correlate with
working memory performance while affective forms of stress
(like distress) negatively correlate with performance (Qin et al.,
2009; Matthews and Campbell, 2010). On the physiological level,
it is suggested that mental effort is associated with sympatho-
adrenal-medullary axis (epinephrine and norepinephrine) while
affective stressors are more associated with the hypothalamus-
pituitary-adrenal (cortisol) axis. While there is not an extensive

amount of literature to support this, it can be surmised that high
mental stress with minimal affective stress might lead to positive
outcomes (like task completion) while high affective stress
without much mental activation is not beneficial in any way. This
view was supported by some authors investigating physiological
differences between mental effort and distress (Frankenhaeuser,
1986; Gaillard and Wientjes, 1994; Matthews et al., 2015)
and does, to a certain extent, resemble the eustress/distress
dissociation proposed by Hans Seyle in his classical work on
stress (Selye, 1985).

Subjective tools attempt to distinguish between these nuances
of stress. The NASA-TLX questionnaire, for example, features a
“Frustration” axis, covering affective load among more cognitive
ones (Hart, 2006). The Dundee Stress State Questionnaire also
distinguishes more mental stress (i.e., engagement) from affective
forms (i.e., distress, worry) (Matthews and Campbell, 2010). In
contrast, physiological measures of stress, despite being well-
documented, are rarely interpreted in a multidimensional way
(Matthews et al., 2015). Distinguishingmental and affective stress
using physiology remains a challenge today. The separation of
mental and affective stress goes beyond the scope of this database
description work, thus henceforth, the term “stress” will be
used to comprise their combined effects. Notwithstanding, future
work can explore such separation with multimodal tools (e.g.,
Parent et al., 2019b).

3.2. Stress Detection in Laboratory and
Ambulatory Settings
Given the numerous effects of stress on the human body,
research has focused on trying to propose models to detect
stress based on physiology. In a recent article (Smets et al.,
2019), the authors reviewed 25 papers that investigated this
research question over the last several years. Comparing the
performance of each model investigated in these studies can
be difficult as several factors can differ between studies. First,
as detailed previously, different stressors can be used. Second,
models use different physiological modalities and, in some
cases, different combinations of modalities. Models also differ in
terms of classification scheme (i.e., within participants, between
participants) and classification levels. Most studies propose
models that distinguish between a resting state and a stressful
task. However, some studies attempt to classify multiple levels of
stress (e.g., low, medium, high) and others use regression models
to measure a stress level (e.g., Hovsepian et al., 2015). Finally,
as described by Smets et al. (2019), the majority of papers focus
on laboratory settings, while only a select few have attempted to
detect stress in ambulatory settings.

In laboratory settings, classification accuracy of stress
detection models can reach fairly high levels. In a recent example,
researchers used a portable wristband, recording heart and
electrodermal activity, to detect affective stress induced by the
Trier Social Stress Task. They reported achieving an area under
the receiver operating characteristic curve of 0.87 (Ollander et al.,
2016). In another case, researchers used ECG and EEG to classify
the affective state of individuals playing a survival horror game
(Vachiratamporn et al., 2013). Six different affective states were
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classified. Authors reported up to 90% classification accuracy
using ECG and up to 73% using EEG. In a recent study, the
Muse headband (i.e., the same low-cost EEG system used in
this study) was used to classify the subjective stress level of
participants (Arsalan et al., 2019). Authors reported accuracy
as high as 92% on a two-class classification task. Finally, by
using EEG and near-infrared spectroscopy, detection of mental
stressors with accuracy near 95% (i.e., distinguishing between
control and stress) has been reported in Al-Shargie et al. (2016).

In ambulatory settings, however, performance is usually lower.
Nonetheless, the topic gained scientific attention in the last
few years, improving the potential of ambulant stress detection
models. In two recent examples, portables sensors (i.e., a chest
strap, a wristband) were used to detect stress in ambulatory
settings (Hovsepian et al., 2015; Gjoreski et al., 2016). Models
reached, respectively, a 0.72 correlation coefficient or 76%
classification accuracy at detecting self-reported stress (i.e., two-
class classification). In a recent study, EEG asymmetry was
used to monitor arousal and valence of individuals in the
presence of physical activity (i.e., construction workers) (Hwang
et al., 2018). While comparison to ground truth is difficult in
naturalistic situations, the authors suggest that this method had
potential to assess emotional state of individuals, especially for
valence detection.

Despite advances in ambulant stress detection, several
challenges are still in the way of a highly robust stress detection
model. As suggested by Smets et al. (2019), movement and
physical activity are the most obvious limitations of stress
detection models. Some models are configured to not predict
stress if physical activity is detected (Hovsepian et al., 2015),
thus not only biasing error rate measures, but also preventing
stress detection in the presence of physical activity. Other models
are configured to receive contextual data (such as physical
activity), improving accuracy in exchange of manual input in
the model (Gjoreski et al., 2016). However, very few papers have
investigated stress detection in the presence of varying levels of
physical activity.

Movement and physical activity affect physiological measures
in three different ways. First, physiological measures are
influenced by the direct consequences of physical activity. When
individuals start to perform physical activity, the body triggers
a series of physiological mechanisms to shift from a rest state
to an active state. The most obvious example is the increase in
heart rate caused by physical exertion (Bernardi et al., 1996).
Since physical activity requires energy, the heart must beat faster
to deliver more supplies to muscle cells, fetch more oxygen
and reject more CO2 in the lungs. The skin sweat will also be
increased to dissipate excess of heat caused by physical activity
(Neto et al., 2010). The response of the central system will also be
affected, as some areas of the brain will be required to coordinate
limb movements.

Second, physiological measures are influenced by shifts
in psychological states that come with physical activity. For
example, it has been shown that performing physical tasks, such
as lifting boxes, will draw mental resources (DiDomenico and
Nussbaum, 2008). In relation with this paper, there is also some
evidence that physical activity can reduce long term stress and

anxiety (Pedersen and Saltin, 2015). While scientific attention is
mostly oriented towards long-term benefits of physical exercise
regarding stress, evidence also suggests the presence of short-
term effects (Salmon, 2001). Individuals are most likely to report
having a better mood immediately after exercise. Some factors
modulate this relationship. Having a poor mood before exercise
usually causes a sharper improvement in mood after exercise. On
the other hand, performing at higher intensity than habitual level
can deteriorate mood.

Finally, movement and physical activity alter physiological
recordings through noise or signal loss. If the device uses
electrodes (e.g., EEG, ECG, EDA), these might lose contact with
the skin, briefly or continuously, and alter the measured signal
(Castellanos and Makarov, 2006; Gwin et al., 2010). The nature
of the physical task might also displace, disable or even damage
sensors. If the data is transmitted wirelessly, signal loss might
be encountered when the distance between the emitter and the
receiver is too high or when an obstacle is present between them.

4. METHODS AND MATERIALS

4.1. Motivation and Overview
The experiment discussed in this paper sought to elicit affective
stress. Common stressors used in psychophysiology (e.g., Stroop
task, n-back task) were excluded since they were not sufficiently
independent from mental stress. In a similar way, time pressure
(sometime used as a stressor) was also discarded since higher
time pressure can sometimes lead to higher mental effort. To
support “in-the-wild” B/BCI development, we also sought to
use a realistic task setting. Therefore, a survival video game
was selected as a stressor. Video games have already been used
in affect research, and, as in our case, in combination with
physiological measures. Survival video games also allow for a
short-duration experimental design (compared to studies that
focus on more chronic, long-term stressors).

More specifically, the experiment consisted of playing video
games while pedaling on a stationary bike. Two experimental
variables were manipulated: stress and physical activity intensity.
There were two stress levels (no stress/stressful) and three
physical activity levels (0, 18, 24 km/h). Participants performed all
six combinations in counterbalanced order. Each trial lasted 10
min. Physiological activity and subjective ratings were recorded
throughout the experiment. The following sections will provide
more details about the experimental design.

4.2. Stress Manipulation
Stress was modulated by switching between two video games: a
non-stressful one, serving as a control condition, and a stressful
one. The non-stressful game used was TIMEframe. TIMEframe
is a commercially available exploration/puzzle game developed
by Random Seed Games (Random Seed Games, 2015). In
TIMEframe, players must explore ruins of an abandoned city and
find artifacts. The game is played from a first-person perspective
and controls are similar to other first-person games. Several
elements made TIMEframe a prime choice for a non-stressful
game. First, there are no significant threats in the game, as the
players’ personas can not be harmed or die. Also, the music
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FIGURE 1 | Screenshot from TIMEframe.

is soft and the environment is bright and peaceful. To further
decrease stress, players were told that the number of artifacts they
found would not matter and would not be recorded. The game
was controlled with an Xbox One controller. Figure 1 shows a
screenshot of the game.

On the other hand, the stressful game used was Outlast.
Outlast is a commercially available survival game developed by
Red Barrels (Red Barrels Games, 2013). Like TIMEframe, Outlast
is viewed from a first-person perspective and controlled in a
similar fashion (albeit, slightly more complex than TIMEframe).
The goal of the game is to navigate in a creepy asylum and
evade capture/harm by its dangerous inmates. In Outlast, players
cannot fight, they can only avoid, escape or hide from enemies.
The game features several elements to increase stress, such as
an eerie music/sound design and a horror-style environment.
Some in-game areas are also poorly lit, requiring players to use
a limited night vision mode. The experiment room ambient
light was also dimmed to further increase stress. Outlast is
deterministic and features a fairly linear playthrough, increasing
the similitude of experience between participants. Once again, the
game was played with an Xbox One controller. Figure 2 depicts
two screenshots of the game, one showing normal and the other
(bottom) night vision mode.

Video games have been used in psychophysiological studies
for some years (e.g., Carroll et al., 1987). Still, their potential
as stressors is fairly unexplored. One study found that video
games can elicit similar effects to common stressors such as
the Trier Social Stress Task (Guitard et al., 2010). On the other
hand, some studies have suggested that they have the potential
to stress individuals in a way that differ from commonly used

stressors, calling for more investigation on the subject (Porter
and Goolkasian, 2019). The TIMEframe/Outlast manipulation
was designed with stress in mind. However, this manipulation
might have elicited other aspects of cognition, such as workload,
engagement or enjoyment.

4.3. Physical Activity Manipulation
Physical activity was induced by asking participants to pedal
on a stationary bike. The bike used featured an adjustable seat,
a resistance setting and a display. The resistance was set to
its minimum value (no resistance) to maximize reproducibility
of the experiment. Since the participant held a controller
throughout the experiment, the bike handles were unused and
were flipped (see Figure 3). The bike display was set to show
speed (in km/h).

Physical activity was modulated by changing the required
speed at which participants pedaled on the bike. Our ultimate
goal was to induce physical activity and artifacts to the sensors,
though not to a point of making the data completely unusable.
Therefore, three levels of physical activity were used. In the first
level, the speed was 0 km/h; participants were simply told to
sit on the bike and not pedal. At the second level, participants
were told to maintain a target speed of 18 km/h. At the third
level, the target speed was raised to 24 km/h. During a pilot
study, we found that these speeds provided the optimal trade-off
in signal quality and movement artifact generation. While most
of the physical effort was made by the legs of participants, the
fact that they had to hold the controller in their hand inevitably
created head sways and movements. Since it can be difficult to
maintain a constant speed, a tolerance of ±2 km/h was allowed.
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FIGURE 2 | Screenshot from Outlast showing normal (top) and night vision modes (bottom).

Experimenters warned participants who drifted from the target
speed during the trials. Despite focusing on the video games, the
pilot study showed that most participants were able to maintain
speed within the tolerance levels.

4.4. Counterbalancing
Each participant completed all six combinations of stress (no
stress, stressful) and physical activity (0, 18, 24 km/h). The
order of these conditions was counterbalanced and pseudo-
randomized. All conditions from the same video game were

performed subsequently. This was designed to avoid constant
psychophysiological shifts between calm and stressful states.
Doing so also allowed participants to learn the controls of one
video game at a time instead of two. Each condition lasted
10 min. In TIMEframe, there were no differences in the three
times participants played the game except that participants were
told not to seek the same artifacts as previous sessions. For
Outlast, a different scene (start point) was selected for each of the
three times that participants played the game. Table 1 describes
the three in-game start points. While it is technically possible
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FIGURE 3 | Experimental setup from the front (left). Experimental setup from the back (right). BioHarness 3 not shown since worn under the shirt.

TABLE 1 | Description of the three starting points used in Outlast.

Scene In-game description

Admin After being thrown out the window (admin block).

Ward After waking up in the male ward cell.

Sewers After the valve puzzle (chased by Chris).

for a participant to reach another condition start point before
finishing the conditions, they were sufficiently distanced, so it
never happened for any participant.

4.5. Physiological Measures
As mentioned earlier, one of the goals of this study is to
provide a database that is captured using off-the-shelf devices.
Four wearable physiological devices were used in this study.
A BioHarness 3 was used to measure cardiac and respiratory
activity. The BioHarness 3 is a chest strap worn directly on
the skin. It measures heart activity through ECG at a sampling
frequency of 250 Hz. Respiration is recorded by measuring the
extension of the chest strap (18Hz). Besides ECG and respiration,
3-axis acceleration (100 Hz) is also recorded by the device (these
signals were not used in the current study). An E4 wristband

was also used. The E4 records blood volume pulse through
photoplethysmography (64 Hz), as well as skin temperature
(4 Hz). Two electrodes, located inside the bracelet, also record
galvanic skin responses (4 Hz). Cerebral activity was recorded
using a Muse headband. This headband records EEG activity
using 4 electrodes (TP9, AF7, AF8, and TP10) with reference
to Fpz, at a 220 Hz sampling rate. From our past experience
with the Muse headband, we have found that re-referencing the
signals to electrodes over the temporal lobes (TP9 or TP10) could
negatively impact the EEG recordings, as these signals are more
prone tomovement artifacts. Therefore, the acquired EEG signals
were not re-referenced prior to analyses. The BioHarness 3, E4
and Muse data were streamed to a nearby laptop using Bluetooth
protocol. Data was recorded using the MuSAE Lab EEG Server
(MuLES), which was also used to send triggers marking the
beginning and end of trials (Cassani et al., 2015).

4.6. Subjective Measures
Beside physiological measures, subjective measures were also
collected. Two questionnaires were used: the NASA-TLX and
the BORG. NASA-TLX is a questionnaire designed to measure
workload of individuals. The original version features six
questions, which must be answered on a 21-point Likert scale.
In this experiment, two additional questions related to stress and
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TABLE 2 | Stress and fear questions added to the NASA-TLX questionnaire.

Label (English) Question (English)

Stress How stressful was the task?

Fear How scary was the task?

Label (French) Question (French)

Stress À quel point la tâche était-elle stressante?

Peur À quel point la tâche était-elle effrayante?

fear were added to suit the research questions of the project.
Table 2 shows the extra questions used. These questions were
asked in French to all participants who spoke French as their
first language.

4.7. Experimental Procedure
Forty-eight participants were invited to perform an experiment
at Université Laval (Quebec City, Canada). Participants were
recruited using mailing lists. Candidates with heart or respiratory
problems or having neurological/psychological disorders were
excluded from the experiment. Given the nature of the
stressor, precautions were taken to make sure participants
were comfortable playing Outlast. People with a history of
aversive reaction to horror (e.g., panic attacks, related phobia
or just unease with featured themes) were excluded from
the experiment. To avoid bias, participants who played either
TIMEframe or Outlast in the past could not participate in the
study. During the tutorial, participants were given warning about
the expected features of the stressor. The tutorial reminded
participants that they could interrupt their involvement at any
moment without prejudice. Experimenters were also trained to
check participant’s well-being during Outlast’s practice, game
sessions and breaks. The experimental protocol was approved
by the Ethics Review Boards of the Institut national de
la recherche scientifique (INRS; Reference number: CER-16-
425), the PERFORM Center (Concordia University; Reference
number: 30006772) and Université Laval (Reference number:
2016-274). Participants gave written consent to participate in the
study and were remunerated for their time.

Participants were greeted and invited to fill a consent
form and demographic questionnaires. After these, they were
briefed on the experimental procedure. Once done, physiological
sensors were donned and configured in a particular order. The
BioHarness 3 chest-strap (Zephyr, USA) and the E4 wristband
(Empatica, USA) were donned first on the participant, as
they were deemed less susceptible to be disrupted during the
installation of the other devices. Afterward, participants were
invited to adjust the height of the stationary bicycle seat. The
TV monitor height was then adjusted in order for the screen
to be at the participant’s eye level. Finally, the Muse headband
(Interaxon, Canada) was donned on participants forehead. The
experimenter made sure the headband was positioned correctly
and was comfortable for the participant.

Participants were then invited to perform a task tutorial
(in the form of a PowerPoint presentation). In order to
avoid information overload, this tutorial only contained the
information about the first video game they were set to play.
After the tutorial, participants were invited to practice the first
game they were set to play in order to become familiar with
the controls. This lasted between 5 and 15 min, depending on
participants. Once done, participants completed their first three
conditions (the three physical activity levels for the first game).
Each of these conditions lasted 10 min. A 2-min baseline was
performed before each condition. This baseline consisted in
performing the same level of physical activity as the upcoming
condition, but without playing any game. Conditions were
performed with minimal disruption. The experimenter warned
participants who pedaled too slowly or too fast. Additionally,
the experimenter tipped players who got stuck for too long in
a specific spot. After each condition, participants were invited
to complete the two subjective measures questionnaires (NASA-
TLX and BORG) and take a short break (roughly 5 min).

Once the three conditions of the first game were completed,
participants were presented the tutorial of the second game
and performed the remaining three conditions. Two reasons
motivated a design in which all conditions of the same game were
done subsequently like this. First, we wanted to avoid overloading
or confusing participants with shifting game mechanics and
controls. Second, we wanted to minimize the lagged effects
of stress. Stress is known to influence physiological response
even after the stressor is removed (Tassorelli et al., 1995;
Qin et al., 2009). While these lagged effects cannot be fully
removed from the design, the 5 min breaks between conditions
and the non-alternating game conditions helped alleviate this.
Figure 3 shows the experimental setup used. Figure 4 shows the
experimental sequence.

4.8. Physiological Signal Recording
Physiological signals were recorded using the MuSAE Lab EEG
Server (MuLES) software (Cassani et al., 2015). MuLES is a
LabVIEW software designed to ease simultaneous recording of
EEG and other physiological signals. It allows data acquisition
of various devices as well as real-time streaming of physiological
signal. In our case, data was streamed to a custom-made
MATLAB script designed to input markers delimiting the
beginning and the end of all experiment trials. Once the data
collection finished, a lab assistant manually verified all markers
to make sure they correctly matched the experimental trials.

4.9. Signal Processing and Feature
Calculation
Physiological signals were loaded in MATLAB using a custom-
made parser and trimmed to keep only the relevant parts
(baseline and trials). For trials, signals were trimmed into two
epochs of 5 min. Baselines were trimmed into epochs of variable
length (more or less 2 min).

For the processing of EEG signals, previous works (e.g.,
Snyder et al., 2015; Bono et al., 2016) have shown that artifact
removal methods based on the independent component analysis
(ICA) can be successfully employed to enhance EEG data in
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FIGURE 4 | Diagram showing the experimental sequence. After the initial setup, participants completed a training of their first game (5–15 min). They then performed
the 3 levels of physical activity for this game. The order of physical activity level was counterbalanced. Each condition lasted 10 min. A 5-min break was inserted
between conditions. Before every condition, participants did a 2-min baseline in which they did the same level of physical activity as the upcoming condition, but
without playing the game. Half of the participants began with TIMEframe. The other half began with Outlast.

scenarios where artifacts due to physical activity are present.
Among these methods, the wavelet-enhanced ICA method,
(Castellanos and Makarov, 2006), allows automated artifact
removal, and has been proven effective in different scenarios
where EEG was acquired with low-density wearable devices (e.g.,
Cassani et al., 2017; Rosanne et al., 2019). The parameter used for
the wICAmethod in our experiments relied in a threshold K = 1
set empirically.

For EEG feature extraction, prefrontal (AF7–AF8) alpha and
theta absolute power, and relative gamma power (all locations)
were computed since they are known to be associated with
stress (Borghini et al., 2014; Minguillon et al., 2016). Prefrontal
asymmetry has also been found to be associated with stress
(Brouwer et al., 2011) and was computed here between AF8 and
AF7. Asymmetry between TP9 and TP10 was also computed
for exploratory purposes. Coherence (alpha and beta band)
have also been associated with stress in parietal and occipital
regions (Giannakakis et al., 2015). As such, it was decided to
compute coherence in the closest region available (TP9–TP10)
in four frequency subbands (alpha, beta, gamma, and theta).
Finally, amplitude modulation features were also computed as
per (Falk et al., 2012). Focus is placed here on two specific
amplitude modulation features, namely beta modulated by delta
(represented as beta-delta) and gamma-delta, given insights
reported in Falk et al. (2012), Clerico et al. (2018), andMinguillon
et al. (2016). Table 3 summarizes the EEG features computed,
as well as our hypotheses of expected behavior under stress.
Expected behavior does not account for possible effects of
physical activity.

For the ECG signals, in turn, a variation of the Pan-Tompkins
algorithm was used to obtain the interbeat interval time series
(Behar et al., 2018). Interbeat intervals were subsequently
processed to remove outliers and improbable points. Heart
rate variability features, frequently investigated as correlates
of stress, were then computed (Castaldo et al., 2015). These
features include the heart rate, the standard deviation of interbeat

TABLE 3 | EEG features and their expected behavior under stress.

Type Feature Effect

Absolute power

Alpha (AF7) ↓ (Borghini et al., 2014)

Theta (AF7) ↑ (Borghini et al., 2014)

Alpha (AF8) ↓ (Borghini et al., 2014)

Theta (AF8) ↑ (Borghini et al., 2014)

Relative power

Gamma (AF7) ↑ (Minguillon et al., 2016)

Gamma (AF8) ↑ (Minguillon et al., 2016)

Gamma (TP9) ↑ (Minguillon et al., 2016)

Gamma (TP10) ↑ (Minguillon et al., 2016)

Asymmetry
Alpha (AF7-AF8) ↑ (Brouwer et al., 2011)

Alpha (TP9-TP10) –

Coherence

Alpha (TP9-TP10) ↑ (Giannakakis et al., 2015)

Beta (TP9-TP10) ↓ (Giannakakis et al., 2015)

Gamma (TP9-TP10) –

Theta (TP9-TP10) –

Amplitude modulation

Beta-delta (AF7) –

Gamma-delta (AF7) –

Beta-delta (AF8) –

Gamma-delta (AF8) –

Beta-delta (TP9) –

Gamma-delta (TP9) –

Beta-delta (TP10) –

Gamma-delta (TP10) –

Expected behaviors do not account for possible effects of physical activity.

intervals, the power of the high frequency band, and the
low-frequency to high-frequency (LF/HF) ratio. Moreover, the
breathing signal from the BioHarness 3 was downsampled
from 18 to 6 Hz and filtered to remove noise (low-pass,
Chebychev, 2 Hz, 8th order). Features previously shown to be
modulated by stress were then computed, including breathing
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TABLE 4 | Peripheral features and their expected behavior under stress.

Modality Feature Effect

Heart

Heart rate ↑ (Castaldo et al., 2015)

SDNN ↑ (Castaldo et al., 2015)

HF power ↓ (Castaldo et al., 2015)

LF/HF ↑ (Castaldo et al., 2015)

Breathing

Breathing rate ↑ (Rainville et al., 2006)

Variability ↑ (Vlemincx et al., 2013)

Sigh rate ↑ (Vlemincx et al., 2013)

Electrodermal

Level ↑ (Reinhardt et al., 2012)

Number of responses ↑ (Reinhardt et al., 2012)

Rel. LF power ↑ (Posada-Quintero et al., 2016a)

Temperature
Average temperature ↓ (Kreibig et al., 2007)

Temperature delta ↓ (Kreibig et al., 2007)

Blood volume pulse
Minimum BVP ↑ (Kreibig et al., 2007)

Maximum BVP ↑ (Kreibig et al., 2007)

Expected behaviors does not account for possible effects of physical activity.

rate (computed by counting the peaks of the filtered signals);
breathing variability, computed using sample entropy (m = 2,
r = 0.5) (Vlemincx et al., 2013); and sigh rate, where a sigh is
defined as a breath where the amplitude exceeded one standard
deviation of the normal breathing amplitude for the condition.

From the E4 wristband, the electrodermal signal was first
filtered (low-pass, Chebychev, 1 Hz, 8th order) and the features
computed include the electrodermal level (normalized average
of the baselines) and the number of electrodermal responses
(Boucsein, 2012). In addition, relative low frequency power
(0.045–0.15 Hz, LF power) was also computed since recent works
suggest that it might be associated with stress (Posada-Quintero
et al., 2016a). The E4 wristband was also used to measure
temperature. No particular processing was performed on the skin
temperature signal. Since stress is known to affect temperature, it
was decided to compute the average temperature level and the
delta (difference between the end and the initial temperature of
a condition) temperature (Kreibig et al., 2007). Moreover, blood
volume pulse level was normalized in reference to the average of
all baselines of each participant. The minimum and maximum
blood volume pulse levels were computed to approximate
relative diastolic and systolic pressures. Table 4 summarizes the
peripheral features computed, as well as our hypotheses of
expected behavior under stress. As previously, expected behaviors
do not account for possible effects of physical activity.

4.10. Database Availability
The PASS database is part of a larger project on operator
functional state monitoring aimed at building models that
take into account mental workload, stress and physical fatigue.
In a related work, we describe the WAUC dataset, which
presents an experimental protocol to modulate mental workload
and physical activity (Albuquerque et al., submitted). Both
datasets are available online for download at http://musaelab.

ca/pass-database/. Both the PASS and WAUC databases include
raw physiological signals, subjective responses, and additional
documentation, such as markers information.

4.11. Modeling
To assess the discriminatory power of the explored features,
machine learning models were developed for stress level
classification, i.e., classifying between no-stress (TIMEframe)
and stress (Outlast) conditions. All physical activity levels were
combined in our analyses. This was done in order to see if it
was possible to classify stress even if the current level of physical
activity is unknown by the classifier. Accounting for missing data,
there were 264 samples for TIMEframe and 248 samples for
Outlast. Here, a support vector classifier was used (Smets et al.,
2019) and two testing schemes were implemented: k-fold and
leave-one-participant-out (LOPO).

Both the k-fold and the LOPO scheme used a nested cross-
validation scheme. For the k-fold, samples were folded in five-
folds for testing. The remaining 4 folds of the samples (for each
testing fold) were subdivided again into five-folds to perform the
validation. One fifth of these were used for validation. The rest
was used for training. For the LOPO scheme, samples were folded
per participant for testing. One fifth of the remaining participants
(for each testing fold) was used for validation. The rest were
used for training. Model hyperparameters (box constraint and
lambda) were optimized using Bayesian optimization.

Models are tested using various feature subsets, namely one
model per EEG feature subtype (total of five models), one
per peripheral feature subtype (five total), one model for all
combined EEG features, one model for all combined peripheral
features, and, lastly, one model fusing both the EEG and
peripheral features. Cohen’s kappa is used to gauge classifier
performance. Cohen’s kappa is a measure that express the
agreement between true class labels and models prediction
(Billinger et al., 2012). This measure is commonly used in the
B/BCI literature (Schlögl et al., 2005; Hasan et al., 2015). A
Cohen’s kappa of 0 means that the model is doing no better than
chance (i.e., the accuracy would be close to 50% if classes were
balanced). A Cohen’s kappa of 1 means that the model is perfect
(i.e., 100% accuracy).

5. DATABASE VALIDATION:
EXPERIMENTAL RESULTS

The majority of the participants completed all six experimental
conditions. Five participants decided to not perform the Outlast
scenario and two participants did not fully complete TIMEframe
scenarios. The most common stated cause for early interruption
was nausea (possibly induced by the proximity with the screen).

Only one participant reported smoking. No participant
reported suffering from hypertension. Subjective weight was
reported on a four-point scale (insufficient, normal, excess,
great excess). Participants reported having either a normal
weight (36 participants) or an excess of weight (11 participants).
One participant did not answer the weight question and none
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TABLE 5 | Descriptive statistics of subjectives measures.

Variable
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

NASA-TLX

Mental demand 3.8± 0.8 4.1± 1.0 4.4± 0.7 11.1± 1.2 11.2± 1.1 11.6± 1.3

Physical demand 2.4± 0.9 5.4± 0.8 8.2± 1.0 3.1± 0.8 7.5± 1.1 9.8± 1.4

Temporal demand 3.1± 0.7 4.0± 0.8 4.4± 1.0 9.5± 1.5 10.0± 1.3 11.4± 1.4

Performance 11.2± 1.7 11.6± 1.5 11.2± 1.7 12.6± 1.7 13.1± 1.4 12.3± 1.5

Effort 6.8± 1.5 7.6± 1.3 8.6± 1.2 11.1± 1.4 11.5± 1.1 12.4± 1.2

Frustration 4.2± 1.3 4.2± 1.2 4.1± 1.3 9.4± 1.6 9.4± 1.6 10.0± 1.5

Stress* 2.3± 0.6 2.5± 0.6 2.4± 0.6 13.5± 1.6 13.0± 1.4 13.2± 1.4

Fear* 1.1± 0.1 1.1± 0.1 1.1± 0.1 12.2± 1.7 11.3± 1.5 12.6± 1.5

BORG

After condition 7.0± 0.6 8.5± 0.6 9.8± 0.7 8.1± 0.6 10.0± 0.7 11.2± 0.7

After break 7.0± 0.4 8.0± 0.6 8.8± 0.7 8.1± 0.6 8.9± 0.7 10.1± 0.8

*Stress and fear are not part of the original NASA-TLX. See Table 2.

reported an insufficient weight or a great excess of weight.
A majority of participants reported doing at least 30 min of
exercise per day (33 participants, one did not answer). Regarding
job activity levels, twenty-five participants reported having a
sedentary job (e.g., office job), 13 reported having a low physical
job (e.g., housekeeping, woodworking), and only three reported
having a moderate physical job (e.g., construction, farming). No
participant reported having a heavy-physical job (e.g., carpentry).

Moreover, in the original experimental design, all three scenes
used in Outlast (i.e., Admin, Ward, Sewers) were intended to
be considered as high stress conditions. It is possible, however,
that some scenes were not as stressful as others. To verify
this, a preliminary set of repeated measures models were fitted
using only the data from Outlast session. This set used the
NASA-TLX stress and fear questions as independent variable.
Physical activity levels (0, 18, 24 km/h) and condition (Admin,
Ward, Sewers) were used as dependant variables. Results of the
repeated measure ANOVA suggest that there were no differences
between all three Outlast scenes (pstress > 0.05, pfear > 0.05).
Therefore, all Outlast scenes will be pooled under high stress in
the subsequent analysis.

The following section will detail the results of the subjective,
neurophysiological and peripheral measures, as well as the
modeling analysis in order to validate the protocol and database.

5.1. Subjective Results
Table 5 reports the average scores and the mean confidence
interval (confidence level of 95%) of the two subjective
questionnaires across all six conditions. As can be seen, while
the stress levels of the video games had an effect on the reported
physical demand scores, the different physical activity levels
produced no difference in the reported stress levels scores.

To better understand the effects of stress and physical activity
had on subjective measures, a series of repeated measures
ANOVAs are performed on NASA-TLX and BORG responses.
For dimensions of the subjective rating that did not have

normally distributed residuals, we performed a Friedman non-
parametric test (Table 6). Stress, physical activity level and the
interaction between both are used as independent variables.
Greenhouse-Geisser correction of the p values was used when
assumption of sphericity was violated. The significance level was
(p < 0.005) after Bonferroni correction was used for multiple
comparisons. Results show that the stress manipulation had an
effect on most of the subjective variables (except performance) as
well as on the two BORGmeasures. Physical activity had an effect
on NASA-TLX physical demand, temporal demand, and effort,
as well as on the two BORG measures. No relevant interaction
was found.

5.2. EEG Results
Table 7 reports the average values and the mean confidence
interval (confidence level of 95%) of the selected EEG features
across all six conditions. To analyze these results, repeated
measures ANOVA is performed with the same independent
variables as for Table 6. Greenhouse-Geisser correction of the
p values was used when assumption of sphericity was violated.
The significance level was (p < 0.0028) after Bonferroni
correction was used for multiple comparisons. Table 8 reports
the ANOVA results.

As can be seen, prefrontal absolute power of alpha and theta
was not significantly altered by the experimental manipulations.
The ANOVA did not reveal any effects on relative prefrontal
gamma. However, results suggest that relative gamma in
temporal-parietal regions was higher during the stress condition
(TP9, p < 0.001, η2p = 0.30; TP10, p < 0.001, η2p = 0.30),
although they were not affected by physical activity, but an
interaction was present at this location (p = 0.002, η2p = 0.17).
The asymmetry and coherence features did not reveal any effect
or interaction. Amplitudemodulation features showed sensitivity
to the stress manipulation. This sensitivity appeared higher for
gamma modulated by delta for temporal-parietal regions (TP9,
p < 0.001, η2p = 0.28; TP10, p < 0.001, η2p = 0.28). Globally,
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TABLE 6 | Results of repeated measures ANOVA for subjective measures.

Independent variable
Stress Physical activity Stress × Physical activity

F p η
2
p F p η

2
p F p η

2
p

NASA-TLX

Mental demand‡ 244.9 < 0.001 0.85 3.6 0.031 0.08 0.3 0.722 0.00

Physical demand†,‡,⋄ 21.8 < 0.001 0.35 103.4 < 0.001 0.72 3.2 0.046 0.07

Temporal demand‡,⋄ 106.0 < 0.001 0.72 8.6 < 0.001 0.17 0.6 0.533 0.01

Performance 6.6 0.013 0.14 0.6 0.525 0.01 0.1 0.854 0.00

Effort†,‡,⋄ 66.8 < 0.001 0.62 8.8 < 0.001 0.18 0.2 0.767 0.00

Frustration 53.9 < 0.001 0.57 0.5 0.557 0.01 0.5 0.564 0.01

Stress∗ 237.1 < 0.001 0.85 0.1 0.894 0.00 0.0 0.927 0.00

Fear∗ 209.4 < 0.001 0.83 2.7 0.067 0.06 2.8 0.063 0.06

BORG

After condition†,‡,⋄ 36.2 < 0.001 0.47 58.0 < 0.001 0.59 2.3 0.101 0.05

After break†,‡,⋄ 20.2 < 0.001 0.33 20.0 < 0.001 0.33 0.3 0.700 0.00

∗Stress and fear are not part of the original NASA-TLX. See Table 2.
†Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).
⋄Difference found for multiple comparison test (Tukey-Kramer) between 18 and 24 km/h (p < 0.05).

TABLE 7 | Descriptive statistics of EEG features.

Variable (unit)
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

Abs. power (dB)

Alpha (AF7) 0.60± 0.38 0.68± 0.40 0.67± 0.41 0.70± 0.44 0.60± 0.38 0.52± 0.36

Theta (AF7) 1.14± 0.71 1.28± 0.73 1.28± 0.76 1.31± 0.82 1.09± 0.72 0.99± 0.66

Alpha (AF8) 0.87± 0.23 1.02± 0.28 0.96± 0.27 1.04± 0.27 0.88± 0.28 0.95± 0.26

Theta (AF8) 1.66± 0.44 1.94± 0.52 1.84± 0.50 1.97± 0.51 1.73± 0.53 1.83± 0.48

Rel. power (10−3)

Gamma (AF7) 179.4± 32.6 178.1± 35.7 166.1± 33.6 200.4± 38.1 161.1± 37.2 163.8± 38.3

Gamma (AF8) 250.8± 38.5 228.6± 41.1 221.3± 40.6 225.5± 34.4 200.0± 37.8 222.5± 39.7

Gamma (TP9) 56.3± 20.9 40.7± 10.4 52.0± 13.1 79.9± 21.0 55.5± 13.2 56.3± 15.5

Gamma (TP10) 54.5± 11.1 38.4± 9.7 41.7± 10.1 70.0± 14.8 50.2± 12.5 52.8± 13.3

Asymmetry (dB)

Alpha (AF7-AF8) 0.90± 0.45 0.90± 0.43 0.88± 0.44 0.89± 0.48 0.82± 0.43 0.90± 0.47

Alpha (TP9-TP10) −0.04± 0.12 0.02± 0.11 0.04± 0.11 0.11± 0.19 0.01± 0.15 0.00± 0.15

Coherence (–)

Alpha (TP9-TP10) 0.53± 0.06 0.53± 0.06 0.52± 0.05 0.49± 0.07 0.49± 0.06 0.48± 0.07

Beta (TP9-TP10) 0.34± 0.05 0.30± 0.04 0.28± 0.04 0.31± 0.06 0.27± 0.05 0.27± 0.05

Gamma (TP9-TP10) 0.30± 0.06 0.25± 0.05 0.23± 0.04 0.28± 0.06 0.23± 0.04 0.21± 0.04

Theta (TP9-TP10) 0.65± 0.06 0.67± 0.06 0.66± 0.06 0.61± 0.07 0.63± 0.07 0.60± 0.08

AM (10−3)

Beta-delta (AF7) 83.8± 10.2 75.6± 9.1 77.1± 10.9 89.4± 10.0 80.2± 10.4 76.5± 10.4

Gamma-delta (AF7) 81.3± 12.2 82.7± 14.2 78.3± 12.6 91.2± 14.7 78.3± 14.6 79.1± 15.5

Beta-delta (AF8) 74.3± 6.2 66.1± 5.1 66.9± 6.0 79.7± 5.1 71.8± 5.8 73.9± 5.8

Gamma-delta (AF8) 98.9± 12.4 90.4± 13.4 88.2± 13.2 101.2± 10.6 82.5± 11.9 89.4± 12.9

Beta-delta (TP9) 62.4± 8.6 54.7± 11.5 56.7± 12.0 73.1± 10.6 60.9± 11.5 60.4± 11.4

Gamma-delta (TP9) 35.7± 9.2 27.9± 9.5 32.4± 10.5 43.7± 11.5 34.8± 10.8 34.4± 11.8

Beta-delta (TP10) 59.8± 8.2 52.1± 9.5 52.3± 10.4 71.9± 9.3 58.2± 10.6 59.0± 11.0

Gamma-delta (TP10) 31.5± 7.6 26.0± 8.7 27.7± 9.1 39.8± 9.3 31.6± 9.3 31.9± 9.3
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TABLE 8 | Results of repeated measures analysis of variance for EEG features.

Independent variable Stress Physical activity Stress × physical activity

F p η
2
p F p η

2
p F p η

2
p

Abs. power

Alpha (AF7) 0.4 0.533 0.01 0.9 0.409 0.02 0.8 0.442 0.02

Theta (AF7) 0.3 0.559 0.01 0.8 0.438 0.02 0.7 0.475 0.02

Alpha (AF8) 0.0 0.949 0.00 0.5 0.587 0.01 3.9 0.026 0.10

Theta (AF8) 0.0 0.961 0.00 0.2 0.762 0.01 2.9 0.059 0.08

Rel. power

Gamma (AF7) 2.1 0.159 0.05 1.3 0.281 0.03 2.8 0.076 0.07

Gamma (AF8)†,‡ 0.6 0.802 0.00 5.2 0.009 0.13 2.0 0.139 0.05

Gamma (TP9) 15.1 < 0.000 0.30 2.3 0.130 0.06 7.3 0.002 0.17

Gamma (TP10)† 15.7 < 0.001 0.30 7.0 0.004 0.16 0.7 0.476 0.02

Asymmetry

Alpha (AF7-AF8) 1.14 0.293 0.03 0.8 0.452 0.02 0.02 0.846 0.00

Alpha (TP9-TP10) 0.6 0.457 0.02 0.2 0.762 0.00 1.0 0.356 0.03

Coherence

Alpha (TP9-TP10) 4.7 0.037 0.12 0.1 0.932 0.00 0.2 0.844 0.00

Beta (TP9-TP10)† 2.1 0.159 0.05 5.0 0.018 0.12 0.5 0.951 0.00

Gamma (TP9-TP10)†,‡ 1.4 0.247 0.04 10.0 < 0.001 0.22 0.9 0.409 0.02

Theta (TP9-TP10) 4.9 0.032 0.12 0.1 0.909 0.00 0.7 0.488 0.02

AM

Beta-delta (AF7) 2.9 0.099 0.07 2.6 0.096 0.07 2.7 0.082 0.07

Gamma-delta (AF7) 4.1 0.051 0.10 0.6 0.518 0.02 3.1 0.061 0.08

Beta-delta (AF8)†,‡ 6.8 0.014 0.16 8.0 < 0.001 0.18 0.1 0.943 0.00

Gamma-delta (AF8)†,‡ 0.5 0.482 0.01 5.6 0.008 0.13 1.9 0.149 0.05

Beta-delta (TP9) 6.9 0.012 0.16 2.1 0.097 0.07 1.5 0.222 0.04

Gamma-delta (TP9) 13.8 < 0.001 0.28 1.7 0.196 0.05 5.3 0.008 0.13

Beta-delta (TP10)† 8.9 0.005 0.20 3.6 0.043 0.09 1.4 0.262 0.04

Gamma-delta (TP10)† 14.3 < 0.001 0.28 4.4 0.019 0.11 2.1 0.140 0.05

†Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).

amplitude modulation was elevated by stress and lowered by
physical activity.

5.3. Peripheral Results
Table 9 reports the average values and the mean confidence
interval (confidence level of 95%) of the selected peripheral
features across all six conditions. As previously, repeated
measures ANOVA is performed with Greenhouse-Geisser
correction of the p values was used when assumption of
sphericity was violated. The significance level was (p < 0.0036)
after Bonferroni correction was used for multiple comparisons.
Table 10 reports the ANOVA results.

For the cardiac features, ANOVA suggests that heart rate
rose as physical activity was more intense (p < 0.001, η2p =

0.23). The SDNN was also significantly higher during high
stress (p = 0.002, η2p = 0.23) and decreased with more

intense physical activity (p < 0.001, η2p = 0.19). No effects
or interactions were detected for spectral features of heart rate
variability (HR, LF/HF ratio). Breathing rate was higher in
the stress condition (p < 0.001, η2p = 0.26) and higher

during physical activity, although it was not affect by physical
activity. ANOVA revealed an effect of physical activity on sigh
rate (p = 0.002, η2p = 0.17). Table 9 suggests that sigh
rate was higher in presence of physical activity, but slightly
higher for the 18 km/h level of physical activity. No effects or
interaction was detected for breathing variability. Electrodermal
features did not reveal any effect of experimental conditions,
although some positive trends could be observed (e.g., number
of responses, pstress = 0.077, pphysical = 0.071; Rel. LF
power, pstress = 0.074, pphysical = 0.091). Temperature
also did not appear to vary across the two experimental
manipulations. However, results suggest that the temperature
delta was significantly affected by the stress manipulation
(p = 0.003, η2p = 0.23). More specifically, temperature delta
was much lower during high stress conditions. ANOVA also
suggested that minimum and maximum BVP were much higher
during high stress conditions (minimum, p < 0.001, η2p =

0.30; maximum, p = 0.003, η2p = 0.23). No effect of
physical activity or interaction was found for temperature or
BVP features.
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TABLE 9 | Descriptive statistics of peripheral measures.

Variable (unit)
Condition average (stress–physical activity)

Low-0 km/h Low-18 km/h Low-24 km/h High-0 km/h High-18 km/h High-24 km/h

Cardiac

Heart rate (bpm) 85.0± 3.9 91.5± 4.0 94.6± 4.2 86.7± 4.1 92.9± 4.0 95.5± 4.1

SDNN (ms) 46.5± 5.6 37.3± 4.5 36.3± 5.0 53.8± 6.3 42.0± 4.6 41.0± 5.9

HF power (ms2) 7.1± 1.8 9.1± 2.7 9.0± 2.2 6.1± 1.7 6.4± 1.5 8.1± 2.6

LF/HF (–) 4.3± 0.7 3.9± 0.8 3.7± 0.8 4.4± 1.1 4.7± 1.1 4.3± 1.1

Breathing

Breathing rate (breath/min) 22.4± 1.5 26.0± 1.6 24.9± 1.1 23.4± 1.4 27.0± 1.5 25.7± 1.4

Variability (–) 0.71± 0.10 0.83± 0.09 0.74± 0.10 0.71± 0.09 0.81± 0.10 0.73± 0.11

Sigh rate (min−1 ) 2.36± 0.25 3.26± 0.38 2.88± 0.25 2.23± 0.23 2.84± 0.34 2.60± 0.27

EDA

Level (–) 0.96± 0.22 1.06± 0.39 1.29± 0.37 1.07± 0.24 1.24± 0.30 1.10± 0.21

Number of peaks (n) 46.6± 3.0 49.2± 2.4 48.8± 1.8 47.3± 2.4 50.7± 1.7 50.6± 1.3

Rel. LF power (–) 0.10± 0.02 0.15± 0.03 0.12± 0.03 0.13± 0.03 0.16± 0.03 0.16± 0.03

Skin temperature

Temperature (◦C) 33.8± 0.6 33.6± 0.5 33.6± 0.4 33.6± 0.6 33.4± 0.5 33.4± 0.5

Temperature delta (◦C) 0.34± 0.11 0.24± 0.11 0.22± 0.12 0.13± 0.10 0.12± 0.13 0.12± 0.10

Blood volume pulse

Minimum BVP (–) 0.68± 0.13 0.78± 0.12 0.82± 0.17 0.91± 0.19 0.95± 0.15 1.01± 0.24

Maximum BVP (–) 0.72± 0.14 0.86± 0.14 0.91± 0.17 0.94± 0.19 0.88± 0.13 1.07± 0.22

TABLE 10 | Results of repeated measures analysis of variance for peripheral measures.

Independent variable
Stress Physical activity Stress × Physical activity

F p η
2
p F p η

2
p F p η

2
p

Cardiac

Heart rate†,‡ 2.7 0.109 0.07 10.5 < 0.001 0.23 0.2 0.831 0.00

SDNN†,‡ 10.8 0.002 0.23 8.2 < 0.001 0.19 0.2 0.837 0.00

HF power 2.0 0.172 0.06 2.1 0.133 0.06 1.2 0.308 0.04

LF/HF 1.7 0.198 0.05 0.3 0.693 0.01 0.7 0.470 0.02

Breathing

Breathing rate† 12.9 < 0.001 0.26 5.6 0.007 0.13 0.3 0.727 0.01

Breathing variability 0.3 0.589 0.01 1.4 0.262 0.04 0.3 0.704 0.01

Sigh rate† 6.0 0.019 0.14 7.2 0.002 0.17 0.5 0.587 0.01

EDA

EDA Level 0.4 0.522 0.01 0.6 0.479 0.02 2.2 0.130 0.06

EDA responses 3.3 0.077 0.09 2.9 0.071 0.08 0.4 0.639 0.01

EDA Rel. LF power 3.4 0.074 0.09 2.5 0.091 0.07 0.2 0.828 0.01

Skin temperature

Temperature 3.2 0.082 0.08 1.0 0.359 0.03 0.2 0.817 0.00

Temperature delta 10.4 0.003 0.23 0.7 0.479 0.02 0.7 0.504 0.02

Blood volume pulse

Minimum BVP 14.2 < 0.001 0.30 0.9 0.402 0.03 0.5 0.568 0.02

Maximum BVP 9.9 0.003 0.23 1.6 0.222 0.04 1.5 0.238 0.04

† Difference found for multiple comparison test (Tukey-Kramer) between 0 and 18 km/h (p < 0.05).
‡ Difference found for multiple comparison test (Tukey-Kramer) between 0 and 24 km/h (p < 0.05).
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5.4. Modeling Results
A two-way ANOVA is performed using feature subsets and
testing schemes as dependent variables. Results from the ANOVA
suggest the presence of a significant difference between at least
two features subsets (p < 0.001), between the two schemes (p <

0.001) and an interaction between both factors (p < 0.001). To
further understand these results, a multiple comparison analysis
is performed and Tukey’s honest significant difference is used
to correct multiple comparisons. Figure 5 shows the results of
these multiple comparisons. For k-fold, the best classification
performance was obtained using either all features (κavg = 0.46,
acc = 0.73%) or all EEG features (κavg = 0.49, acc = 0.74%).
Amplitude modulation features were the best single type of
feature type (κavg = 0.29, acc = 0.65%), significantly surpassing
the combination of all peripheral features (κavg = 0.22, acc =

0.61%), as well as all other single type of features (except relative
power features, κavg = 0.25, acc = 0.63%). Cardiac features
yielded the best performance for single peripheral feature type
(κavg = 0.18, acc = 0.60%), surpassing EDA, BVP, absolute
power and asymmetry features (which all yielded relatively
poor results, κavg < 0.10, accavg = 0.53%). Peripheral
features provided the most stable results across the two testing
schemes. EEG features, on the other hand, all performed very
poorly under the LOPO scheme, suggesting that subject-specific
models are needed, or more advanced normalization strategies
(Albuquerque et al., 2019a).

6. DISCUSSION

As stated in the introduction, this project features twomain goals.
First, we want to provide a dataset where stress and physical
activity are jointly modulated. We also seek to allow exploration
of physical activity on artifact generation. Second, we want to
provide a dataset that mimics realistic settings to support “in-the-
wild” B/BCI development. In the following section, we provide a
discussion of the analysis that were performed in order to better
characterize the dataset.

6.1. Subjective Analysis
The important effect of the stress manipulation on the
custom stress and fear questions suggest that the experimental
manipulation was successful. The stress manipulation also had
an important effect on mental demand. This result might have
been caused by the games design. Despite being similar in terms
of game style (first person exploration games), Outlast featured
more complex environmental design (e.g., dead ends, hidden
passages) than TIMEframe. Outlast also had more complex
controls (e.g., using the night mode, running), which might
also explain the increased perceived physical demand. Despite
knowing that the two games had a predetermined duration
(10 min), participants felt that Outlast caused higher temporal
demand than TIMEframe. This result might be due to the escape
scenes (i.e., escaping from chasing enemies) that were present
in all three Outlast scenarios. Overall, it is clear that the stress
manipulation caused a high affective stress state, as well as
induced some mental stress. This highlights the difficulty in
experimentally separating the two forms of stress, a limitation

shared with other popular protocols, such as the Trier Social
Stress Task (Kudielka et al., 2007).

The physical activity manipulation was also successful, this
can be appreciated even with the p values corrected for multiple
comparisons between the three level. The descriptive statistics
and the straightforward difference between physical activity
levels (0, 18, and 24 km/h) suggest that the participants did
feel more physical demand as activity levels increased. Results
suggest that participants felt a slightly higher temporal demand
as physical activity rose. It is important to keep in mind
that the higher speed, like any physical activity manipulation,
might have induced a higher mental demand on participants.
This might have translated into higher subjective temporal
demand. Moreover, the effect of physical activity on the effort
rating was expected to be higher. However, is it possible that
some participants considered this question to concern mental
effort, while others physical effort, thus canceling out any
potential effects.

6.2. EEG Analysis
Absolute power of alpha and theta did not vary significantly
under stress. Since these features were only computed in
prefrontal regions, it is possible that they were strongly affected
by ocular artifacts. In fact, all prefrontal features computed did
not reveal much sensitivity to stress. It could be argued that
the task visual load was too high to fully remove all artifacts,
suggesting that prefrontal sensitivity to stress could be higher
when eyes are closed compared to when eyes are open, as it was
reported in Brouwer et al. (2011).

The difference between mental and affective stressors might
also explain the absence of effects on prefrontal alpha and theta.
In Borghini et al. (2014), the authors mention that the expected
decrease of alpha and increase of theta are observed in situation
where the task demand is higher. In Giannakakis et al. (2015),
authors report several significant differences on absolute power
of alpha, beta and theta bands using a more affective than mental
stressor (i.e., video segments). Like in Borghini et al. (2014),
they do observe lower alpha power in frontal regions (i.e., F3).
However, they did not report differences in the locations used in
this study. Following this hypothesis, it is also possible that the
two video games induced similar mental stress on participants,
making it difficult to observe a difference. Additionally, it is also
possible that physical activity reduced the experienced stress,
thus making it more difficult to be detected. Finally, physical
activity might have induced movement on the headset, leading to
a poorer contact between the electrodes and the skin. This indeed
is a limitation of using the Muse headband.

Notwithstanding, stress had a very clear effect on temporal-
parietal relative gamma (on both sides). These results are in line
with the hypothesis (see Table 3) that relative gamma would rise
under stress as per (Minguillon et al., 2016), where the authors
focus more on the role of prefrontal relative gamma (rather
than temporal-parietal, like in the present study). However, they
do report that relative gamma also increased in temporal and
parietal regions. In Minguillon et al. (2016), it is suggested
that prefrontal relative gamma could be an indicator of mental
stress, rather than affective stress (a result supported by previous
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FIGURE 5 | Classification performance (Cohen’s kappa) of different feature subsets.

studies, Başar-Eroglu et al., 1996). In another work, temporal
and parietal gamma were found to be higher in presence
of an affective stressor (Oathes et al., 2008). Given that the
current study focused more on affective stress, it is possible
that participants experienced similar mental stress in the two
games played; this hypothesis is based on the stress level effect
on the temporal relative gamma, and the no effect of prefrontal
relative gamma. As suggested before, it is possible that ocular and
physical activity artifacts seen here prevented detecting a stress
effect on prefrontal relative gamma. Moreover, the removal of
those artifacts with wICA could have negatively impacted the
high frequency components in EEG signals in the prefrontal
region (Muthukumaraswamy, 2013; Cassani et al., 2014; Rosanne
et al., 2019). Together, these results suggest that stress “in-
general” might be associated with the gamma band and that
the prefrontal/temporal-parietal predominance might indicate
whether this stress is more mental or affective. Further work
would be required to confirm this.

Under stress, interhemispheric temporal-parietal coherence
(TP9-TP10) was slightly lower, suggesting a less similar
neuronal activity between the two regions. This result goes
against the hypothesis formulated in Table 3 (Giannakakis
et al., 2015). In Giannakakis et al. (2015), authors found that
alpha coherence was higher during stressful video segments
compared to relaxed segments (although in parietal region,
P3-P4). However, coherence behavior under stress is not
well-documented in the literature. In Travis et al. (2010),
parietal interhemispheric alpha1 (7.5–10.0 Hz) coherence
was higher during meditation compared to control. While
we cannot directly compare the TIMEframe game to

meditation, it could be argued that the relaxed states enhance
interhemispheric coherence.

Lastly, amplitude modulation features yielded several
interesting results. Globally, amplitude modulation rose during
stress conditions. The apparent larger increase observed on
temporal-parietal regions might, once again, have been caused
by the hypothesized greater influence of ocular and physical
activity artifacts on prefrontal electrodes. Consistent with relative
gamma effects, amplitude modulation effects were also greater
when observed in the gamma band. It could be argued that the
high amplitude modulation observed on gamma (TP9-TP10)
are due to fluctuation in experienced stress during the Outlast
play session (as opposed to TIMEframe, which induced had a
lower and more leveled stress level). In this paper, we explored
only a subset of possible amplitude modulation features (i.e.,
delta-modulated) and future work should explore alternate
features. For mental workload assessment, for example, they also
showed to be important (Albuquerque et al., 2019b).

6.3. Peripheral Analysis
The increased heart rate observed with physical activity confirms
that the physical activity manipulation was effective. As expected,
SDNN also rose during high stress conditions (Castaldo et al.,
2015). This result reinforces the utility of SDNN as an index of
affective stress. However, the observed decrease of SDNN under
higher physical activity levels suggest that this feature could have
higher predictive power if physical activity of individuals was
unknown. Despite being shown sensible to stress in other studies
(Kreibig et al., 2007), spectral features of heart rate variability
(i.e., HF power, LF/HF ratio) were not significantly affected by the
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stress manipulations. Since physical activity is known to change
heart rate variability, it is possible that physical activity acted as a
confounding factor (Pichon et al., 2004). For example, in Pichon
et al. (2004), the LF/HF ratio is reported to decrease as physical
activity rises. This behavior might have canceled the expected
increase that was hypothesized in Table 3. It is also possible that
the relatively fast changes in physical activity intensity prevented
these features from reaching temporal stability. In addition,
the LF/HF ratio has received some criticism as a measure of
cognitive and physical aspects of stress, as its correspondence
to psychological and physiological states of a person is not
unique, and by combining LF and HF one degree of freedom
is lost. Future studies could explore the effects on LF and HF
separately (von Rosenberg et al., 2017) or investigate potentially
more relevant features for ambulant users (e.g., Tiwari et al.,
2019, 2020). Finally, it is also possible that spectral features of
heart rate variability are more associated with mental stressors
than affective stressors. The hypothesis made in Table 3 are
based on Castaldo et al. (2015), which predominantly features
mental stressors.

As expected, breathing rate rose under higher physical activity
conditions. In concordance with our hypothesis, stress increased
the breathing rate (Rainville et al., 2006). The effect size of
stress on breathing rate was higher than from physical activity.
Surprisingly, sigh rate was lower during stressful conditions,
which is opposed to our formulated hypothesis (Vlemincx et al.,
2013). Participants might have sighed only once the threat was
removed (i.e., after the condition). Given that Outlast’s played
character is often chased and threatened, it is also possible that
participants unconsciously held their breath as not tomake noise.
The absence of effect on breathing variability might have been
caused by the parameters used to compute sample entropy (m,
and r). In Vlemincx et al. (2013), authors mentioned that they
used m = 2 and r = 0.4 and these were the parameters used
herein. However, it is uncertain if these parameters are optimal
for all situations.

The absence of significant effects of stress and physical activity
on all electrodermal features was counter-intuitive, as both stress
and physical activity have been shown to induce changes in
EDA patterns. Placement of the electrodes might partially explain
the lack of concordance with the literature. In stress related
experiments, electrodes are often placed on the fingers (e.g.,
Kreibig et al., 2007; Posada-Quintero et al., 2016b, 2018a) or
on the foot (e.g., Reinhardt et al., 2012). In setups involving
physical activity, it can be more practical to use a wristband (e.g.,
Gjoreski et al., 2016) as was the case with the current study). It
is also possible that the combined affective stressor and physical
activity saturated the EDA levels, thus creating a ceiling effect and
preventing variability. In Posada-Quintero et al. (2018b), physical
activity wasmanipulated while EDAwas recorded.While authors
did observe significant difference between the different physical
activity levels, they mention that the electrodermal level and
the number of responses did not have the sensitivity of spectral
features. Physical activity might have also introduced artifacts to
the electrodermal measure. Precautions were taken to prevent
this: the wrist band was sufficiently tightened to prevent slippage
and filtering was applied to the signal to remove higher frequency

noise. Finally, it is possible that alternate frequency bands could
have achieved improved discriminability. As spectral analysis
of EDA is still a relatively undocumented domain, further
improvements may be possible.

Lastly, the hypothesis that temperature would be lower during
high stress condition (see Table 4) was not confirmed. This could
be due to the counter-effect of physical activity, which is known
to increase body temperature (Lim et al., 2008) even in areas
not directly involved in the effort (Chudecka and Lubkowska,
2012). In line with the hypothesis, however, temperature rose
much more slowly during stress conditions. As stated in section
2, this could be due to a constriction of the limb arterioles,
intended to reduce blood flow in peripheral regions during fight-
or-flight situations. This observation matches the increase in
blood volume pulse that was induced during stress conditions
(Kreibig et al., 2007). It is interesting to note that none of the
temperature and blood volume pulse measures were significantly
affected by physical activity. Given the short duration of the
experimental conditions and the relatively low intensity of the
physical task, this behavior is likely not to generalize to all forms
of physical activity.

6.4. Modeling Analysis
The goal of themodeling analysis described here was to perform a
first validation of the discriminative power of neurophysiological
features for stress monitoring under physical activity, and not
necessarily to obtain state-of-the-art results (Smets et al., 2019).
As such, default classifier parameters were used and classical
SVMs were tested. Our ongoing study involves the use of
multimodal fusion and classifier optimization to further improve
results. The interested reader is referred to Parent et al. (2019b)
for more details.

Interestingly, while both EEG and peripheral feature subsets
showed similar effect size under stress (η

p
2 ≈ 0.25), classification

performance differed largely between them. For example,
while peripheral features resulted in lower stress prediction
performance under the k-fold setting relative to EEG, they
generalized better to unseen users in the LOPO scheme. This
sensitivity has been reported previously for EEG-based mental
workload models (Albuquerque et al., 2019a).

Combining all EEG feature subsets also significantly improved
classification results, thus corroborating results reported in the
mental workload literature (Albuquerque et al., 2019b). On the
other hand, combining EEG with peripheral features did not
result in performance gains. Peripheral measures, such as heart
rate variability and/or electrodermal activity are often viewed as
generic indicators of sympathetic and parasympathetic activation
(Billman, 2011; Posada-Quintero et al., 2016a), thus they may
provide limited concurrent sources of information, especially in
the presence of physical activity.

Moreover, as stated previously, the amplitude modulation
features were shown to result in the highest performance under
the k-fold setting. Here, only a subset of possible AM features was
computed and recent work has suggested that alternate bands
can be useful for valence and arousal prediction (Clerico et al.,
2018). Future work will explore the full potential of the amplitude
modulation features for stress prediction under physical activity.
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Within the peripheral modality, cardiac features resulted in
the best performance under both testing paradigms. Here, only
four cardiac features were explored and relied on time- and
frequency-based content. There have been recent innovations
in HRV analysis showing that non-linear features may provide
improved robustness to noisy data (Tobon et al., 2017), thus
improved performance may still be achieved; this is left for
future work.

Overall, the modeling analysis results presented herein
confirm that affective stressors can induce detectable effects on
neuro-physiological signals, despite being in the presence of
quickly shifting physical activity. It is hoped that the database
provided will allow for other researchers to help advance the
knowledge of physiological stress monitoring in the presence
of physical activity. This could have important implications for
operator functional state monitoring for e.g., first responders.

Lastly, we performed a sanity check to explore the intensity
of confound between stress and physical activity. To this
end, we performed feature ranking using the recursive feature
elimination algorithm. We first found the most important
features for stress level detection and trained a classifier on
these features to classify physical activity level; we found a
Cohen’s kappa value of 0.14. In turn, we found the best
features for physical activity level classification and used
those features to classify stress level; we found a Cohen’s
kappa of 0.07. Future work could explore the use of physical
activity-level aware classification for improved accuracy, as
in Sun et al. (2010).

6.5. Future Research Directions
We believe the PASS dataset analysis unlocked many questions
and challenges that can be further addressed and investigated by
future work. In the following, we summarize some of the research
avenues that can be derived from our proposed dataset:

• Design analyses that aim to disentangle the effects of
affective and mental stress components on subjective,
neurophysiological, and peripheral measures (e.g., evaluate
whether different modalities are affected by affective and
mental stress in distinct ways);

• Devise EEG artifact removal approaches for data acquired with
low-density devices which are also suitable to remove noise
generated by physical activity;

• Assess the effect of different EEG referencing approaches on
stress detection;

• Explore new features, including (but not limited to), EEG
amplitudemodulation features that have been linked tomental
workload (Albuquerque et al., 2018) or new movement-robust
heart rate variability features (Tiwari et al., 2020);

• Develop representation learning pipelines tailored to improve
robustness to movement artifacts and inter-subject variability;

• Account for the interplay between stress levels and physical
activity by devising stress classification strategies which are
conditioned on the current physical activity intensity;

• Explore different state-of-the-art classification schemes and
hyperparameter tuning strategies.

7. CONCLUSIONS

The dataset described herein was designed to support the
development of physiological stress monitoring models for
ambulant users. Two different videogames were used as stress
modulators under three physical activity conditions. Our
validation results suggest that accurate disambiguation between
affective and mental stress effects could be observed even under
varying physical activity levels. Validation experiments show
features derived from the database to not only corroborate
results previously reported in the literature, but to also provide
new insights on stress elicitation under physical activity. Lastly,
preliminary classification results with popular features and
classical classifiers show the promise of stress monitoring of
ambulant users with the use of off-the-shelf wearable devices. The
collected database, comprised of raw signals, subjective ratings,
and triggers, is available for download at http://musaelab.ca/pass-
database/.
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