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Perceptual learning, the improved sensitivity via repetitive practice, is a universal
phenomenon in vision and its neural mechanisms remain controversial. A central
question is which stage of processing is changed after training. To answer this
question, we measured the contrast response functions and electroencephalography
(EEG) before and after ten daily sessions of contrast detection training. Behavioral
results showed that training substantially improved visual acuity and contrast sensitivity.
The learning effect was significant at the trained condition and partially transferred to
control conditions. Event-related potential (ERP) results showed that training reduced
the latency in both early and late ERPs at the trained condition. Specifically, contrast-
gain-related changes were observed in the latency of P1, N1-P2 complex, and N2,
which reflects neural changes across the early, middle, and high-level sensory stages.
Meanwhile, response-gain-related changes were found in the latency of N2, which
indicates stimulus-independent effect in higher-level stages. In sum, our findings indicate
that learning leads to changes across different processing stages and the extent of
learning and transfer may depend on the specific stage of information processing.

Keywords: contrast gain, ERP, latency, perceptual learning, response gain

INTRODUCTION

Visual perceptual learning (VPL) is a long-term performance improvement in visual tasks as a
result of training or experience (Petrov et al., 2005; Sagi, 2011; Deveau et al., 2013; Dosher et al.,
2013; Watanabe and Sasaki, 2015). The observed specificity to the trained stimulus, task, or retinal
location in psychophysical studies has been generally taken as evidence for neural plasticity in
early visual cortex (Karni and Sagi, 1991; Gilbert, 1994; Schoups et al., 1995; Watanabe et al., 2002;
Chen and Fang, 2011; Crist et al., 2014). Alternatively, Mollon and Danilova (1996) hypothesized
that learning occurs at a more central site but still predicts orientation and location specificity
of learning. Models like improved readout or reweighting of representation neurons (e.g., V1)
(Poggio et al., 1992; Dorsher and Lu, 1998) and the involvement of high-level processes beyond
the visual cortex (Li W. et al., 2008) have been proposed in the last decades and received support
from psychophysical (Liu, 1999; Liu and Weinshall, 2000; Xiao et al., 2008; Zhang et al., 2010),
neurophysiological (Law and Gold, 2008), and brain imaging studies (Chen et al., 2015, 2017).
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However, there is a growing consensus that perceptual
learning involves neural processing in multiple brain regions.
The reverse hierarchy theory proposed that learning back-
propagate from higher to lower visual areas, providing predictive
signals to lower-levels and learning site(s) depending on the
task difficulty (Friston, 2003; Ahissar and Hochstein, 2004).
Indeed, learning a simple task may involve a broad set of brain
systems undergoing changes in sensory representations, read-
out weights, decision rules, attention and feedback processes as
well as sensorimotor changes (Maniglia and Seitz, 2018). The
distribution of changes across the neural system may depend
upon the physical stimuli as well as the training task. A similar
two-stage model suggests that feature-based plasticity occurs in
the early sensory processing stages, while task-based plasticity
occurs in higher-level processing stages (Sasaki et al., 2013;
Shibata et al., 2014, 2016).

Human electrophysiological studies can provide unique
contributions to the question regarding learning stages, given
different components of ERP reflected processing in different
stages along the visual hierarchy (Voorhis and Hillyard, 1977;
Luck et al., 2000; Fabiani et al., 2007). Modulations in both the
early and late ERP components have been found in different
perceptual training studies, ranging from early C1/P1 (Pourtois
et al., 2008; Bao et al., 2010; Zhang et al., 2015) to enhancement
in N1, P2 (Song et al., 2005; Shoji and Skrandies, 2006; Qu et al.,
2010; Wang et al., 2010; Zhang et al., 2013), and later N2 and
P3 components (Skrandies and Fahle, 1994; Wang et al., 2010;
Hamamé et al., 2011). However, few studies have compared the
contribution of early and late ERP components to perceptual
learning within a unified theoretical framework.

In this study, we tested the multi-stage hypothesis of
perceptual learning. Importantly, we measured ERP with
quantitative modeling based on contrast response function (CRF)
measurements. In this model, the facilitation of perceptual
sensitivity induced by perceptual learning could be accounted
for by three possible mechanisms – increased contrast gain,
increased response gain, or additive baseline shift (Figure 1A).
The contrast-gain change model predicts that changes in the ERP
components interact with contrast level and lead to a leftward
shift in the CRF, i.e., shifting the most sensitive operating range
of the system toward lower contrast while the saturation points
of the CRF remain fixed. The response-gain model predicts that
learning leads to a constant multiplicative change in the ERP
components irrespective of the contrast level, signifying by both
slope and asymptotic changes of the CRF. The baseline shift
model predicts that learning leads to an overall upward, additive
gain of the ERP response. We also tested the psychophysical
and electrophysiological transfer effect of learning in four control
conditions that varied in spatial frequency, retinal location,
and eye of origin.

MATERIALS AND METHODS

Subjects
Twenty subjects (23.8 ± 3.8 years, 12 males) participated in the
study. All subjects were right-handed and had no psychiatric

or neurological disorders, naïve to the task, and of normal or
corrected-to-normal vision. All subjects received basic subsidies
for their participation and additional bonus if they complete the
whole experiments seriously. The study was approved by the
Ethical Review Committee of Institute of Psychology, Chinese
Academy of Sciences, and informed consent was obtained
from each subject.

Apparatus and Stimuli
The experiments were controlled by a desktop computer
running Matlab programs (Mathworks, Natick, Massachusetts)
and PsychToolBox3 (Brainard, 1997; Pelli, 1997). The stimuli
were presented on a gamma-corrected SONY G220 CRT monitor
with a spatial resolution of 1600 × 1200 pixels, a refresh rate of
85 Hz, and a mean luminance of 28.7 cd/m2. A special circuit
combined two 8-bit output channels of the graphics card to
produce 14-bit gray-level resolution (Li et al., 2003). Subjects
viewed the stimuli monocularly with head on a chin rest.

Stimuli were circular sinusoidal gratings, subtending 2◦ at
a distance of 1.38 meters, whose edges were smoothed to the
background with a half-Gaussian ramp (σ = 0.31◦) to minimize
edge effects. The stimulus centered at 5◦ away from the fixation
point in the upper left (trained location), upper right, or lower
left location, depending on the test conditions (Figure 1B).
The stimulus orientation was 45 or 135◦ relative to horizontal.
Stimulus position was jittered slightly (0 – 0.5◦) from trial to trial.

Experimental Design
The experiment consisted of pre-training assessment, training,
and post-training re-assessment (Figure 1C). Training consisted
of 10 sessions; each session was composed of seven blocks
of 80 trials and lasted about 30–40 min. In both pre- and
post-training assessments, contrast sensitivity function (CSF),
visual acuity, and ERP recordings were measured in both eyes.
CSF and visual acuity were measured on the first and last
day of assessment, taking up to a total of ∼ 40 min. The
ERP recordings were performed in the second and the day
before the last day of assessment, taking up to a total of 3.5 h
(including preparation of ERP recording, data acquisition, and
voluntary breaks).

Tasks
Subjects performed a peripheral orientation discrimination task
during all the CSF measurements, training, and EEG sessions
(Figure 1B). Each trial started with a 500–800 ms blank
(randomly jittered in time to minimize anticipation and was
signaled by a brief tone) and was followed by a grating of 141 ms.
Subjects indicated the orientation of the grating by a keypress
within 1,500 ms. During training, a brief tone followed each
correct response; during pre- and post-tests, a brief tone followed
each response regardless of its accuracy. The next trial started
after a 600 ms blank. Subjects were instructed to maintain fixation
on a black dot at the center of the display. To ensure central
fixation, the dot was randomly changed to letter “x” or “o” at a
probability of 0.1, and subjects were asked to indicate the change
with keypress, i.e., central task.
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FIGURE 1 | Model predictions, experimental stimuli and protocol. (A) Three different mechanisms in the sensory gain model that predict different pattern of contrast
response function (CRF) changes following perceptual learning. From left to right: change in contrast gain, multiplicative response gain, or baseline shift. c50: the
stimulus contrast that evokes half of the neuron’s maximal response. Rmax : maximal response to stimuli. b: baseline activity. (B) A typical trial procedure. Each trial
started with an attention cue (500–800 ms). Stimulus was presented for 114 ms, and subjects were asked to report grating orientation within 1,500 ms. After
response or 1,500 ms, a blank screen was presented for 600 ms and next trial started afterward. Training was performed in the upper left visual field location relative
to the fixation dot. The dashed, white circles indicate two control locations: the upper right and the lower left visual field location. To ensure task compliance,
subjects were asked to focus on the central fixation dot and press corresponding key when the black dot changed to “x” or “o” (with 5% probability each).
(C) Experimental design. Participants were instructed to practice contrast detection tasks for ten consecutive days. Pre- and post-training psychophysical
measurements covered contrast sensitivity function and visual acuity. ERP tests were conducted before and after contrast sensitivity training in different days to
examine learning-induced changes in neural processing.

Pre- and Post-training Psychophysical
Assessments
Visual acuity was measured with the Chinese Tumbling E Chart
(Mou, 1966; Huang et al., 2008; Xi et al., 2014) and defined as
the logMAR (log minimum angle of resolution) acuity associated
with 75% correct identification (Xu et al., 2006; Zhou et al., 2006;
Huang et al., 2009).

Contrast sensitivity (CS) was defined as the reciprocal of
contrast threshold for detecting a grating with 79.4% accuracy.
We measured CS using the quick CSF method (qCSF), which was
recently developed by Lesmes et al. (2010) to accurately estimate
CSF with greatly reduced testing times by sampling from pre-
defined parameter space and updating the probability of CSF
parameters based on subject’s performance. The stimulus space
consisted of gratings contrasts ranging from 0.1% to 99% in
steps of 1.5 dBs and spatial frequencies from 0.5 to 8 cycles per
degree (cpd) in steps of 3 dBs. The qCSF’s parameter space is a
four-dimensional grid of the four parameters that defined CSF,
i.e., peak gain, peak frequency, bandwidth, and truncation level
(Lesmes et al., 2010). The CSF curve was obtained after 100 qCSF
trials. The area under contrast sensitivity function (AUCSF), a
comprehensive measure of spatial vision over a wide range of
spatial frequencies (van Gaalen et al., 2009; Lesmes et al., 2010),

was calculated by integrating contrast sensitivity over spatial
frequencies varying from 0.5 to 8 cpd. CSF in the upper right,
upper left (trained location), and lower left visual field location
of left eye (LE, trained eye), and the upper left of right eye
(RE, untrained eye) was measured in four separate blocks and
counterbalanced across subjects but held constant between pre-
and post-training test sessions for a particular subject. Before
pre-training CSF measurement, subjects practiced 20 trials to get
familiar with the task.

Training
Training was performed in the upper left visual field location
of left eye and training spatial frequency was fixed at 5 cpd.
A 3-down-1-up adaptive staircase procedure in which three
consecutive correct responses resulted in a reduction of signal
contrast (Cn+1 = 0.90Cn), and one wrong response resulted in an
increase in contrast (Cn+1 = 1.10Cn) was used to control grating
contrast (Levitt, 1971).

EEG
The ten conditions conducted during pre- and post-training
ERP measurements were summarized in Table 1. In the trained
condition (spatial frequency: 5 cpd; retinal location: the upper left
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visual field location; trained eye: left eye), six different contrast
levels were employed to obtain full CRF: 0, 4.26, 8.90, 18.61,
38.90, and 81.13% Michelson contrasts. These six conditions
were randomly intermixed in four blocks, each consists of 300
trials. In the control conditions, EEG signals were recorded for
gratings of 10 cpd and 38.9% contrast at the trained location
(i.e., the upper left visual field location in the left eye with
higher spatial frequency and a fixed contrast, Frequency change
condition), gratings of 8.9% contrast at the upper right (Location
change-contralateral condition), and the lower left location in
the left (trained) eye (Location change-ipsilateral condition);
and the upper left location in the right (untrained) eye (Eye
change condition). These four control conditions were separately
presented in four blocks of 200 trials each. Training and control
conditions were counterbalanced across subjects.

Scalp EEG data were recorded from 64 scalp electrodes
(Neuroscan R©) with an amplifier bandpass of DC to 100 Hz and
a 60-Hz notch filter was digitized at 500 Hz. Vertical electro-
oculogram (VEO) was recorded by electrodes placed above and
below the left eye. Horizontal electro-oculogram (HEO) was
recorded by electrodes placed at the outer canthus of the left and
right eye. The reference electrode was placed on the top of the
midline between electrodes CZ and CPZ . Electrode impedance
was kept <5 k� throughout recording.

EEG data were analyzed using EEGLAB (1; Delorme and
Makeig, 2004) and ERPLAB (2; Lopez-Calderon and Luck, 2014)
with home-made scripts. Signals were first referenced offline to
the average of all the electrodes and filtered with a bandpass filter
of 0.1–30 Hz. The data were then epoched starting at 200 ms
before stimulus onset and ending 1000 ms after stimulus onset.
The data exceeding ± 50 µV at electrode VEO and ± 15 µV
at electrode HEO, or other activities exceeding ± 100 µV at any
electrodes were excluded from analysis. The overall rejection rate
was 17.27%. Remaining epochs were averaged according to the
stimulus condition.

The peak amplitude was calculated with a moving window
technique: the peak(s) within a certain time window was
first determined for each subject and each condition (trained
condition: 90–140 ms for P1, 160–300 ms for N1-P2 complex,
400–800 ms for N2; control condition: 110–160 ms for P1, 160–
300 ms for N1-P2 complex, 400–800 ms for N2); then the peak
value within a certain time window surrounding the first peak
was derived for each subject and each condition (30 ms for
P1 and 50 ms for N1-P2 complex and N2). To quantify the
peak amplitude and latency of each component, the largest three
electrodes among six contralateral posterior-occipital electrodes
(P4, P6, P8, PO4, PO6, and PO8 in the right hemisphere and P3,
P5, P7, PO3, PO5, and PO7 in the left hemisphere) were chosen
for further analysis. Electrode sites were selected in temporo-
parietal-occipital positions based on previous ERP studies of
VPL (Ding et al., 2003; Song et al., 2005; Qu et al., 2010; An
et al., 2012; Zhang et al., 2013; Itthipuripat et al., 2014, 2017;
Garner et al., 2015; Ahmadi et al., 2018). The amplitude of
each component was defined as the height of the peak in this

1http://sccn.ucsd.edu/eeglab/
2http://erpinfo.org/erplab/

average signal, and the latency was defined as its time to the
peak. Amplitudes were measured as peak-to-peak voltages for
N1-P2 complex rather than the base-to-peak amplitude due to
uncertainties in establishing a baseline voltage for N1 and P2. For
statistical analysis, amplitudes and latency were averaged across
trials for each condition.

For the trained condition, we subtracted the ERP evoked by
0%-contrast stimulus from the ERP response evoked by all other
contrasts to minimize the potential effects of anticipatory ERPs
(Supplementary Figure 1).

Statistical Analysis
The learning curve (i.e., log10 contrast sensitivity as a function of
training session) was fitted with a linear function:

log10CS (session) = CS0 + α × log10(session)

where CS denotes contrast sensitivity, CS0 is the intercept, and
α is the slope of the learning curve (learning rate, or unit
improvement at the trained condition).

To calculate the spatial frequency bandwidth of perceptual
learning, we used the same methods as in our previous paper
(Huang et al., 2008). Briefly, contrast sensitivity improvements
of each observer were fit with a Gaussian function:

log10
[
CSpost−training

(
f
)]
− log10

[
CSpre−training

(
f
)]
=

a exp

−( log2
(
f
)
− log2

(
f0
)

σ

)2
 (1)

where CS denotes contrast sensitivity, a is the amplitude of the
improvement, f is the spatial frequency, fo is the spatial frequency
with the maximum improvement, and σ is the standard deviation
of the Gaussian function. The bandwidth (BW) of perceptual
learning was defined as:

BW = 2
√

ln2 σ

Standard deviations of all the estimated parameters were
computed with a resampling method (Maloney, 1990).

The improvement of AUCSF, CS, and the amplitude of each
ERP component was defined as:

I =
Measurepost−training −Measurepre−training

Measurepre−training
× 100%

The improvement of visual acuity (in logMAR) and latency of
each ERP component was calculated as:

I =
Measurepre−training −Measurepost−training

Measurepre−training
× 100%

Pre- and post-training visual acuity, CS, BW, and learning
improvement were compared using paired t-tests and corrected
for multiple comparison based on FDR. Pre- and post-training
latency and amplitude of each ERP component of control
conditions were also compared using paired t-tests and corrected
for multiple comparison based on FDR. Evidence against the null
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TABLE 1 | Stimulus details for ERP measurements.

Conditions Eye Location Spatial frequency (cpd) Contrast %

Trained Left Upper left 5 0

Left Upper left 5 4.26

Left Upper left 5 8.9

Left Upper left 5 18.61

Left Upper left 5 38.9

Left Upper left 5 81.13

Frequency change Left Upper left 10 38.9

Location change-contralateral Left Upper Right 5 8.9

Location change-ipsilateral Left Lower Left 5 8.9

Eye change Right Upper left 5 8.9

Differences between the trained and each control condition are shown in italic bold.

hypothesis was quantified using Bayes factors (BF10). Repeated
ANOVA with Green house-Geisser correction was applied to
the effects of training and contrast levels on the latency and
amplitude of each ERP component of the trained condition.

ERP Model Fitting
The Naka-Rushton equation was fitted to the ERP amplitude
CRFs, i.e., amplitude of P1, N1-P2 complex, and N2 as functions
of contrasts (Tolhurst et al., 1981; Li X. et al., 2008).

R (c) = b+ Rmax
cs

cs
50 + cs

where c is the grating contrast, b is the baseline activity, c50
denotes the contrast at which the response reaches half of
its maximum dynamic range, s is exponent controlling how
quickly the CRF rises and reaches an asymptote, and Rmax is the
maximum response.

An inverted Naka-Rushton equation was fitted to the ERP
latency CRFs, which was earlier shown to provide the best fit to
the measured response latencies of neurons in striate cortex of
cats and monkeys (Albrecht et al., 2002):

R (c) = Lmax − Rshift
cs

cs
50 + cs

where c is the grating contrast, Lmax is the max latency, c50
denotes the contrast at which the latency reaches half of its
minimum dynamic range, s is exponent controlling how quickly
the CRF decreases and reaches an asymptote, and Rshift is the
maximum reduction in latency.

Pre- and post-training model fitting parameters were also
compared using paired t-tests and corrected for multiple
comparison based on FDR. Evidence against the null hypothesis
was quantified using Bayes factors (BF10). By systematically
examining the best-fitting parameters of the Naka-Rushton
equations to the amplitude and latency of different ERP
components before and after training, we fulfilled the comparison
between the contribution of early and late ERP components to
perceptual learning within a unified theoretical framework.

RESULTS

Behavioral Outcomes
Central Task
Subjects performed the central letter identification task with high
accuracy during all the CSF measurements, training, and EEG
sessions. There was no significant difference among the central
letter identification performances in the four CSF tests before and
after training (94.06, 97.12, 96.97, and 96.70% correct in pre-tests
at the upper right, upper left, and lower left visual field location
in the left eye (LE) and the upper left location in the right eye
(RE) vs. 95.90, 93.77, 97.60, and 96.92% in post-tests, respectively;
all p > 0.10). There was also no significant change in the central
task performance during EEG measurements [pre-test: 93.15%,
post-test: 94.61%, t(19) = 1.045, p = 0.31]. We concluded that
the learning effects were not compensated from performance
decrements in the central task.

Visual Acuity
Training significantly improved visual acuity by 1.0 line in the
left (trained) eye [from −0.13 to −0.23 logMAR, t(19) = 8.025,
p < 0.005, d = 1.617] and 0.4 line in the right (untrained) eye
[from−0.12 to−0.16 logMAR, t(19) = 3.320, p < 0.01, d = 0.582]
after multiple comparison correction based on FDR (Benjamini
and Yekutieli, 2001). The magnitude of improvement in the
trained eye was significantly greater than that in the untrained
eye [t(19) = 3.113, p = 0.006, d = 0.828]. In Figure 2A, we plotted
visual acuity (logMAR) in the trained and untrained eyes after
training versus that before training.

Learning Curve
Training at 5 cpd significantly improved CS by 38.17%
[t(19) = 6.108, p < 0.001, d = 1.404]. Average learning curve was
plotted in Figure 2B. The averaged best fitting curve has a slope
of 0.306 log10 contrast sensitivity/log10 session (r2 = 0.887).

Contrast Sensitivity Functions
Contrast Sensitivity Functions (CSFs) measured in the upper left
(trained location), the upper right, and the lower left location in
LE (trained eye) and the upper left location in RE (untrained
eye) of all the subjects before and after training were shown in

Frontiers in Neuroscience | www.frontiersin.org 5 December 2020 | Volume 14 | Article 555701

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-555701 December 15, 2020 Time: 14:32 # 6

Xi et al. Multi-Stage Plasticity Induced by Learning

FIGURE 2 | Behavioral results. (A) Post- versus pre-training logMAR visual acuity of trained (red circles) and untrained (gray triangles) eyes. Each symbol represents
the data of one subject. The dashed line is the identity line (slope = 1), indicating no improvement. (B) Learning curve. Error bars represent standard errors across
subjects. The first (blue triangles) and last data points (red circles) were derived from pre- and post-training CSF measurements in the trained condition, respectively.
Black open circle: data from training phase. (C) Pre- (blue curves) and post-training (red curves) CSFs and the difference between the best fitting post- and
pre-training CSFs (gray curves) measured in the trained location (the upper left), the upper right (Location change-contralateral) and the lower left (Location
change-ipsilateral) visual field location in LE, and the upper left location in RE (Eye change). The enlarged symbols indicate the trained condition (spatial frequency: 5
cpd; location: the upper left; eye: LE) before (blue triangles) and after training (red circles). BW: the bandwidth of perceptual learning.

Figure 2C. The AUCSF improved by 73.78, 53.35, 45.15, and
53.87% in the four conditions, respectively. The magnitude of
AUCSF improvement in the trained location was significantly
or marginally larger than that in the upper right [t(19) = 1.957,
p = 0.065, d = 0.462], the lower left in LE [t(19) = 3.127, p < 0.05,
d = 0.667], and the upper left in RE [t(19) = 1.987, p = 0.093,
d = 0.479] after multiple comparison correction based on FDR.
There was no significant difference among the magnitudes of
improvement in the three control conditions (all p > 0.10, all
BF10 < 4.20).

The spatial frequency bandwidth of perceptual learning
indicates the generalization of training effect to other

stimuli and tasks, were indexed by the full bandwidth
at half height of the difference curve between the post-
and pre-training CSFs, was 3.62 ± 1.96, 2.45 ± 1.62,
2.29 ± 1.19, and 3.55 ± 2.40 octaves (mean ± sd) for
the upper left (trained location), the upper right, the
lower left location in LE (trained eye), and the upper
left in RE (untrained eye), respectively. The bandwidth
of perceptual learning was significantly or marginally
greater in the trained condition than in the upper right
[t(19) = 2.177, p = 0.063, d = 0.643, paired t-test] and
the lower left [t(19) = 2.877, p = 0.030, d = 0.778] in LE
but not the upper left in RE [t(19) = 0.102, p = 0.920,
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d = 0.033] after multiple comparison correction based
on FDR.

ERP Outcomes
Overview
The grand average of stimulus-locked ERPs was shown in
Figures 3, 4 for the trained and control conditions respectively.
In the electrodes placed on the posterior-occipital cortex,
we observed P1, N1, P2, and N2 components. The timing
(Figures 3A, 4A) and topography (Figure 3C) of each ERP
component were largely consistent with previous reports
(Voorhis and Hillyard, 1977; Johnson, 1989; Duncan et al., 1994;
Gonzalez et al., 1994; Woldorff et al., 1997; Luck et al., 2000; Vogel
and Luck, 2000; Pernet et al., 2003; Potts, 2004; Key et al., 2005).

Trained Condition
Training was performed at 5 cpd in the upper left visual field
location of LE. We first conducted six three-way ANOVA for the
latency and amplitude of each of the following ERP component:
P1, N1-P2 complex and N2, with hemisphere (left hemisphere vs.
right hemisphere), training (pre-training vs. post-training), and
contrasts levels (4.26, 8.90, 18.61, 38.9, and 81.13%) as within-
subject factors. We found shorter latencies of P1 and N2 in the
right hemisphere (contralateral) compared to the ones in the left
(ipsilateral) hemisphere [F(1,19) = 5.290, p = 0.033, ηp

2 = 0.218;
F(1,19) = 144.013, p < 0.001, ηp

2 = 0.883]. The amplitudes of
P1, N1-P2 complex and N2 from the right hemisphere were
larger than the ones in the left hemisphere [F(1,19) = 11.704,
p = 0.003, ηp

2 = 0.381; F(1,19) = 16.108, p < 0.001, ηp
2 = 0.997;

F(1,19) = 22.220, p < 0.001, ηp
2 = 0.539].

Our further analyses focused on the contralateral (right)
hemisphere. The latency and amplitude for each ERP component
were then entered into a 2-way ANOVA with training (pre-
training vs. post-training) and contrast levels (4.26, 8.9, 18.61,
38.9, and 81.13%) as two within-subject factors (Figure 3B). We
found the latency of P1, N1-P2, and N2 components decreased
significantly with contrast levels [F(4,64) = 31.723, 133.395, and
49.570, respectively, ηp

2 = 0.625, 0.875, and 0.723, all p < 0.001)
and training [F(1,19) = 6.128, 20.062, and 13.611, ηp

2 = 0.244,
0.514, 0.417, respectively, all p < 0.05]. The interaction of
the two factors was marginally significant for the latency of
N2 component [F(4,76) = 2.729, p = 0.060, ηp

2 = 0.126].
A follow-up simple effect test indicated the three higher contrast
conditions reached significance for the latency of N2 component
[F(1,19) = 0.30, p = 0.593, ηp

2 = 0.016; F(1,19) = 2.52, p = 0.129,
ηp

2 = 0.117; F(1,19) = 6.23, p = 0.022, ηp
2 = 0.247; F(1,19) = 7.11,

p = 0.015, ηp
2 = 0.272; F(1,19) = 9.08, p = 0.007, ηp

2 = 0.323 for
the five contrast levels separately].

The amplitudes increased significantly with contrast levels
[F(4,76) = 21.692, 86.585, and 42.411, ηp

2 = 0.533, 0.820, 0.691,
for P1, N1-P2, and N2, respectively, all p < 0.001). Training
also significantly increased the amplitude of P1 [F(1,19) = 6.085,
p = 0.023, ηp

2 = 0.243) and N1-P2 [F(1,19) = 16.521, p = 0.001,
ηp

2 = 0.465] but not N2 [F(1,19) = 0.463, p = 0.505). The
interaction of the two factors was only significant for the
amplitude of P1 component [F(4,76) = 3.607, p = 0.019,
ηp

2 = 0.160]. A follow-up simple effect test revealed that the

amplitude of P1 component was only significantly increased
when the stimulus contrast was 81.13% [F(1,19) = 21.39,
p < 0.001, ηp

2 = 0.530]. In sum, we observed shorter latency and
increased amplitude for ERP components in response to stimuli
presented at the trained location.

Control Conditions
We conducted paired t-tests (with multiple comparison
correction based on FDR) for the latency and amplitude for
each ERP component of the right hemisphere for Frequency
change, Location change-ipsilateral, Eye change condition, and
left hemisphere for Location change-contralateral condition
(Figure 4B). For latency, training decreased P1 latency only at
Frequency change condition [t(19) = 3.303, p < 0.01, d = 1.091]
after multiple-comparison correction based on FDR. In contrast,
significant or marginally significant reduction of latency was
found for N1-P2 complex at Frequency change, Location change-
contralateral, and Eye change-condition [t(19) = 3.629, p < 0.01,
d = 0.803; t(19) = 3.138, p = 0.01, d = 0.675; t(19) = 2.144,
p = 0.06, d = 0.504, respectively]; and for N2 component
at all the four control conditions [t(19) = 2.125, p = 0.062,
d = 0.630, t(19) = 3.668, p < 0.01, d = 0.944, t(19) = 2.991,
p < 0.05, d = 0.719, t(19) = 1.893, p = 0.074, d = 0.497 for
Frequency change, Location change-contralateral, Location
change-ipsilateral, and Eye change condition, respectively] after
multiple-comparison correction based on FDR.

For amplitudes, we found significant or marginally significant
changes in N1-P2 complex amplitude for Frequency change
condition [t(19) = 3.881, p < 0.005, d = 0.706] and in N2
amplitude for both Frequency change and Eye change condition
(untrained) eye [t(19) = 2.990, p < 0.05, d = 0.549 and
t(19) = 2.239, p = 0.074, d = 0.565] after multiple-comparison
correction based on FDR.

The magnitude of improvement in N2 amplitude and latency
at the trained condition was marginally larger than that in the
Higher SF condition [t(19) = 1.782, p = 0.091, d = 0.25] and the
Location change-contralateral condition [t(19) = 1.757, p = 0.095,
d = 0.18], respectively. No significant difference of ERP changes
in other control and corresponding trained conditions was found
[t(19) = 1.582–0.082, p = 0.130–0.936, BF10 = 4.29–1.48].

Model Analysis
We plotted the mean latency and amplitude of the P1, N1-P2
complex and N2 components of the right hemisphere at the
trained condition as functions of stimulus contrasts (i.e., CRF)
and fitted with the Naka-Rushton equation (Figure 5; Tolhurst
et al., 1981; Albrecht et al., 2002; Li X. et al., 2008).

For the latency CRF (Figures 5A–C), training increased the
effective contrast (c50) by a factor of 0.72, or a decrease of 28%
of its physical contrast, in the latency of P1 [t(19) = 2.925,
p < 0.05, d = 0.624, multiple-comparison corrected based on
FDR, Figure 5A] and by a factor of 0.70 in the N1-P2 complex
[t(19) = 2.765, p < 0.05, d = 0.637, multiple comparison
corrected based on FDR, Figure 5B]; and led to a shift of the
contrast gain (c50) by a factor of 0.59 [t(19) = 4.179, p < 0.005,
multiple-comparison correction based on FDR, d = 0.971] and a
multiplicative response increase by a factor of 1.61 [t(19) = 2.090,
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FIGURE 3 | (A) Averaged ERP waveforms of the trained condition. The ERPs evoked by contralateral stimuli of 4.26, 8.90, 18.61, 38.90, and 81.13% Michelson
contrast levels were subtracted by that evoked by contralateral 0%-contrast stimuli. Significant sensory ERP components, e.g., P1, N1, P2, and N2, were identified.
Shaded regions denote standard errors across subjects. (B) Latency and amplitudes from early to late ERP components at each contrast levels of the trained
condition in pre-training and post-training sessions. Statistical analysis showed that the latency and amplitude from early to late ERP components at each contrast
levels were modified differently by training. Error bars represent standard errors across subjects. *: significant main effects of training; n.s.: non-significant. (C) The
grand-mean topographical map series from 100 to 900 ms in steps of 80 ms evoked by stimuli of 81.13% contrast level of the trained condition in pre-training
(upper part) and post-training (middle part) sessions. The difference topographical maps were also displayed (lower part). Four components occurred at this time
window, from P1, N1, P2, to N2.
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FIGURE 4 | (A) Averaged ERP responses of control conditions. From left to right: Frequency change, Location change-contralateral (the upper right visual field
location in LE), Location change-ipsilateral (the lower left location in LE) and Eye change condition (the upper left location in RE). Shaded regions denote standard
errors across subjects. (B) Latency and amplitudes from early to late ERP components of the four control conditions in pre-training and post-training sessions.
Statistical analysis showed that the amplitude and latency from early to late ERP components of the four control conditions were also modified differently by training.
Error bars represent standard errors across subjects.

p = 0.076, d = 0.446, multiple-comparison correction based on
FDR] for N2 (Figure 5C).

For the amplitude CRF (Figures 5D–F), training led to a
contrast gain (c50) improvement by a factor of 0.7 [t(19) = 2.673,
p < 0.05, d = 0.472, multiple-comparison correction based
on FDR] and a multiplicative response increase by 1.72
[t(19) = 3.713, p < 0.005, d = 0.490, multiple-comparison
correction based on FDR] in the amplitude of P1 (Figure 5D);
and a multiplicative response increase by a factor of 2.29
[t(19) = 2.160, p = 0.066, d = 0.381, multiple-comparison
correction based on FDR] and baseline shift by a factor
of 1.26 [t(19) = 2.576, p = 0.057, d = 0.517, multiple-
comparison correction based on FDR] for the N1-P2 complex
(Figure 5E). These results further showed that perceptual
learning impacted neural processing differently across neural
events at the trained condition.

DISCUSSION

In the present study, we tested the multi-stage hypothesis of
perceptual learning. Behavioral results showed that training

substantially improved visual acuity and CSFs, with the learning
effect being particularly pronounced at the trained condition and
partially transferred to control conditions. ERP results showed
that training reduced the latency and increased the amplitudes on
both early and late components for the trained condition. Further
modeling analysis revealed a contrast-gain-related change in the
latency of P1, N1-P2 complex, and N2, as well as response-gain-
related changes in the latency of N2. Finally, for the untrained
conditions, P1 showed reduced latency only at the high spatial
frequency condition while N2 showed decreased latency for all
control conditions.

The specificity of VPL has been the hallmark of perceptual
learning and is often regarded as the evidence of a singular
low-level process. In support of this hypothesis, fMRI studies
revealed increased responses in the early retinotopic visual
areas (Schwartz et al., 2003; Furmanski et al., 2004; Jehee
et al., 2012). These results were further substantiated by
EEG recordings showing post-training improvements in early
visually evoked components over occipital electrode sites
(Pourtois et al., 2008; Censor et al., 2009; Bao et al., 2010)
and electrophysiological recordings in non-human primates
linking behavioral performance with improvements in neuronal
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FIGURE 5 | Effects of perceptual learning on the mean latency and amplitude of the P1, N1-P2 complex, and N2 components in the trained condition as function of
contrasts (i.e., ERP-dependent CRF). (A,D) CRFs for P1 latency and amplitude. (B,E) CRFs for N1-P2 complex latency and amplitude. (C,F) CRFs for N2 latency
and amplitude. For the latency CRF (A–C), training lead to c50 improvement for both the P1 and N1-P2 complex, and c50 and response increase for N2. For the
amplitude CRFs (D–F), training led to c50 improvement and multiplicative response increase for P1, and multiplicative response and baseline increase for N1-P2
complex.

sensitivity in primary sensory areas (Ghose et al., 2002; Hua
et al., 2010; Yan et al., 2014). In the current study, we
observed contrast-dependent gain change both in the latency
and amplitude of early P1 component, which resembles a
previous single-unit study that recorded the responses of V1
neurons in cats and found that training increased neuronal
contrast gain (Hua et al., 2010). P1 is a visually evoked
exogenous response that reflected the encoding of sensory
information in visual cortex (Voorhis and Hillyard, 1977;
Gonzalez et al., 1994; Woldorff et al., 1997; O’Shea et al.,
2010; Souza et al., 2013). Moreover, we found there is little
improvement in the latency and amplitude of P1 at the location
and eye change control conditions, which is also indicative
of learning specificity. These findings were confirmed by the
behavioral result of CSF measurements, i.e. magnitude of
AUCSF improvement in the training location was larger than
untrained conditions.

In contrast, there are also studies proposed that learning could
be explained by selective reweighting of sensory information
readout (Dorsher and Lu, 1998, 1999; Petrov et al., 2005; Liu
et al., 2010), changes in attention and/or decision-making areas
(Xiao et al., 2008; Zhang et al., 2010, 2013; Wang et al., 2012),
or changes in both the sensory coding and the communication
between the visual and the decision-making related areas (Chen
et al., 2015, 2017). Interestingly, in our study, model-based
analysis also revealed mechanisms of both response and baseline
improvements at later stages. N1 reflects selective attention
to basic stimulus characteristics and intentional discrimination
processing (Näätänen et al., 1982; Luck et al., 2000; Vogel
and Luck, 2000); P2 may reflect stimulus classification, and its
amplitude increases with the stimulus complexity (Näätänen
et al., 1982; Pernet et al., 2003; Crowley and Colrain, 2004;
Potts, 2004); Late negative N2 has been associated with high-level
decision-related processing and task demands (Johnson, 1989;
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Duncan et al., 1994; Mangun and Hillyard, 1995; Key et al., 2005).
The response increment clearly indicates stimulus-independent
effects of training on the latency of N1-P2 complex and N2
(Luck et al., 2000; Vogel and Luck, 2000; Pernet et al., 2003;
Potts, 2004). The additive shift on the amplitude of N1-P2
complex ensures the effect that post-training responses will be
higher than pre-training responses. These stimulus-independent
improvements might reflect a top-down effect of training, such as
decision and attention modulation on later stimulus processing
stages. Also, we found significant improvement in the latency of
N1-P2 complex and N2 at the spatial frequency, location, and
eye transfer conditions. These results indicate unequal training
effects across neuronal processing stages and the extent to which
training transfers may depend on the specific stage of information
processing. Using a motor training paradigm, Garner et al.
(2015) also found transferability of training benefits was different
across ERP components, i.e., N2 showed increased amplitudes
and reduced latencies for both trained and untrained stimuli,
while the onset of stimulus-locked lateralized readiness potential
reduced only for the trained stimuli.

The multistage model could explain the existing divergent
findings in perceptual learning (Sasaki et al., 2013; Shibata et al.,
2016; Maniglia and Seitz, 2018). In accord with the multi-stage
model, recent work in non-human primates found that V4 and
the posterior inferior temporal (PIT) cortex both changed after
training on an orientation discrimination task (Adab et al.,
2014). Chen et al. (2015) has reported that training of a motion
direction discrimination task is associated with changes in both
V3A and connectivity between V3A and IPS. After training on
a motion detection task, Shibata et al. (2016) found that the
response changes in V3A were specific to the trained direction,
independent of whether subjects performed the training task
actively or only passively exposed to the stimuli, and significant
response changes in V1 and the intraparietal sulcus (IPS) were
found only when subjects performed the trained task on the
trained motion stimulus, providing direct evidence for their two-
plasticity model. Similarly, our results indicate different forms of
experience-dependent plasticity: contrast-gain change in early P1
component and response gain/baseline increments in later N1-P2
complex and N2 component. Earlier ERP components might be
more related to the physical properties (e.g., contrast) of stimuli
which reflects the change of early sensory/feature processing
stages, while later components were presumably modulated by
top-down signals, which reflect the improvement in higher-level
processing stages (Voorhis and Hillyard, 1977; Johnson, 1989;
Duncan et al., 1994; Gonzalez et al., 1994; Woldorff et al., 1997;
Luck et al., 2000; Vogel and Luck, 2000; Pernet et al., 2003; Potts,
2004; Key et al., 2005).

A recent ERP study also found significant changes in
both early and late ERP components following training on
a texture discrimination task (TDT) (Ahmadi et al., 2018).
Specifically, they found a decrease in the C1 but not P1
amplitude, a decrease in both N1 amplitude and latency,
and a significant increase in the P3 amplitude after training.
In the current study, we found contrast detection training
reduced the latency and increased the amplitude in both
early and late ERP components, with different characteristics

of contrast dependence and different underlying mechanisms
explained within a quantitative modeling framework based on
CRF measurements. The discrepancy was likely due to different
training tasks and procedures used in the two studies. For
example, Ahmadi et al. (2018) recorded ERPs while subjects
performed the TDT at Session 1 and Session 2, with two full
nights of sleep between sessions. Here we trained subjects on
a contrast detection task for ten consecutive days and recorded
ERPs during pre- and post-training tests.

We didn’t observe any significant C1 in our subjects. C1 is the
earliest visual ERP component and is thought to be generated
by neurons in V1 (Foxe and Simpson, 2002; Russo et al., 2003).
There are three possibilities: (1) C1 is more vulnerable and
difficult to be identified because of the specific orientation and
folding of calcarine sulci of individual subjects (Kelly et al., 2008).
(2) In order to measure ERP-based CRF, a high proportion of low
contrast stimuli was involved in the current study (e.g., 0, 4.26,
8.90, 18.61, and 38.90% Michelson contrasts), which might not
be able to elicit the subtle C1 effects or were overlaid by large
individual differences in the functional anatomy of early visual
cortex (Dougherty et al., 2003; Pourtois et al., 2008). (3) It usually
needs more trials to isolate C1. We averaged over 200 trials, less
than the previous studies (Ludwig and Skrandies, 2002; Russo
et al., 2003; Bao et al., 2010). For example, Zhang et al. (2015)
trained subjects with a similar peripheral (5◦ retinal eccentricity)
grating orientation discrimination task and successfully isolated
stimulus-related C1 epochs with a total of 450 ± 65 trials
for each condition.

Although a large number of studies failed to detect latency
change (Song et al., 2002, 2005; Pourtois et al., 2008; Bao et al.,
2010; Qu et al., 2010; Wang et al., 2010; Hamamé et al., 2011;
An et al., 2012; Zhang et al., 2013, 2015) and claimed that ERP
amplitude instead of latency was more sensitive to training (Qu
et al., 2010; An et al., 2012), a few studies reported training-
induced ERP latency change (Skrandies and Fahle, 1994; Ludwig
and Skrandies, 2002; Shoji and Skrandies, 2006; Garner et al.,
2015; Diaz et al., 2017). In the current study, we found that the
latency of both early and late components was shortened after
training while increased amplitudes were seen in P1 and N1-P2
complex but not N2 component. The decrements of ERP latency
might reflect improved efficiency of visual transmission from the
lateral geniculate to higher cortical areas. In line with this claim,
Mukai et al. (2007) found BOLD responses in putative attention-
control areas reduced but the functional connectivity between
frontoparietal areas and early visual cortex increased after
training, indicative of improved processing efficiency following
training. Note that we didn’t find changes in the amplitude of
N2 components, which might be due to response saturation at
this later stage.

In the current study, we found a mild improvement in visual
acuity (e.g., 1.0 line in the trained eye and 0.4 lines in the
untrained eye) following training on contrast detection. Visual
acuity is usually thought to reflect the frequency limits of the
visual system but the task, in fact, depends on a range of
spatial frequencies, including low-to-medium spatial frequencies
(Huang et al., 2007). Improvement of contrast sensitivity will
likely benefit visual acuity, as evident in early studies with
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normal subjects (e.g., Zhou et al., 2007) as well as suffered
population (e.g., Polat et al., 2004; Huang et al., 2008; Yan
et al., 2015). Previous psychophysical studies have found that
perceptual learning of contrast detection might decrease internal
noise and/or finely tune perceptual template (Huang et al.,
2009), with related brain area possibly down to LGN (Yu
et al., 2016). In the current study, we found significant ERP
changes in both early and late ERP components, which may
reflect neuronal changes in both the representation stage and
attentional processing (Voorhis and Hillyard, 1977; Luck et al.,
2000; Fabiani et al., 2007). Relations among different studies that
involved varied technological measures remains to be elucidated.
One limitation of the current study is the lack of a control
group that took pre- and post-training assessments (without
training), which might weaken the interpretation of visual acuity
improvement following training, although our focus was the
improvement in contrast sensitivity and associated early and
late ERP changes at the trained location following training and
within-subject comparison between relative changes in trained
and untrained conditions.

We also observed significant improvement in contrast
sensitivity at the upper right, the lower left location in LE (trained
eye), and the upper left location in RE (untrained eye). Our results
were in general consistent with previous findings (Sowden et al.,
2002; Yu et al., 2004; Casco et al., 2014), although there were
differences in experimental settings. For example, in order to
elicit a more reliable ERP response, we used a training frequency
of 5 cpd, which is much lower than that in earlier studies (e.g.,
Zhou et al., 2007; Huang et al., 2008; Wu et al., 2020). Some
have indicated greater improvement magnitude and transfer of
perceptual learning was related to higher spatial frequencies
(Wu et al., 2020). Another interesting finding is that training
based on lateral masking could be more effective than protocols
based on isolated Gabor stimuli to compensate for myopic vision
(Camilleri et al., 2014). Future studies are needed to investigate
whether a paradigm with higher spatial frequency training or
lateral masking would result in better learning effects.

Taken together, our findings indicate that visual perceptual
training leads to changes across different visual processing stages
and the extent of learning and transfers may depend on the
specific stage of information processing. Perceptual learning has
been considered to be effective in improving deficient vision in
clinical populations, e.g., amblyopia (Polat et al., 2004; Zhou
et al., 2006), myopia (Durrie and McMinn, 2007; Yan et al.,
2015), and presbyopia (Polat, 2009; DeLoss et al., 2015). On
the other hand, many visual diseases demonstrated decreased
amplitude and/or increased delay in both early and late ERP
components (Levi and Harwerth, 1978; Sokol, 1983; Hess et al.,
1985; Sengpiel and Blakemore, 1996; Koertvelyes et al., 2012).
The current study, together with others (Skrandies and Fahle,
1994; Song et al., 2005; Shoji and Skrandies, 2006; Pourtois et al.,
2008; Bao et al., 2010; Qu et al., 2010; Wang et al., 2010; Hamamé
et al., 2011; Zhang et al., 2013, 2015), provided a more integrated
way to understand visual rehabilitation and a potential method
to modulate the efficacy of visual training (e.g., neuro-feedback,
Saxby and Peniston, 1995; Hanslmayr et al., 2005; Vernon, 2005;
Shibata et al., 2011; Zoefel et al., 2011). Another interesting

open question is whether changes in both early and late ERP
components happen concurrently or sequentially with training.
Future studies should track brain activities during the course of
training to give a full theoretical framework for understanding
visual perceptual learning.
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