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Curative therapies or treatments reversing the progression of Parkinson’s disease (PD)
have attracted considerable interest in the last few decades. PD is characterized
by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine
levels. Current challenges include optimizing neuroprotective strategies, developing
personalized drug therapy, and minimizing side effects from the long-term prescription
of pharmacological drugs used to relieve short-term motor symptoms. Transplantation
of DA cells into PD patients’ brains to replace degenerated DA has the potential to
change the treatment paradigm. Herein, we provide updates on current progress in stem
cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly
highlight cell sources for transplantation and focus on cell assessment methods such as
identification of genetic markers, single-cell sequencing, and imaging modalities used
to access cell survival and function. More importantly, we summarize clinical reports
of patients who have undergone cell-derived transplantation in PD to better perceive
lessons that can be drawn from past and present clinical outcomes. Modifying factors
include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4)
stage of disease progression at the time of cell therapy, (5) surgical technique/practices,
and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical
trials around the world such as NYSTEM and CiRA to further guide us in the selection
of the most suitable parameters for cell-based neurotransplantation in PD.

Keywords: Parkinson’s disease, dopaminergic neurons, transplantation, stem cells, imaging modalities,
neuroimaging, clinical trials

INTRODUCTION

Parkinson’s disease (PD) is one of the most prevalent chronic neurodegenerative disorder
characterized by the selective, progressive loss of nigrostriatal dopaminergic (DA) neurons in the
substantia nigra pars compacta. The main hallmarks of PD include the presence of a-synuclein
positive Lewy bodies and neuroinflammation (MacGeer and McGeer, 2008; More et al., 2013)
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that extends across many areas of the central nervous
system (CNS), affecting the enteric and autonomic systems,
in particular (Goedert et al, 2013), causing impairments in
motor movements such as bradykinesia (slowed movements),
tremors, postural instability, and muscle rigidity. Furthermore,
PD patients have shown non-motor disease manifestations
such as rapid eye movement (REM), sleep behavior disorders,
depression, hyposmia, and constipation (Olanow et al., 2009).
Unfortunately, there are no curative therapies available to
modify or reverse the progression of the underlying disease
processes to date.

The current gold standard for PD treatment is through
the ingestion of levodopa, which has been approved by the
US Food and Drug Administration in the 1970s and has
continuously shown positive results in temporal amelioration
of PD symptoms (Fahn, 2003, 2006). However, long-term
exposure to levodopa results in a gradual decrease in drug
effectiveness and shorter periods of benefit, leading to
levodopa-induced dyskinesias (motor fluctuations), as well
as psychiatric and cognitive problems. Alternatively, surgical
strategies, such as deep brain stimulation (DBS), have shown
to alleviate PD motor symptoms (Siegfried and Lippitz,
1994; Limousin et al., 1995) and offer symptomatic relief
that cannot be controlled with medications (Alamri et al.,
2015). However, its application is not only limited to early-
to-mid PD stages but also loses efficacy after a few years
(deSouza et al., 2013).

In the last few decades, cell-based therapy using human stem
cells has made large strides in overcoming the abovementioned
limitations in PD treatment. Also known as regenerative
medicine, stem cell therapy is believed to replace diseased,
dysfunctional, or damaged tissue in hopes to restore lost neuronal
circulatory caused by focal degeneration of mesencephalic
dopaminergic (mDA) neurons. Specifically, neural progenies
from pluripotent stem cells (PSCs) are known to hold great
potential as a succeeding treatment for neurodegenerative
diseases (Hu et al., 2010; Kriks et al., 2011; Ma et al., 2012).
Today, DA neurons differentiated from stem cells are paving
the way as a new, alternative approach in the treatment of PD.
In this review article, we briefly highlight the major sources of
stem cells used in preclinical and clinical PD observations (have
been thoroughly reviewed in various articles, refer to Stoker,
2018). We focus on key methodologies currently applied in cell
assessment, imaging modalities, and also further discuss ongoing
stem cell-based clinical trials in PD. This also includes key
challenges that the field is encountering and the prospects of stem
cell therapy in PD.

CELL SOURCES

First, we briefly discuss the various types of stem cells currently
being used as a source for cell-based therapy in PD. We
also include the pros and cons of each cell line (Table 1),
followed by the characterization of graft quality through various
cell assessment methods (Cell Assessment of Differentiated DA
Neurons section).

Fetal Ventral Mesencephalic Cells

In the early 1970s, Olson and colleagues successfully transplanted
adrenal chromaffin cells and embryonic DA neurons into the
anterior chamber of the eye in rats and showed that the
viability of grafted neurons was best achieved using developing
embryonic neurons (Olson and Malmfors, 1970; Olson and
Seiger, 1972). Parkinsonism rat and monkey models grafted
with early gestational age dopamine-rich mesencephalic neurons
formed neurite protrusions and synthesize dopamine (Dunnett
etal., 1983; Brundin et al., 1986; Redmond et al., 1986; Stromberg
et al, 1986; Bakay et al, 1987). Furthermore, successful
integration of transplanted cells into the host brain neuronal
network was demonstrated through synaptic integration using
a rabies-based monosynaptic tracing method (Cardoso et al,
2018). Behavioral studies in PD rodents and primates with
human fetal DA neuron transplantation showed higher efficacy in
improvement of behavioral deficits as compared to conventional
adrenal medullary tissue transplants (Bjorklund and Stenevi,
1979, Perlow et al, 1979; Freed et al., 1981; Morihisa et al,
1984). Also, pioneering clinical studies in human fetal ventral
mesencephalic (fVM) transplantation into the caudate and
putamen of PD patients in Sweden, United Kingdom, and
United States reported moderate amelioration of PD symptoms
(Lindvall et al., 1988; Madrazo et al., 1988; Freed et al., 1990;
Freed et al,, 2001; Olanow et al., 2003). Moreover, normal
striatal F-DOPA uptake was 3-5 years post-surgery, including
gradual motor improvements that sustained up to 18 years
post-transplantation (Kefalopoulou et al.,, 2014). However, the
majority of successful cases were performed in PD patients under
the age of 60 (Ma et al., 2010). Whether graft-induced dyskinesias
are characteristics of neural transplantation has to be better
studied and analyzed (Freed et al, 2001; Hagell et al., 2002;
Olanow et al., 2003; Ma et al.,, 2010). Nonetheless, obtaining
as many as up to seven human fetal donors (aged 6-9 weeks
after conception) for each host raises many ethical concerns and
logistical challenges for a disease affecting millions of people
worldwide (Steinbeck and Studer, 2015; Barker and Consortium,
2019). Furthermore, the difficulty in preaccessing a cell type
before transplantation is a major challenge in standardization as
the heterogenicity of cell population within the graft is inevitable,
contributing to high variability in the degree of symptomatic
recovery. All in all, the additional risk in cell contamination
of unwanted cell types during tissue extraction hampered the
downstream translation of fVM transplantation as an alternative
therapeutic option.

Human Embryonic Stem Cells

Due to the abovementioned ethical controversies in utilizing
hfVM tissues for cell-based therapy (and other limitations),
human embryonic stem cells (hESCs) were identified as a
prospective substitute (Thomson et al., 1998; Reubinoff et al.,
2000; Barker, 2014). These subsets of pluripotent cells are located
in the inner cell mass of early embryonic blastocyst commonly
derived from in vitro fertilization (Evans and Kaufman, 1981;
Thomson et al., 1998) and hold the capability to generate into
a plethora of cell lines through a spontaneous differentiation
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TABLE 1 | Cells used in transplantation for Parkinson’s disease (PD).

Cell type Clinical trial

Advantages

Disadvantages

Fetal ventral mesencephalic
cells (fVM)

Embryonic stem cells (ESC)

Yes/ongoing (TRANSEURO;
NCT01898390)

Ongoing (European-based
STEM-PD, NYSTEM,
NCT02452723, NCTO3119636)

Induced pluripotent stem
cells (iPSC)

Yes/ongoing (CiRA)

Neural progenitor cells
(NPC)

Yes/ongoing (NCT03309514,
NCT01329926)

e Good long-term graft survival
post-transplantation

o Indefinite expandability

e Good graft survival post-transplantation

e Advancement in GMP-grade cells

o Indefinite expandability

o Easily accessible cell source

e Immunologically matching cells

e No need of immunosuppression treatment

o Multipotent cells
e Easy expansion and differentiation protocol
o Large quantity

e Unpredictable and limited supply of cell source
Ethical concerns

e Ethical concerns

e Possible risk of tumorigenesis

e Tissue rejection; pre- and post-operative
immunosuppression

e High heterogeneity of cell line between
individual cell line resulting in complex
procedures

e Low reprogramming efficiency

e High operative cost

e Time consuming

e Possible risk of tumorigenesis

e Invasive tissue collection step

e Limited proliferation

e Low graft survivability

o Limited proliferative ability

protocol in vitro (Itskovitz-Eldor et al., 2000; Lee et al., 2000;
Reubinoft et al,, 2001; Zhang et al., 2001). In the case of
neuroepithelial cell-derived DA neuron differentiation, cells
showed an increase in a multitude of cellular marker expression
for midbrain DA neurons with fiber outgrowth (Thomson
et al., 1998; Kawasaki et al., 2000; Kim et al., 2002) and
electrophysiologically active neurons that produced DA in an
activity-dependent manner (Yan et al, 2005). In later years,
it was identified that DA neurons unlike all other neurons
are generated from the midbrain floor plate. With newly
improvised DA neuron differentiation protocol (Fasano et al.,
2010; Kriks et al, 2011; Kirkeby et al, 2012), a significant
upregulation of midbrain DA neuronal markers was observed
along with recovery in motor defects in preclinical studies
(Kirkeby et al., 2012, 2017a; Grealish et al., 2014). Unfortunately,
key limitations lie in the difficulty in controlling the maturation
stage of embryonic cultures and cellular heterogeneity, which
may lead to negative outcomes in therapeutic applications
(Stewart et al., 2006; Roy et al., 2006; Cho et al., 2008; Koch
et al., 2009). Other caveats include the associated risk in
tumor generation and teratoma due to their high pluripotent
phenotype (Ben-Hur et al., 2004; Roy et al., 2006; Brederlau
et al., 2006; Sonntag et al., 2007; Yang et al., 2008). In 2001,
ethical concerns in hESC research resulted in a restriction on
federal fundings in the United States. Fortunately, this legislation
has been revoked by President Barack Obama in 2007. With
this advantage, New York Stem Cell Science Consortia at
Memorial Sloan Kettering Cancer Center conducted ongoing
projects such as the development of good manufacturing practice
(GMP) clinical-grade hESC-derived DA neurons for FDA
approval in future transplantation studies (refer to section “GMP
cryopreservation of cells”), optimization of cell purification to
enrich A9 type DA neurons, and also, active involvement in
strategical planning for clinical trial of hESCs in Parkinson’s
disease.'

Thttps://www.mskec.org

Human-Induced Pluripotent Stem
Cells (hiPSCs)

The field of stem cell research and regenerative medicine
was revolutionized in 2006 when human fibroblast cells were
successfully reprogrammed into pluripotent cell lines using four
transcription factors: c-Myc (or Nanog, Lin28), Oct3/4, Klf4, and
Sox2 (Takahashi and Yamanaka, 2006; Takahashi et al., 2007; Yu
et al., 2007). Reprogrammed iPSCs have been a highly attractive
cell source as they have the characteristics of hESCs (in terms
of morphology and genetic profile) (Fairchild, 2010; Phanstiel
et al, 2011), and they have a relatively simpler extraction
process. Tissue collection is non-invasive as host cells from skin
fibroblast (Pulecio et al., 2014), peripheral blood mononuclear
cells, and umbilical cord mesenchymal cells (Park et al., 2008;
Senju et al, 2011; Biju et al, 2013; Qin et al., 2013) could
be used to differentiate into patient-specific neurons in vitro
(Soldner et al., 2009; Beevers et al., 2013; Eigentler et al., 2013;
Sison et al., 2018). This would also avoid allogenic recognition
and ethical concerns (Takahashi and Yamanaka, 2016). In PD
studies, the quality of iPSC-derived DA neurons was highly
similar to that of hESCs (Cooper et al., 2010; Doi et al., 2014;
Kikuchi et al., 2017; Lehnen et al., 2017), and human leukocyte
antigen (HLA)-matched allogeneic neural transplantation into
monkeys increased the efficacy of cell survival and function
(Morizane et al., 2017). Animal studies demonstrated successful
amelioration of PD symptoms resulting from iPSC-derived
DA neuron transplantation (Wakeman et al, 2017). Further
refinement and characterization are necessary to achieve precise
cell fate conversion of reprogrammed cells. Similar to ESCs,
it is important that minimal manipulation is made during
reprogramming prior to cell delivery.

GMP Cryopreservation of Cells

The generation of good manufacturing practice (GMP)-
compliant, deliverable midbrain DA (mDA) progenitors/neurons
optimized for cell-based therapy for PD is a major challenge.
Currently, a diverse collection of clinical-grade hESC lines are

Frontiers in Neuroscience | www.frontiersin.org

October 2020 | Volume 14 | Article 558532


https://www.mskcc.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Jang et al.

Stem Cell Therapy in PD

available as starting material to generate GMP-compliant mDA
progenitors/neurons. In fact, GMP compliant differentiation
protocols and reagents have been successfully applied to generate
GMP mDA neurons (Liu et al., 2013; Peng et al., 2014).

In comparison, the availability of clinical-grade iPSCs is
relatively lesser due to the lack of technology that involves
complex reprogramming methodologies. Major hurdles of the
clinical translation of mDA cells therapy include (i) quality
control of the identity, safety, and efficacy of cell product in
a consistent and real-time manner, (ii) determination of the
precise time points at which DA precursors/neurons can be
cryopreserved and banked without affecting its’ quality, (iii) good
postthaw viability of mDA cells, and (iv) characteristics and
functionality of the population of cells should have minimal
to no alterations after thawing. XCell Science has generated
GMP-compatible authentic DA neurons, which are functional
when transplanted into PD animal model (Peng et al., 2014)
where cells were cryopreserved at day 14 after neuronal stem
cell (NSC) stage. Similar studies were also reported by Cellular
Dynamics International using more mature mDA cells in
postmitotic stage (Wakeman et al., 2017). Successful generation
of GMP-grade cryopreserved cells would allow for storage of a
large batch of DA neurons and also increase the flexibility in
operational schedule organization without the dependence on
GMP-manufacturing site.

CELL ASSESSMENT OF
DIFFERENTIATED DA NEURONS

Understanding the key type of DA neurons required to achieve
downstream restoration of PD pathology is essential. The
mesotelencephalic DA system in the midbrain contains two
main groups: the A9 neuronal clusters of the nigrostriatal DA
pathway located in the zona compacta, the substantia nigra
involved in the control of posture, and the A10 neurons located
in the ventromedial mesencephalic tegmentum that regulates
the locomotor activity and emotional behavior (Dahlstroem
and Fuxe, 1964; Anden et al.,, 1966; Ungerstedt, 1971; Lindvall
and Bjorklund, 1974; Pijnenburg et al., 1976; Papp and Bal,
1986). Dysfunction of the nigrostriatal system has been linked
to Parkinsonism and later to schizophrenia, drug addiction, and
depression (Robinson and Berridge, 1993; Meyer-Lindenberg
et al., 2002). Differences between the two DA cell populations
have been observed in neurochemistry and in spontaneous
neuronal firing (Grenhoff et al., 1988; Wolfart et al, 2001;
Neuhoff et al., 2002). More importantly, A9 neurons display
significantly enhanced levels of neuromelanin pigmentation as
compared to other dopamine-producing neurons (Mann and
Yates, 1983; Hirsch et al., 1988; Gibb, 1992; Kastner et al,
1992). This could account for the association of early loss of A9
DA neurons in Parkinson’s disease with increased vulnerability
upon disease progression with the relative preservation of
A10 DA neurons (Hirsch et al., 1988; German et al., 1989;
German et al.,, 1992; Damier et al., 1999; Halliday et al., 2005;
Alavian et al., 2008).

Generally, stem cells are differentiated into specific nigra A9
DA neurons in large quantities prior to PD transplantation.
This step has been thoroughly reviewed by many articles such
as in Fan et al. (2020) and, thus, will not be further discussed
here. However, we focus on developments in technology in cell
assessment of differentiated DA neurons.

Assessment of the Efficacy of Cell
Transplants With Immunostaining
Characterization

Prior to stem cell transplantation, it is important to be able to
fully characterize differentiated cell types to avoid heterogenicity
of cell population (also known as cellular contamination).
Previous studies have shown that transplantation of fetal SN-A9
DA neurons suffices the requirement for striatal reinnervation
and recovery of PD-like behavioral observations (Grealish
et al,, 2010). However, tumor formation (Roy et al, 2006;
Brederlau et al., 2006; Elkabetz et al., 2008; Doi et al., 2012)
and development of graft-induced dyskinesia could arise from
the high heterogenicity of serotonergic neurons (Carlsson
et al, 2007; Politis et al, 2010). As cells are normally
transplanted as immature progenitor cells, developing methods
that can characterize and predict its functional maturation
and therapeutic efficacy is crucial. Hence, to circumvent these
limitations prior to proceeding into clinical trials, methods to
isolate homogenous population of DA progenitor cells have
been closely evaluated (Fukuda et al., 2006; Pruszak et al., 2009;
Jonsson et al., 2009; Ganat et al., 2012; Sundberg et al., 2013).
This includes developing meaningful quality control assays to
assess cell type to avoid having heterogeneous mixtures of cells
(includes phenotypes and degree of maturity) and batch-to-
batch variation. The quality of differentiated mesencephalic A9
DA neurons that represent those in the substantia nigral para
compacta or into immature progenitor cells is vital to determine
the therapeutic efficacy of cell transplantation in the Parkinsonian
brain. It is well understood that the orchestration of specific gene
expression patterns is highly correlated to DA cell differentiation
and survival. Therefore, the establishment and determination of
specific gene expression markers have been used to positively
characterize differentiated cells in vitro.

In the case of mDA progenitor neuron specifications, positive
gene expression of common transcription factors FOXA2,
LMXI1A, and OTX2 and negative markers (non-neural) such as
Afp, Gata4, and Brachyury have been quantitatively analyzed
(Chung et al., 2009; Lin et al., 2009; Jaeger et al., 2011; Kriks
et al,, 2011; Kirkeby et al., 2012; Salti et al.,, 2013; Doi et al,
2014). More importantly, the upregulation and downregulation
of these markers at a given stage in vitro governs the efficiency
of cell fate determination. Unfortunately, these markers have
been shown to coexpress in the diencephalic progenitor cells of
the subthalamic nucleus (STN) (Kee et al., 2017). Furthermore,
the expression of the positive genetic marker for DA neurons,
tyrosine hydroxylase (TH), a rate-limiting enzyme in dopamine
synthesis (Daadi and Weiss, 1999; Sonntag et al., 2004; Kirkeby
et al., 2017a), and the levels of GIRK2 have also been observed
in many cell types in vitro (Thompson et al., 2005; Kirkeby et al.,
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2012; Reyes et al., 2012; Grow et al., 2016). Moreover, common
positive markers used to isolate high-quality DA progenitor cells
include EN1 and SPRY1 (Simon et al., 2001; Alberi et al., 2004;
Kirkeby et al., 2017a); Nurrl (Le et al., 1999); FOXA2, LMX1B,
and MSX1 (Andersson et al., 2006; Chung et al., 2011), and the
bicoid-related homeodomain factor Ptx3/Pitx3 (Hargus et al.,
2010). It is noteworthy that some discrepancies have been found
with the requirement for the presence of floor plate-specific cell
surface marker CORIN expression (Ono et al., 2007; Chung et al.,
2011; Kriks et al., 2011; Kirkeby et al., 2012, 2017a; Doi et al., 2014;
Arenas et al., 2015; Fan et al., 2020). A more recent study has
identified a cell surface marker integrin-associated protein (IAP,
CD47) as a positive marker for FOXA2-positive DA progenitor
cells (Lehnen et al., 2017).

While these positive markers are required to narrow down
the search for pure DA progenitor cells, negative markers such
as Oct3/4, PAX6, and SOX1 for other midbrain neurons act as
good controls to prevent introducing contamination with other
neuronal subtypes during sorting. Last, terminal differentiation
of DA neurons post-transplantation can be identified by the
expression of neurotransmitter phenotype markers, namely, TH,
dopamine transporter (DAT), Vmat2, Girk2, and Calbindin
(Di Porzio et al, 1990; Sgado et al, 2006). It is crucial to
take into consideration the wide genetic variation of iPSCs,
which may harbor a large spectrum of genetic variation and
even retain donor-specific gene expression pattern depending
on multiple factors, such as the number of passages of the
lineage or transcriptional factors introduced to induce cell
differentiation (Rouhani et al., 2014; Thomas et al., 2015;
Burrows et al., 2016; Carcamo-Orive et al., 2017). Nonetheless,
growing evidence strongly suggests the need for heightened
stringency in cell type evaluation. This is particularly important
to avoid incomplete differentiation of cells, which could result
in undesired reprogrammed cell lineages affecting functional
deficits when transplanted into PD models (Park et al., 2005;
Grow et al., 2016; Kirkeby et al., 2017a).

Single-Cell RNA-Seq to Evaluate the
Quality of Cells

More recently, high-resolution analyses of cell type specificity
such as single-cell transcriptomic analyses of neuronal
populations of induced stem cells have pathed its way to
become a new tool to increase the specificity during DA neuron
extraction. This method would allow gene expression profiling
of individual cells to better understand population heterogeneity
and to distinguish between distinct cell subpopulations to
increase the purity of desired cell lines (Poulin et al., 2014;
La Manno et al., 2016; Reid and Wernisch, 2016; Lang et al,,
2019; Tiklova et al., 2019). However, to achieve this, a specific
set of cellular and gene regulatory network contexts have to be
determined (as mentioned in the Assessment of the Efficacy
of Cell Transplants With Immunostaining Characterization
section). Although the presence of the PITX3 gene expression
in adult mDA neurons suffices the criteria (Smidt et al., 1997),
PITX3 was later shown to be present in both TH-positive and
TH-negative cells (Tiklova et al,, 2019). In the same study,
single-cell RNA sequencing (scRNAseq) analyses were used to

distinguish between several mDA subtypes with gene targeting.
Moving forward, providing key proof-of-concept in utilizing
scRNAseq as a tool for quality control would be the future for
cell replacement therapies.

Assessment of the Efficacy of Cell
Transplants With Imaging

Last, concurrent with the high demand for the optimization
of cell graft visualization in PD, growing emphasis has been
placed on enhancing the sensitivity and precision of the
spatiotemporal resolution of functional neuroimaging. En route
to successful cell transplantation as a therapeutic regenerative
method for Parkinson’s disease, neuroimaging techniques have to
be employed for better patient care. Some key features required to
elucidate the therapeutic efficacy of transplanted cells for clinical
diagnostics are (1) innervation, (2) survival, (3) differentiation,
and (4) functional biochemistry composition. Furthermore, it
is crucial that these imaging techniques are time efficient, safe,
non-invasive, and allow repeated measures in an individual to
determine longitudinal post-operative progression in patients
with cell transplantation (Barrow et al., 2015; Ramos-Gomez
et al., 2015). In this section, we summarize the pros and cons of
current imaging modalities used in tracking cell grafts in PD and
their respective biomarkers (Table 2).

Magnetic resonance imaging (MRI) is a popular method for
examining brain tissue morphology that uses strong magnetic
fields coupled with contrast agents such as paramagnetic
contrast agent (Gadolinium [III] [Gd**], Manganese [Mn?*]),
perfluorocarbons, or superparamagnetic iron oxide (SPIO)
despite its challenges in differentiating tissues with structures that
naturally emits low MRI signals like bones. Its biggest advantage
is its superior spatial resolution, non-invasiveness, and relatively
cost efficiency compared to other neuroimaging methods
discussed below. Various lines of evidence strongly suggest the
reliability of MRI in visualizing prelabeled transplanted cells
such as ESCs (Sykova and Jendelova, 2007), fetal rat cortical
cells (Hawrylak et al., 1993), and fetal striatal tissues (Norman
et al., 1992) in rats. Furthermore, MRI has been used to evaluate
edema and inflammation in tissues surrounding cell-transplanted
sites in mice and primates (Anderson et al., 2005; Iwanami
et al., 2005). It is important to note that false MRI signals may
result from the residual build-up of SPIO nanoparticles released
from dead transplanted cells and engulfed by macrophages
and activated microglia (Amsalem et al.,, 2007; Liu and Frank,
2009; Cupaioli et al., 2014; Ramos-Gomez and Martinez-Serrano,
2016). Additionally, cells prelabeled with contrast agents prior
to transplantation may show diluted and faded contrast over
time as cells proliferate within the transplanted site, which
may lead to a reduction in signal. Finally, MRI technology
is predominately used in multimodality neuroimaging of cell
transplantation by combining both structural and functional
readouts for the improved refinement of clinical diagnostics. To
this end, it could be coupled with the high sensitivity but low-
resolution bioluminescence imaging (Tennstaedt et al., 2013),
an economical and non-invasive technique using enzymatic
chemiluminescence that allows full temporal live tracking of
viable transplanted grafts.
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TABLE 2 | Imaging modalities used in cell transplantation for PD.

Modality

Purpose

Biomarkers

Measure

Advantages

Disadvantages

Pre-clinical

Clinical

Magnetic resonance
imaging (MRI)

Single-photon emission
computed tomography
(SPECT)

Positron emission
tomography (PET)

Structural changes of
brain tissue (i.e.,
cerebral atrophy)

Integrity of nigrostriatal
dopaminergic
pathways (presynaptic
function of striatal
neurons)

Functional readings of
dopaminergic and
non-dopaminergic
systems in relation to
pathogenesis and
pathophysiology of PD

Para-Gadolinium (Ill)
(Gd®+)/Manganese
(Mn2+) OR
Superparamagnetic
iron oxide (SPIO)

123|_N-w-fluoropropyl-
2B-carbomethoxy-3p-
(4-idophenyl)
nortropane (12%1-FP-
CIT/123|-ioflupane)/
123I-IPT

['8FIFDOPA/
["8F]Fallypride/
['8FFBCTT/

[ C]-raclopride/
['"CIDASB/ [ CIPE2l/
["CICFT [''CIDTBZ
[""CIPK1119/
[''C]-DAS

Gray matter volume OR
Neuronal activity

Binds to striatal
dopamine transporters
(DAT)

Aromatic amino acid
decarboxylase

(AADC —dopamine
synthesis capacity and
storage)/DA release
(binds to striatal
post-synaptic D2
receptors)/ 5-HT
transporter
(Pre-synaptic 5-HT
terminal integrity and
detection for
serotoninergic neurons)

o Repetitive
measurements on the
same individual

o Full temporal profile of
cell dynamics

e 1 Tissue contrast

e Microstructural analysis

e Biodegradable labels
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2015; Malloy et al.,
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etal., 2017
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Single-photon emission computed tomography (SPECT) is a
type of nuclear imaging technique that utilizes specific gamma-
emitting isotopes (compounds derived from cocaine that bind
to the dopamine transporter) to analyze the integrity of the
nigrostriatal DA pathway in PD (Son et al, 2016). SPECT
biomarkers allow for the detection of presynaptic neuronal
degeneration (Marshall and Grosset, 2003) and D2-type post-
synaptic receptor density (Thobois et al., 2001). The clinical
utility of such metabolic and neurochemical changes in PD is
reviewed by Wang et al. (2012). To improve the diagnostic
accuracy of SPECT imaging, current studies have employed
the combined evaluation of both pre- and post-synaptic
measurements through striatal dopamine transporters (DAT)
and dopamine D2 receptor analysis, respectively (Koch et al,
2007). Further refinements must be made for SPECT imaging
modality to be able to differentiate diseases with impairments
in presynaptic DA neuronal survival such as PD, progressive
supranuclear palsy, multiple system atrophy, and others (Bajaj
et al,, 2013). Also, potential leakage of radiotracers into adjacent
cells resulting in diluted signals during cell proliferation has to be
rectified. More importantly, the optimal concentration of tracers
must be determined to avoid tissue damage due to exposure to
toxic radioactive reagents. One disadvantage of this technique is
its inability to examine cell survival and function.

Positron emission tomography (PET) is also a common
imaging tool that employs specific radionuclides to elucidate the
functional consequences of transplantation on the DA system
in the brain, such as receptor distribution, metabolic activity,
and inflammation (Visnyei et al., 2006). The measurement of
aromatic L-amino acid decarboxylase activity using ['8FJFDOPA
is regarded as the gold standard to examine DA function and
disease severity in Parkinson’s disease (Morrish et al., 1996;
Punal-Rioboo et al., 2009), also shown in PD non-human primate
model (Muramatsu et al., 2009; Emborg et al., 2013; Hallett
et al., 2015) and clinical reports (Lindvall et al., 1990; Peschanski
et al., 1994; Piccini et al., 2000, 2005; Ma et al., 2010) (refer to
citation in Table 2). PET images can also be used in conjunction
with SPECT data to further evaluate the negative association
between striatal DAT and motor severity (Shih et al., 2006; Wu
et al., 2014). Interestingly, recent clinical studies have shown
that ['! C]PE2I has higher predictive value and sensitivity toward
the differential detection of motor impairments than ['8F]DOPA
imaging; hence, ['! C]PE2I could be a prospective biomarker to
investigate novel interventions (Fazio et al., 2015; Li et al., 2018).
PET would be advantageous for studying the early maturation of
cells transplanted in vivo and for follow-up examinations months
after cell transplantation. A comprehensive and concise review
on the development of functional neuroimaging is discussed in
the cited works (Zheng et al., 2017; Helmich et al., 2018).

With no doubt, one of the most understudied limitations
in neuroimaging is in deciphering the complexity of
neuropathological overlap and clinical heterogeneity in the
progression of individual neurological diseases. Improvements
in bioimaging tools, such as the identification of specialized
biomarkers for specific cell types to evaluate differential
functional signatures, are important to circumvent the high
level of variation in the prognosis of PD and its management by

patients. In addition, the paucity of imaging modalities available
for quantitation and of their respective analytical tools continues
to hinder the further development of cell-based therapeutics
toward clinically competitive treatments for PD. As discussed
above (also refer to Table 2), we cannot rely on a single imaging
technique for clinical diagnosis especially post-transplantation;
thus, researchers are actively searching for the development of
multimodality imaging (Waerzeggers et al., 2008) along with
the identification of novel biomarkers and tracers to escalate
the accuracy of post-operative care. A better understanding of
neuroanatomical and pathophysiological processes would be
highly advantageous for cell-derived therapeutics.

CLINICAL TRIALS FOR STEM
CELL-DERIVED DA NEURON
TRANSPLANTATION IN PARKINSON’S
DISEASE

Historically, fVM cell transplantation showed varied outcomes
in human clinical trials (Table 3) (Freed et al, 2001;
Olanow et al, 2001, Olanow et al, 2003, Redmond et al,
2001; Barker et al., 2013). A double-blind study of bilateral
injection of fVM transplantation and sham surgery into the
putamen was first performed in 19 PD patients by Freed
and colleagues in 2001 (Freed et al., 2001). Interestingly, only
younger age groups showed clinical improvements compared
to the sham control (Freed et al, 2001). Using available data
extracted from individual clinical papers cited in Table 3, we
have performed systematic statistical analysis of the clinical
outcomes of PD patients with fVM transplantation against
various parameters, namely, age of onset (old, > 40 years
vs. young, < 40 years), disease stage (severe vs. mild), and
disease duration (long, > 10 years vs. short, < 10 years).
The fold change of PET readings post-transplantation from
the baseline reading of individual patients was used to access
graft survival. We show that graft survival is independent
of the age of disease onset (Figure 1A) but is dependent
on variations in disease stage (Figure 1B) and the length of
disease duration (Figure 1C), where better graft survival was
observed in mild stage PD and patients with shorter disease
duration (< 10 years). Moreover, we used the Unified Parkinson
Disease Rating Scale (UPDRS) motor scores to examine clinical
improvements post-transplantation of PD patients in various
factors (Figure 2). We have demonstrated that in all three
parameters (as mentioned above), PD patients with fVM
transplantation have shown significant clinical improvements
(correlated to the decrease in UPDRS motor scores) post-
transplantation. Also, comparison between post-transplantation
within each parameter (i.e., old vs. young or severe vs. mild or
long vs. short) showed no significant differences. In summary,
although clinical improvements can be observed throughout
the wide spectrum of PD patients with fVM transplantation
(Figure 2), the optimal condition with the most potential
could be seen in mild stage PD patients with short disease
duration (Figure 1).
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TABLE 3 | Summary of clinical studies in cell transplantation for PD.

Year of Patient info Results No. of Lewy body in References
Publication patients  grafted cells
Age Disease Disease duration Follow-up Cell Graft Clinical
stage (years) (years) type survival improvement
1989 48-55 Severe 14 0.5 VM N.A. No 2 N.A. Lindvall et al., 1989
1990 49 Severe 13 0.5 VM Yes Yes 1 N.A. Lindvall et al., 1989
1992 30-43 Severe 6 2 VM Yes Yes 2 N.A. Widner et al., 1992
1992 N.A. Severe N.A. 1.5 VM Yes Yes 4 N.A. Spencer et al., 1992
1992 50-60 Mild 8-11 1 VM Yes No 2 N.A. Sawle et al., 1992
1994 N.A. N.A. N.A. 3 VM Yes Yes 2 N.A. Lindvall et al., 1994
1994 N.A. Severe N.A. 1,1.5 VM Yes Yes 2 N.A. Peschanski et al., 1994
1995 39-61 Severe 8-22 0.5 VM Yes Yes 4 N.A. Freeman et al., 1995
1995 59 Severe 8 1.5 VM Yes Yes 1 N.A. Kordower et al., 2008
1997 43-58 N.A. 5-12 1-6 VM Yes 4 Patients 6 N.A. Wenning et al., 1997
effective
1999 69 Severe 9 10 VM Yes Yes N.A. Piccini et al., 1999
2000 41-68  Mild-Severe 11-15 1.5-2 VM Yes Yes N.A. Brundin et al., 2000
2001 34-75 Severe 14 1 VM Yes Effective in 19 No Freed et al., 1990
younger
patients
2002 52.0 £ 7.0 Mild-Severe 119+22 11 VM N.A. Not clear 14 N.A. Hagell et al., 2002
2003 30-75 Severe N.A. 2 VM Yes Effective in 23 N.A. Olanow et al., 2003
milder patients
2005 541 4+9.2 Mild 13+£2 2 VM N.A. Not clear 9 N.A. Piccini et al., 1999
2005 59,69 N.A. 11,15 3-4 VM Yes Yes 2 No Mendez et al., 2008
2008 N.A. N.A. N.A. 9-14 VM Yes N.A. 5 No Mendez et al., 2008
2008 61 Severe 22 14 VM Yes Effective in 1 Yes Kordower et al., 1995
initial 10 years
2009 57 Mild 11 5 NPC Yes Effective in 1 N.A. Levesque et al., 2009
initial 3 years
2010 65 Severe N.A. 12,16 VM Yes N.A 1 Yes Lietal, 2010
2011 69, 65 Severe 14,12 22,12 VM Yes No, Yes 2 Yes Kurowska et al., 2011
2014 49,54 N.A. 10,12 18,15 VM N.A. Yes 2 N.A. Kefalopoulou et al., 2014
2016 59 N.A. 9 24 VM Yes Effective in 1 Yes Lietal, 2018
initial 14 years
2017 55 Severe 8 16 VM Yes No 1 Yes Kordower et al., 2017
2020 69 Severe 10 2 iPSC Yes Yes 1 N.A. Schweitzer et al., 2020

In line with our data, the high prevalence of long-term graft
survival with low to no immune response in the majority of
fVM recipients could be represented for future/ongoing stem
cell-based clinical trials as a basis for host tissue innervation
and reconnection to host DA circuitry. It is to note that
occasional appearance of graft-induced dyskinesia cannot be
attributed to cell transplantation as of date, as there are very
limited follow-up studies. Upcoming clinical studies must include
detailed surgical procedures, characterization of PD hallmarks
such as a-synuclein-positive Lewy bodies, ubiquitin expression,
and imaging analysis for F-DOPA uptake in graft region in
addition to clinical observations. It is believed that the differences
in quality and heterogeneity in the transplanted cells, patient
selection, and surgical methodologies could have been the reason
for failures in some trials. The current status of the TRANSEURO
trial (NCT01898390), a large collaboration between the European
Union multicenters of fetal nigral cell transplantation, which
started in 2012, has grafted 11 young patients with early-stage

PD in Cambridge, 2019, and will be subjected to clinical
observations for 36 months post-surgery, which is estimated to
be completed in early 2021.

With the improvement in the human DA neuron
differentiation protocol (Nolbrant et al., 2017), more authentic
midbrain DA neurons can now be derived from ESCs or
iPSCs in vitro. These more defined ESC/iPSC-derived DA
neurons show satisfactory therapeutic effectiveness in PD
animal models (Studer, 2017), which has led to new waves of
initiatives for cell transplantation in PD patients. Furthermore,
with ES-derived DA neuronal transplantation being equipotent
(Grealish et al., 2014) to that of the current gold standard for
PD cell therapy (Li et al., 2016), stem cells rather than fetal
neurons hold high expectation in the near future. However, we
must bear in mind that animal models cannot fully reproduce
human PD. Confounders, including aging, disease duration,
disease severity, diabetes, and depression, should be taken into
account when cell therapy is translated from preclinical models
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FIGURE 1 | Systematic analysis of various factors associated with clinical outcomes using positron emission tomography (PET) readings of Parkinson'’s disease (PD)
patients with fetal ventral mesencephalic (fVM) cell transplantation. Statistical comparison was performed on various parameters against fold change of PET readings
pre- and post-transplantation. (A) Age on onset: old (> 40 years) vs. young (< 40 years) PD patients. (B) Disease stage in mild and severe conditions. (C) Disease
duration: long (> 10 years) vs. short (< 10 years). Student t-test, *p < 0.05, **p < 0.001.
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FIGURE 2 | Systematic analysis of various factors associated with clinical outcome in fVM cell transplantation in PD patients using UPDRS motor scores. Statistical
comparison was performed on varying parameters against the Unified Parkinson Disease Rating Scale (UPDRS) motor scores of pre- and post-transplantation.

(A) Age on onset: old (> 40 years) vs. young (< 40 years) PD patients. (B) Disease stage in severe vs. mild condition. (C) Disease duration: long (> 10 years) vs.
short (< 10 years). Two-way ANOVA, Sidak’s multiple comparisons test, **p < 0.005, **p < 0.001.

to clinical trials (Aarsland et al., 2011; Athauda et al., 2017;
Henchcliffe and Parmar, 2018). Currently, ongoing clinical
trials of the GForce-PD Consortium include European-based
STEM-PD trial, NYSTEM trial, CiRA trial;* Cyto Therapeutics
Pty Limited founded trial (NCT02452723), and the Chinese
Academy of Sciences founded trial (NCT03119636) lead by
Qi Zhou. STEM-PD trial was designed to use GMP-grade
hESCs as the clinical cell source, employing full GMP-grade
production procedure (Kirkeby et al., 2017b), and transplanting
100,000 TH™ D16 mDA progenitors per graft as a target dose.
In contrast, CiRA was designed to develop clinical-grade DA
cell therapy from autologous iPSCs taken from PD patients
(Barker et al., 2017). More recently, iPSC-derived dopamine
progenitor cells have been bilaterally injected into a 69 year old
PD patient and have demonstrated signs of improvements in
motor assessment 24 months post-surgery (Schweitzer et al.,
2020). It is interesting to note that clinical improvements
were significantly associated with the right (second) surgical

Zhttps://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000038278

procedure than the left. One explanation would be the improved
procedural efficiency including shorter time taken from cell
harvest to implantation. Further double-blind studies will be
essential to better understand the full potential of iPSC-derived
dopamine cells in PD.

Notably, neural progenitor stem cells (NPCs) are an
alternative cell source for cell replacement strategy. These
multipotent cells can self-renew and differentiate into all mature
neural cells in the CNS in large quantities (Ribeiro et al., 2013).
The first autologous differentiated neural stem cell clinical trial
was conducted using tissue samples collected in the prefrontal
cortical and subcortical region along the trajectory of the
electrode implant prior to further expansion and differentiation.
The patient showed clinical improvements during the first
3 years post-transplantation with subsequent decline back to
baseline by the fifth year (Levesque et al, 2009). Ongoing
clinical trials sponsored by NeuroGenerations involves 12-
20 PD patients at the age of 35-85 years (Hoehn and Yahr
stage III or IV) with an estimated completion date by 2021
(NCT03309514, NCT01329926).
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Another factor we need to consider for PD cell transplantation
clinical trials is the patient stratification. Since aging-induced
BBB leakage can lead to infection and inflammation, age can
greatly compromise the survival of DA neurons. Moreover,
cell transplantation is usually less effective in patients with a
longer and more severe disease progression (Barker et al., 2017).
Discrepancies were also found in some patients with substantial
survival of grafted DA neurons but no beneficial behavioral
improvements (Barker et al., 2013, 2015a, 2017; Barker, 2014).
These observations possibly indicate the degeneration of other
brain systems, especially the post-synaptic component of the DA
system. Thus, DA neuron transplantation clinical trials initiated
by various organizations only include patients who 1) are younger
than 65 years old, 2) have a disease duration of less than 10 years,
and 3) are in the early stage of the disease (Kirkeby et al,
2017b; Studer, 2017; Takahashi, 2017). Moving forward, the
identification of these confounders would be helpful for clinicians
to be able to better stratify PD patients and suggest the most
suitable treatment strategy for each patient.

CONCLUSION AND FUTURE
DIRECTIONS

We have highlighted four different types of cell sources and
have addressed their pros and cons to better understand the
characteristics of individual cell types and have also provided
detailed analysis of the discrepancies observed in clinical
outcomes of PD patients. This also includes methodologies in cell
type specification and various imaging modalities. The emphasis
on cell line availability, quality, and ability to innervate into
host tissues, develop into functional A9 DA neurons, which
would efficiently repair the host DA system is of topmost
importance. Furthermore, long-term survivability for years after
surgery without graft-induced dyskinesia or immune rejection
by the host are some safety requirements and is the key to
successful translation into large-scale therapeutic application
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