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Neonatal intensive care units (NICUs) greatly expand the use of technology. There is
a need to accurately diagnose discomfort, pain, and complications, such as sepsis,
mainly before they occur. While specific treatments are possible, they are often time-
consuming, invasive, or painful, with detrimental effects for the development of the
infant. In the last 40 years, heart rate variability (HRV) has emerged as a non-
invasive measurement to monitor newborns and infants, but it still is underused.
Hence, the present paper aims to review the utility of HRV in neonatology and
the instruments available to assess it, showing how HRV could be an innovative
tool in the years to come. When continuously monitored, HRV could help assess
the baby’s overall wellbeing and neurological development to detect stress-/pain-
related behaviors or pathological conditions, such as respiratory distress syndrome
and hyperbilirubinemia, to address when to perform procedures to reduce the baby’s
stress/pain and interventions, such as therapeutic hypothermia, and to avoid severe
complications, such as sepsis and necrotizing enterocolitis, thus reducing mortality.
Based on literature and previous experiences, the first step to efficiently introduce HRV in
the NICUs could consist in a monitoring system that uses photoplethysmography, which
is low-cost and non-invasive, and displays one or a few metrics with good clinical utility.
However, to fully harness HRV clinical potential and to greatly improve neonatal care,
the monitoring systems will have to rely on modern bioinformatics (machine learning and
artificial intelligence algorithms), which could easily integrate infant’s HRV metrics, vital
signs, and especially past history, thus elaborating models capable to efficiently monitor
and predict the infant’s clinical conditions. For this reason, hospitals and institutions
will have to establish tight collaborations between the obstetric, neonatal, and pediatric
departments: this way, healthcare would truly improve in every stage of the perinatal
period (from conception to the first years of life), since information about patients’ health
would flow freely among different professionals, and high-quality research could be
performed integrating the data recorded in those departments.

Keywords: autonomic nervous system, vagus, newborns, preterm infants, neonatology, NICU,
photoplethysmography, HRV
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INTRODUCTION

The neonatology field is growing in complexity (Biban,
2010). In essence, newborns can show many comorbidities
associated with prematurity (WHO, 2016), labor complications
(Tribe et al., 2018), and maternal and perinatal stress
(Frasch et al., 2007; Babenko et al., 2015; Lobmaier
et al., 2020), whereas the neonatal intensive care units
(NICUs) are increasing the use of technology to better
take care of fetuses, newborns, and infants (Biban, 2010;
Chock et al., 2015).

However, many obstacles need to be overcome to efficiently
assess and manage infants’ conditions: distress, pain, and sepsis
need valid and reliable gauges to detect them before they
happen (Cremillieux et al., 2018; Rashwan et al., 2019), but
several procedures may be time-consuming (Jeng et al., 2000; Als
et al., 2005; Cremillieux et al., 2018), invasive, and painful with
short- and long-term negative consequences (Holsti et al., 2006;
Pillai Riddell et al., 2015).

In the last 40 years, heart rate variability (HRV) has emerged as
a reliable and non-invasive measure to monitor preterm and term
newborns (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996).
HRV evaluates the heart rate (HR) fluctuation—the variability of
the time intervals between successive heartbeats—, and during
the years, more and more techniques have appeared to improve
its analysis, from which several metrics can be extracted (Table 1;
Bravi et al., 2011; Thiriez et al., 2015; Javorka et al., 2017; Oliveira
et al., 2019b; Patural et al., 2019).

Several studies showed that HRV correlates with the
newborn’s stress and stress-related behaviors (Gardner et al.,
2018; Hashiguchi et al., 2020), and that it could predict the
baby’s overall wellbeing and future neurological development.
HRV could also accurately identify short- and long-term
complications, such as the risk of sepsis (Javorka et al., 2017;
Oliveira et al., 2019b; Kumar et al., 2020). HRV was also able to
reveal the impact of prenatal stress on fetal brain development
(Frasch et al., 2007; Lobmaier et al., 2020).

Despite these results, HRV is still underused in NICUs.
Although in the 1960s, one of the first evidences published was
about the alteration of HRV metrics preceding fetal distress
(Task Force of the European Society of Cardiology the North

Abbreviations: AI, artificial intelligence; AMP, amplitude fluctuations; ANS,
autonomic nervous system; AS, active sleep; BSG, ballistography; CAN, central
autonomic network; CAP, cholinergic anti-inflammatory pathway; CIMVA,
continuous individual multiorgan variability analysis; CNS, central nervous
system; COMP, complexity; CPAP, continuous positive airway pressure; CTG,
cardiotocography; ECG, electrocardiogram; fABAS, fetal autonomic brain age
scale; fECG, fetal electrocardiogram; fHRV, fetal heart rate variability; fMCG, fetal
magnetocardiography; FSE, fetal scalp electrode; GA, gestational age; HeRO, Heart
Rate Observation system; HIE, hypoxic–ischemic encephalopathy; HR, heart rate;
HRC, heart rate characteristics; HRV, heart rate variability; IUGR, intrauterine
growth restriction; ML, machine learning; NEC, necrotizing enterocolitis; NIPE,
newborn infant parasympathetic evaluation; PNS, parasympathetic nervous
system; PPG, photoplethysmography; QS, quiet sleep; PNS, parasympathetic
nervous system; PRSA, phase rectified signal averaging; PRV, pulse rate variability;
RSA, respiratory sinus arrhythmia; SIDS, sudden infant death syndrome; SNS,
sympathetic nervous system; SpO2, partial oxygen saturation; vPPG, non-contact
video-photoplethysmography.

American Society of Pacing Electrophysiology, 1996); to date,
some authors argued that there is a lack of understanding of the
meaning of HRV metrics in infants: in fact, HRV has been studied
especially in adults, and the autonomic nervous system (ANS)
behaves differently in newborns, especially in preterm infants
(Joshi et al., 2019b). Notwithstanding these contradictions, the
only successful example of integration of HRV in NICUs is the
Heart Rate Observation (HeRO) monitor developed by J. Randall
Moorman’s team. The HeRO analyzes bedside electrocardiogram
(ECG) in real-time and integrates various HRV metrics to
calculate the “HRC index,” which can predict the risk of sepsis
within 24 h in both preterms and very low birth weight infants
(Andersen et al., 2019; Kumar et al., 2020).

However, based on the available literature and on the potential
research to be developed, there is a need to further explore the use
of HRV in neonatology.

HRV may provide such useful insights since it correlates
with the ANS development and functioning. The ANS regulates
organic development and connects with the organism’s ability
to cope with stressors, as well as with cognitive and emotional
development (Thayer et al., 2012; Jennings et al., 2015; Schneider
et al., 2018; Oliveira et al., 2019b).

To be an innovative tool useful for neonatologists, HRV
measurement should rely on a technology that gives reliable
metrics with a clear clinical meaning. Harnessing the positive
experiences, such as the use of the HeRO monitor, it is paramount
to create a system that continuously records HRV and expresses
scores that could correlate with the baby’s clinical condition and
help monitor its evolution (Zhao et al., 2016; Hayano and Yuda,
2019; Pernice et al., 2019b; Kumar et al., 2020).

For this purpose, modern machine learning (ML) and artificial
intelligence (AI) algorithms could play a crucial role: through
their computational power, they could define models capable of
managing the complex physiological interactions between HRV,
ANS, and the whole organism, thus boosting our ability to predict
the infant’s prognosis. Indeed, we already have experiences about
the clinical usefulness of ML in both neonatology (Semenova
et al., 2018; Ostojic et al., 2020) and HRV analysis (Chiew et al.,
2019; Lin et al., 2020).

ML/AI algorithms could also integrate clinical data of different
hospital departments, i.e., obstetric, neonatal, and pediatric.
Indeed, free clinical data and medical devices sharing among the
departments involved in the perinatal care (from conception to
the first years of life) would allow clinicians to better understand
the prenatal and developmental factors underlying adverse
neonatal outcomes (e.g., brain injury) and to better treat them.

Therefore, the present paper aims to address the HRV
usefulness in neonatology to prospect it as an innovative tool
in the years to come. This focused review is divided into three
sections: (1) the first section describes briefly the HRV metrics
and examines the relationship between ANS and HRV in fetuses
and newborns; (2) the second section examines the technology
available in the NICU, how to monitor HRV efficiently, and the
usefulness of real-time HRV; and (3) the third and final section
will summarize the main findings and outline future perspectives
for the clinical use of real-time HRV in the neonatal field, with a
brief subsection about its usefulness in low-income countries.
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TABLE 1 | The most common HRV metrics (Hoyer et al., 2013, 2019; Uhrikova et al., 2015; Pichot et al., 2016; Massaro et al., 2017; Shaffer and Ginsberg, 2017; Herry
et al., 2019; Oliveira et al., 2019b; Patural et al., 2019; Frasch et al., 2020).

Metric Unit Definition

HR bpm HR (number of heart beats per minute)

Time-domain

SDNN ms Standard deviation of NN intervals

SDRR ms Standard deviation of RR intervals

SDANN ms Standard deviation of the average NN intervals for each 5 min segment of a 24 h HRV recording

SDNN Index ms Mean of the standard deviations of all the NN intervals for each 5 min segment of a 24 h HRV recording

NNx Number of adjacent NN intervals that differ from each other by more than x ms (e.g., 5, 20, 25, and 50 ms)

pNNx % Percentage of successive NN intervals that differ by more than x ms (e.g., 5, 20, 25, and 50 ms)

RMSSD ms Root mean square of consecutive RR interval differences

SDSD ms Standard deviation of consecutive RR differences

Frequency-domain

ULF Power ms2 Absolute power of the ultra-low-frequency band (≤0.003 Hz)

VLF Power ms2 Absolute power of the very-low-frequency band (0.0033–0.04 Hz)

LF Peak Hz Peak frequency of the low-frequency band (0.04–0.2 Hz for newborns and 0.04–0.15 Hz for infants)

LF Power ms2 Absolute power of the low-frequency band (0.04–0.2 Hz for newborns and 0.04–0.15 Hz for infants)

Nu Relative power of the low-frequency band (0.04–0.2 Hz for newborns and 0.04–0.15 Hz for infants) in normal units

% Relative power of the low-frequency band (0.04–0.2 Hz for newborns and 0.04–0.15 Hz for infants)

HF Peak Hz Peak frequency of the high-frequency band (0.20–2.00 Hz for newborns and 0.20–1.40 Hz for infants)

HF Power ms2 Absolute power of the high-frequency band (0.20–2.00 Hz for newborns and 0.20–1.40 Hz for infants)

Nu Relative power of the high-frequency band (0.20–2.00 Hz for newborns and 0.20–1.40 Hz for infants) in normal units

% Relative power of the high-frequency band (0.20–2.00 Hz for newborns and 0.20–1.40 Hz for infants)

LF/HF % Ratio of LF-to-HF power

VLF/LF % Ratio between very-low (0.02–0.08 Hz) and low (0.08–0.2 Hz) frequency band power

LFn Normalized power in the low-frequency band of the ECG spectrogram (0.04–0.2 Hz for newborns and 0.04–0.15 Hz for
infants), i.e., low-frequency power in relation to total power

HFn Normalized power in the high-frequency band of the ECG spectrogram (0.20–2.00 Hz for newborns and 0.04–0.15 Hz for
infants), i.e., high-frequency power in relation to total power

Total power (TP) ms2 Total power of the ECG spectrogram

Non-linear

S ms Area of the ellipse that represents total HRV

SD1 ms Poincaré plot standard deviation perpendicular the line of identity

SD2 ms Poincaré plot standard deviation along the line of identity

CSI % Cardiac Sympathetic Index—SD1/SD2

CVI Cardiac Vagal Index—log (SD1*SD2)

SVT Short-term variability of consecutive beat-to-beat data obtained through Poincaré analysis

LTV Long-term variation of consecutive beat-to-beat data obtained through Poincaré analysis

HRV Triangular Index Integral of the density of the RR interval histogram divided by its height

HRV Index Number of all RR intervals divided by the number of RR intervals at the highest point of the RR histogram

TINN ms Triangular Interpolation of the NN Interval Histogram—the length of the basis of the minimum square difference of the triangular
interpolation for the highest value of the RR histogram or the normalized width of the base of the RR histogram

Parseval Index Ratio between the square root of the sum of LF and HF powers and the value of SDNN

%DET Percentage of determinism of a time series from recurrence quantification analysis (RQA): it detects the predictability of
dynamical systems

ShanEn Shannon Entropy—uncertainty of a random variable

ApEn Approximate entropy, which measures the regularity and complexity of a time series

SampEn Sample entropy, which measures the regularity and complexity of a time series

MSEx Multiscale entropy at coarse graining level x

gMSE(x) bitnorm Generalized multiscale entropy at coarse graining level x of NN interval series

QSE Quadratic Sample Entropy

KLPE Kullback–Leibler permutation entropy

AC Acceleration capacity (detection of sequences of two successive RR beats that decrease) obtained through PRSA

DC Deceleration capacity (detection of sequences of two successive RR beats that increase) obtained through PRSA

(Continued)
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TABLE 1 | Continued

Metric Unit Definition

ACstx Acceleration capacity, slope, and step value at coarse graining level x

DFA α1 Detrended fluctuation analysis, which describes short-term fluctuations

DFA α2 Detrended fluctuation analysis, which describes long-term fluctuations

DFA αS Detrended fluctuation analysis, which describes short-term fluctuations

DFA αL Detrended fluctuation analysis, which describes long-term fluctuations

RMSS Root mean square from detrended fluctuation analysis, which describes short-term fluctuations

RMSL Root mean square from detrended fluctuation analysis, which describes long-term fluctuations

SDLE α Scale-dependent Lyapunov exponent slope

Skewness a.u. Skewness of NN interval series

AsymI Multiscale time irreversibility asymmetry index: it is the degree of temporal asymmetry and lack of invariance of the statistical
properties of a signal

D2 Correlation dimension, which estimates the minimum number of variables required to construct a model of system dynamics

THE ANS PHYSIOLOGY UNDERLYING
HRV AND ITS USE IN THE NEONATAL
FIELD

A Brief Introduction on HRV Metrics
From the work of the Task Force for HRV analysis in 1996, which
constitutes the foundation for the majority of the papers on HRV,
many metrics are developed to describe HRV, and they can be
classified into three categories: time-domain, frequency-domain,
and non-linear metrics (Table 1). These metrics can be obtained
from short-term (less than 10 min) or long-term ECG recording
(24 h) (Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology, 1996).

The time-domain metrics are considered to be the simplest
methods to extract, since they are directly based on the normal-
to-normal (NN) intervals or on the instantaneous HR extracted
from the ECG. The time-domain metrics are then calculated
through statistical or geometric methods. The statistical methods
consist in applying operations, such as mean, standard deviation,
or square root, on: the direct NN interval measurements, thus
obtaining metrics, such as standard deviation of RR (SDRR),
standard deviation of NN (SDNN), standard deviation of the
average NN (SDANN), and standard deviation of NN (SDNN)
Index, and the difference between NN intervals, thus obtaining
metrics, such as root mean square of consecutive RR interval
differences (RMSSD), NN50, pNN50, and pNN20 (Task Force
of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, 1996; Oliveira et al., 2019b;
Patural et al., 2019).

The geometric methods consist in transforming the NN
interval measurements into a geometric pattern, such as
the sample density distribution of the NN intervals (or
their difference), from which metrics, such as the triangular
interpolation of the NN (TINN), the HRV Triangular Index, and
the HRV Index, can be obtained. A Poincaré plot can also be used
to plot each NN interval in relation to the previous NN interval
and to calculate the standard deviation of the main cluster of
data-points, either crosswise (SD1) or lengthwise (SD2) (Task
Force of the European Society of Cardiology the North American

Society of Pacing Electrophysiology, 1996; Oliveira et al., 2019b;
Patural et al., 2019). From the SD1 and SD2 metrics, other
metrics, such as Cardiac Sympathetic Index (CSI) and Cardiac
Vagal Index (CVI), could be obtained (Oliveira et al., 2019b).

The frequency-domain metrics derive from the analysis of the
ECG power spectrum. The power of several frequency bands, in
particular ultra-low-frequency (ULF), very-low-frequency (VLF),
low-frequency (LF), and high-frequency (HF), are then extracted,
as well as other metrics, such as LF and HF normalized indices
(LFn and HFn) and the LF/HF ratio. Another frequency index
used is the total power (TP), which represents the global
variability (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996;
Patural et al., 2019).

Time- and frequency-domain metrics are, however, limited:
they could fail in discriminating among different signals that
display similar characteristics, such as the same mean or standard
deviation. Moreover, ECG recording can manifest several
irregularities in the RR series or complex oscillatory phenomena
that linear metrics cannot properly describe. Therefore, non-
linear analyses were developed to better grasp the complexity
behind the brain and ANS influences on HRV (Task Force of
the European Society of Cardiology the North American Society
of Pacing Electrophysiology, 1996; Bravi et al., 2011). Actually,
the geometric methods can be considered a kind of non-linear
analysis (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996;
Javorka et al., 2017; Patural et al., 2019).

Several studies showed the usefulness of non-linear metrics
over linear ones in evaluating the autonomic development
(Uhrikova et al., 2015; de Souza Filho et al., 2019; Oliveira
et al., 2019b), the interactions between ANS, brain, and stress
axis (Thayer and Lane, 2000), and the infant’s adaptation
capacity (Gonçalves et al., 2017; Shaffer and Ginsberg, 2017;
Urfer-Maurer et al., 2018).

Many non-linear metrics can be calculated, and every non-
linear analysis can be performed at different levels of complexity.
Examples are: detrended fluctuation analysis (DFA), sample
entropy (SampEn), approximate entropy (ApEn), multiscale
entropy (MSE), symbolics dynamics, coarse graining spectral
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analysis, fractal analysis, and deceleration and acceleration
analyses (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996;
Javorka et al., 2017; Patural et al., 2019).

While linear metrics seem more useful when the HR follows
periodic oscillations, non-linear metrics, such as SampEn,
ApEn, MSE, DFA, and symbolic dynamics metrics, seem
more robust to cardiac recording artifacts (Javorka et al.,
2017; Stapelberg et al., 2017). Linear and non-linear metrics
can, however, detect complementary physiological behaviors
(Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology, 1996;
Bravi et al., 2011): the HRC index, which contains both,
represents the best available evidence of their usefulness
(Fairchild and O’Shea, 2010).

Actually, many more different techniques of variability
analysis are available. To encompass all of them and to refine
the original Task Force classification, further classifications have
been proposed. Bravi and colleagues, for example, regrouped
the various techniques into five domains based on the
information they extrapolate: statistical, geometric, energetic,
informational, and invariant (Bravi et al., 2011). The present
paper, however, will follow the Task Force classification since it
still represents the most used.

Although several HRV metrics have been proved useful, few
metrics have a precise physiological and clinical interpretation
(Table 2). However, we have to consider two crucial limitations:
(1) too often HRV is viewed as influenced by only the ANS,
with the tendency of reducing a metric to as simply sympathetic
or parasympathetic, and (2) although many studies investigate
several metrics, the attention is focused mainly on univariate
approaches that try to reduce the variables considered at a
minimum. This approach could substantially limit the usefulness
of the models applied and, thus, the understanding of HRV
physiological nature and clinical usefulness (Bravi et al., 2011;
Frasch, 2018).

To overcome these limitations, multivariate analyses were
introduced—e.g., continuous individual multiorgan variability
analysis (CIMVA) (Seely et al., 2011; Frasch et al., 2014)—, and
many researchers started to rely on ML and AI algorithms
(Semenova et al., 2018; Vassar et al., 2020). As a consequence,
research begun to integrate various metrics—as shown by the
HeRO monitor, whose HRC index derives from a logistic
regression applied on the standard deviation of the RR
intervals, sample asymmetry, and SampEn and aims to detect
pathological heart decelerations to predict the risk of sepsis
within 24 h (Fairchild and O’Shea, 2010)—, to combine
measurements from different organs for predicting clinical
conditions (Kumar et al., 2020), and to define models able
to describe HRV as a phenomenon influenced by the whole
organism (Frasch, 2020).

The HRV as a Window on the ANS
The ANS plays a central role in homeostasis maintenance
and allostatic adaptation, allowing the organism to change its
behavior based on the circumstances and stressors, whether
internal or external (Thayer and Lane, 2000).

The two ANS branches, the sympathetic (SNS) and
parasympathetic system (PNS), continuously modify their
balance to finely regulate the organic systems, including
the cardiovascular, respiratory, gastroenteric, metabolic, and
immune-inflammatory ones (Rees, 2014; Mulkey and du Plessis,
2019). The two ANS branches connect with several brain
circuits known as the central autonomic network (CAN), which
influences both the ANS and the higher cortical functions,
such as cognition control, emotional regulation, and behavior
(Benarroch, 1993; Thayer and Lane, 2000).

To cope with the environmental stimuli, the CAN regulates
the complex non-linear interaction between SNS and PNS.
In the sinoatrial node, this interaction modulates the HRV
(Billman, 2011; Shaffer and Ginsberg, 2017). Tools, such
as ECG or photoplethysmography (PPG), which monitor
cardiovascular activity, can thus evaluate autonomic brain–heart
interactions and give information regarding the ANS through
HRV metrics (Table 2).

These metrics are usually viewed as revealing different facets
of the SNS and PNS activities, with some metrics more related to
one of the two branches and the other reflecting more complex
ANS, cardiocirculatory, and respiratory activities (Shaffer and
Ginsberg, 2017; Oliveira et al., 2019b). However, HRV may
reflect much more than the autonomic regulation of cardiac
activity. On the one hand, it has been recently discovered,
in ovine models, that the fetal heart has already an intrinsic
sinoatrial node activity that can affect HRV and that can be
affected by adverse conditions (e.g., chronic hypoxia) in the last
trimester of pregnancy (Frasch et al., 2020). On the other hand,
HRV seems to be greatly influenced by information coming
from the whole organism (e.g., the gut or the immune system)
through systemic afferent pathways, such as the vagus nerve
(Frasch, 2020).

Moreover, HRV may represent an index of the adaptive
regulation processes performed by the CAN (Thayer
et al., 2009, 2012). Indeed, HRV correlates with CAN
activity measured by functional magnetic resonance
imaging (Thayer et al., 2012) and several measures of
cognitive, emotional, and behavioral regulation (Holzman
and Bridgett, 2017; Forte and Casagrande, 2019). Since
various HRV metrics showed to be correlated with stress
and inflammation, HRV analysis has the potential to give
information about the subject’s health (Kim et al., 2018;
Williams et al., 2019).

During fetal and neonatal life, the ANS undergoes a
prolonged process of development and maturation, during
which it remains vulnerable to developmental disruption from a
variety of stressful physiological and environmental stimuli. Such
stimuli—which can occur during pregnancy (e.g., congenital
disease, fetal growth restriction, maternal stress/nutritional
deficiency), labor (e.g., premature, complicated, or prolonged
birth), and even in the NICU environment (e.g., invasive
procedures, loud noise, and bright light)—can significantly
influence the developmental trajectory of both the ANS and
the CAN. They can reduce the newborn’s capacity to efficiently
adapt to a continually changing and challenging environment
(Mulkey and du Plessis, 2019).
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TABLE 2 | Interpretations and/or usefulness of some HRV metrics (Task Force of the European Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996; Shaffer et al., 2014; Shaffer and Ginsberg, 2017; Oliveira et al., 2019b).

Metric Interpretation

Most common metrics

RMSSD Main time-domain measure to assess the HRV modulation due to vagal activity

SDNN Standard metric of overall HRV, influenced by both SNS and PNS. Gold standard for medical stratification of cardiac risk in adults when
recorded over a 24 h period

ULF No consensus regarding the mechanisms underlying ULF power. Very slow-acting biological processes, such as circadian rhythms, are
implicated

VLF Related to the heart’s intrinsic nervous system, which generates VLF rhythm when afferent sensory cardiac neurons are stimulated. SNS
activity due to physical and stress responses influences its oscillations amplitude and frequency

LF Non-specific index that reflects baroreceptor activity, it contains contributions of both the sympathetic and parasympathetic influences

HF Expression of parasympathetic activity, it corresponds to the HR variations related to the respiratory cycle known as RSA. It changes
according to vagal modulation but does not reflect vagal tone

LF/HF Used to estimate SNS and PNS balance, although LF does not purely represent SNS, and PNS and SNS interact in a complex non-linear
manner

Complex metrics or groups of metrics

fABAS Scale used for evaluating fetal ANS maturation. It derives from the integration of Hoyer et al. (2013):
• amplitude (ACTAMP20), evaluating the fluctuation range of heart beat intervals above an approximated baseline increasing complexity;
• skewness, evaluating the complexity of heart rate patterns essentially modulated by complex sympatho-vagal rhythms;
• gMSE(3), evaluating the asymmetry, contribution of vagal and sympathetic activity with their different time constants, decline of
decelerations, and formation of acceleration patterns;
• pNN5, evaluating the formation of vagal rhythms;
• VLF/LF, evaluating the baseline fluctuation in relation to sympatho-vagal modulations.

DFA α1 – AsymI –
KLPE – SDLE α

Used for assessing vagal modulation in fetuses (Herry et al., 2019)

HRC index Displayed by the HeRO monitor to estimate the risk of sepsis within 24 h. It derives from a logistic regression calculated on standard
deviation of the RR intervals, sample asymmetry, and SampEn to detect irregularities and transient decelerations in HR. HRC index is higher
in preterm infants than in full term ones (they show less variability), and it decreases as postmenstrual age increases. HRC index can also
rise due to acute inflammation, respiratory deterioration, intraventricular hemorrhage, brain injury, NEC, surgery, ventilation, and drugs, such
as anticholinergics, anesthetics, and dexamethasone (in this last case, HRC decreases) (Fairchild and O’Shea, 2010; Fairchild, 2013; Kumar
et al., 2020)

RMSS – RMSL – DFA
αS – LF – HF

Used to estimate outcomes in case of HIE, especially during hypothermia treatment. Low values of RMSS, RMSL, DFA αS, and LF and a
high value of HF may predict an adverse outcome and the need of adjuvant neuroprotective therapies. These metrics could discriminate
among different types of brain injury. All these metrics decreased also proportionally to NEC severity (Metzler et al., 2017; Al-Shargabi et al.,
2018; Campbell et al., 2018)

It is thus essential to know how ANS develops during
pregnancy and after birth, and how HRV changes as a result, in
order to make efficient use of HRV as an assessment tool.

The ANS Development and Its
Relationship With HRV
Fetal cardiac activity is usually measured through
cardiotocography (CTG), which can monitor fetal HR via
ultrasound waves (Ayres-de-Campos and Bernardes, 2010).
Although able to detect HR accelerations and decelerations, this
tool poorly discriminates QRS complexes and is unsuitable to
measure fetal HRV (fHRV), especially short-term HRV (Van
Leeuwen et al., 2014). Therefore, in the last 20 years, researchers
have relied on fetal magnetocardiography (fMCG) and ECG
(fECG) to monitor fHRV and assess its correlation with ANS
development (Hoyer et al., 2013, 2015).

fECG and fMCG use electrophysiological mechanisms to
monitor cardiac activity and better discriminate QRS complexes
(Hoyer et al., 2017). fMCG, which is obtained through the
spatiotemporal measurement of the heart-related magnetic field,
allows a stable and precise HRV assessment during the second

and third pregnancy trimesters. However, fMCG is available
in a few centers worldwide due to its high cost (Hoyer et al.,
2017). fECG can be obtained through electrodes placed on
the mother’s abdomen (Hoyer et al., 2017) or directly on
the fetal cranium during labor (Warmerdam et al., 2016).
fECG performs less accurate measurement and, between 28
and 32 weeks gestational age (GA), is less reliable since
the fetus is almost entirely covered by the vernix caseosa,
which isolates the fetus hindering the recording (Hoyer
et al., 2017). Besides, fECG shows a considerable signal loss
(30 ± 24%) with 3.6 ± 1.7 gaps/min, which limits short-
term and entropy-related HRV metrics measurements. As a
result, fECG shows higher values for these metrics than fMCG
(Van Leeuwen et al., 2014).

Using fMCG, Hoyer and colleagues defined the fetal
autonomic brain age score (fABAS) (Table 2), which derives
from a multivariate analysis of five different metrics—amplitude,
gMSE(3), skewness, pNN5, and VLF/LF—and managed to assess
ANS development from the 22nd week GA (Hoyer et al.,
2013, 2015). Other authors have then proposed to add other
metrics to fABAS to define more complete and precise models
(Schmidt et al., 2018).
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Applying regression models on metrics grouped in short-
term and long-term amplitude fluctuations (AMP), complexity
(COMP) and pattern categories, Hoyer et al. found that
ACst1, STV, MSE4, and skewness were the metrics that
best correlated with fetal maturation (Hoyer et al., 2019).
During the third trimester, AMP, COMP, and pattern metrics
increase, although with different timing (Hoyer et al., 2019),
together with sympathetic and parasympathetic modulations.
The baseline HR also becomes more regular and with a more
stable rhythm (Schneider et al., 2018). As GA increases, even
linear metrics—RMSSD, SDNN, LF, and HF—rise as well.
These changes indicate the ANS development and better fetal
regulatory capacities (Hoyer et al., 2009; Cardoso et al., 2017;
Aye et al., 2018).

To achieve an optimal maturation, the ANS, in particular the
PNS, needs 37 weeks GA (Patural et al., 2019): indeed, preterm
newborns show a sympathetic predominance (Yiallourou
et al., 2012). The PNS begins to develop during the first
trimester, when the lateral hypothalamus differentiates and
the vagus nerve myelination increases (Koutcherov et al.,
2003; Cheng et al., 2004). From the 32nd week GA, the
vagus nerve regulatory activity increases with the appearance
of the baroreflex mechanisms and the respiratory sinus
arrhythmia (RSA)—the capacity of HR regulation based on
respiratory rate. Meanwhile, fetal movements and HR increase
indicate a rise in the SNS activity (DiPietro et al., 1996). The
ANS regulatory function, especially the parasympathetic,
develops until birth when the ANS has to react to the new
environmental conditions by adapting the cardiovascular
and respiratory systems during the fetal–neonatal transition
(Mulkey and du Plessis, 2018).

At birth, the ANS shows a slight sympathetic predominance—
high LF and low HF—, but in the first 24 h after birth,
several metrics (e.g., HR, SDNN, CSI, HFn, LFn, TP, SD2, HRV
Index, and Parseval Index) change significantly (Oliveira et al.,
2019b). In particular, during the first 12 h, the PNS gradually
begins to take over, as shown by the LF/HF ratio reduction
(Patural et al., 2019).

During the first days and weeks of life, both preterm and term
newborns show an increase in RMSSD, SDNN, and HF, although
preterm newborns show lower HRV than term ones at the same
postmenstrual age: they display lower values of RMSSD, LF, and
HF and a higher LF/HF ratio, which likely reflect an ANS that
needs more time to mature (Lucchini et al., 2016; Cardoso et al.,
2017; Aye et al., 2018).

The ANS, in particular the PNS, continues to develop
during the first 2 years of life considerably: indeed, every time,
frequency, geometric, and non-linear metric tend to increase
(Patural et al., 2019).

Since many HRV metrics change during the ANS
development, several authors investigated if specific
correlations could be established between those changes
and the fetal health status.

According to Hoyer et al. (2019), some AMP and COMP
metrics correlate with maternal lifestyle (smoking and physical
activity), intrauterine growth restriction (IUGR), and gestational
diabetes. Despite the maternal and fetal circulation being

distinct systems, HRV fluctuations could represent a coupling
mechanism between the two: indeed, maternal HR, TP, and
HF correlate with some fHRV metrics, especially during active
sleep and when GA > 32 weeks. In particular, maternal
HR correlates positively with fHR and negatively with fHRV
(Zöllkau et al., 2019).

A different approach based on coupling maternal and
fetal HR through phase rectified signal averaging (PRSA)
analysis found a correlation between the two HRs, but only
for stressed mothers (Lobmaier et al., 2020). A correlation
between some fHRV metrics and maternal TP and RMSSD was
also found in normotensive mothers, whereas in preeclamptic
pregnancies, there was no correlation despite substantial
reduction in both maternal HRV (SDNN, RMSSD, pNN50,
TP, VLF, LF, HF) and fHRV metrics (SDNN, RMSSD,
pNN50, TP, VLF, LF, HF, STV, LTV, N◦ of accelerations)
(Lakhno, 2017).

During labor, although uterine contractions may alter fHRV
recording, fetal scalp electrode (FSE) can measure fHRV with
adequate precision and give more accurate information about
fetal distress than traditional CTG, thus better discriminating
between healthy fetuses and those with acidosis (Gonçalves
et al., 2006; van Laar et al., 2010, 2011; Spilka et al., 2012;
Abry et al., 2013; Georgieva et al., 2013). pH levels during
labor were correlated with both linear (Gonçalves et al.,
2006; van Laar et al., 2010) and non-linear fHRV metrics (Li
et al., 2005; Ferrario et al., 2006; Abry et al., 2013; Chudacek
et al., 2014; Signorini et al., 2014), and the combination of
linear and non-linear metrics seemed to detect acidosis more
precisely than the two types of metrics alone (Spilka et al.,
2012; Warmerdam et al., 2018). In addition to FSE, trans-
abdominal fECG with a sampling frequency of 900 Hz—
way higher than the frequency of 4 Hz used for CTG—may
efficiently measure fHRV during labor and predict neonatal
pH level and acid–base balance, especially through CIMVA
(Frasch et al., 2014; Li et al., 2015). These results are of great
significance since acid–base imbalance can be correlated to brain
neuroinflammation and, therefore, to the risk of developing brain
injury (Xu et al., 2014).

Together with continuous fHRV assessment, the selective
measurement and comparison among the fHRV metrics
obtained during labor contractions and the ones obtained
between successive contractions managed to better detect fetal
distress (Warmerdam et al., 2018). Several fHRV metrics
increased during contractions and decreased during rest periods
(Romano et al., 2006; Cesarelli et al., 2010; Warmerdam
et al., 2016), and this variability was lower in fetuses
with acidosis than in healthy ones, pointing at a lower
cardiovascular adaptation capacity (Warmerdam et al., 2016).
Entropy metrics, such as SampEn and ApEn, could also detect
fetal distress from the 30th week GA (Ferrario et al., 2006).
These two metrics, together with time-domain, complexity
(e.g., Lempel Ziv complexity), and PRSA-derived ones, could
also distinguish between fetuses with and without IUGR
(Signorini et al., 2014).

Non-linear metrics could explain why male fetuses show
higher HRV than female but are at higher risk of comorbidity
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(DiPietro and Voegtline, 2017): while linear metrics are higher
in male newborns, non-linear metrics that evaluate entropy are
higher in female newborns (Gonçalves et al., 2017; Spyridou
et al., 2018). Moreover, non-linear metrics, such as ApEn or MSE,
could describe better than linear metrics the ANS development
that happens around the last weeks of gestation, when the fetus
prepares for birth (Spyridou et al., 2018).

Interesting results came also from animal models of fetal
inflammation. Studies on models of hypoxic–ischemic events
in ovine fetuses showed that many fHRV metrics changed in
the hours after the event: VLF decreased, whereas SampEn, HF,
and RMSSD increased (Frasch et al., 2016; Kasai et al., 2019).
Besides, the rise in RMSSD correlated positively with interleukin
(IL)-1β levels (Frasch et al., 2016), whereas lipopolysaccharides
administration showed that multidimensional fHRV metrics (i.e.,
both linear and non-linear) could predict the fetal inflammatory
response (Durosier et al., 2015; Herry et al., 2016).

In an ovine model of repetitive umbilical cord occlusions,
PRSA applied to fHRV detected hypoxic events and distinguished
between mild, moderate, and severe hypoxia–acidemia (Rivolta
et al., 2014). This result was deepened in another study where
an ML algorithm based on RMSSD time series sampled
at 1,000 Hz was developed: after 2 h of training with the
individual fHRV during labor, the algorithm predicted fetal
cardiovascular decompensation with 92% sensitivity, 86%
accuracy, and 92% precision. When using 4 Hz CTG, the
algorithm showed a 67% sensitivity, 14% accuracy, and
18% precision—that is, sample frequency really matters
(Gold et al., 2019).

fHRV assessment could thus give precious information
both on the physiological fetal maturation and on the
occurrence of pathologies that, whenever left unresolved,
are able to induce lifelong complications (Hoyer et al.,
2017; Frasch, 2018). Assessing HRV in newborns and
infants could, thus, greatly improve neonatal care (Kumar
et al., 2020). Therefore, a discussion is required about the
technology used to measure HRV in newborns and infants
and about the physiological or environmental factors that
could influence HRV.

A TECHNOLOGICAL ANALYSIS TO
EFFICIENTLY MONITOR AND USE HRV

The Current NICU Monitoring
Instruments
The NICU incubators are closed devices equipped with advanced
devices to monitor the newborn’s conditions. In essence, they
guarantee a clean and controlled environment concerning
temperature, humidity, and even mechanical noise and light.
They monitor vital signs through sensors and electrodes placed
on the babies (Rajalakshmi et al., 2019).

The foremost vital signs—temperature, blood pressure, pulse
frequency, HR, and SpO2—are measured through monitors
for the control of pressure, cardiorespiratory system, skin
temperature, and carbon dioxide and oxygen concentrations;

pulse oximetry; and mechanical ventilator. In the case of
anomalies, an alarm alerts the NICU staff to intervene promptly
(Rajalakshmi et al., 2019).

ECG represents the gold standard to monitor HR calculated
through the RR interval (Phillipos et al., 2016; Alonzo et al.,
2018). Pulse oximetry can instead measure HR through the
pulse rate, but its usefulness is debated: evaluating pulse rate is
difficult when peripheral tissue perfusion is reduced (Mizumoto
et al., 2012), and the measurement is sensitive to motion artifacts
(Sahni et al., 2003).

Pulse oximetry performs a simple, non-invasive, and accurate
SpO2 measurement to evaluate the risk of hypoxia and/or
hyperoxemia, the appropriateness of the oxygen administered to
the newborn, and the presence of ductal dependent congenital
cardiac diseases (Stenson, 2016; Kumar et al., 2020). Pulse
oximetry, however, struggles to detect hyperoxemia when
SpO2 > 94% (Hay, 1987).

Blood pressure (influenced by cardiac output and peripheral
vascular resistance) can be measured through an external
cuff, which, however, can underestimate it in hypotensive or
pathological preterm newborns (Cunningham et al., 1999).
A peripheral arterial catheter can continuously monitor
blood pressure, although it can induce severe cardiovascular
complications (Werther et al., 2018).

The respiratory rate is calculated through two electrodes
placed on the thorax and the abdomen that measure the thoracic
impedance changes. Plethysmography gives a more reliable
measure but requires a higher number of thoracic electrodes
(Weese-Mayer et al., 2000).

Temperature is continuously monitored because preterm
newborns struggle to regulate it and can suffer from hypothermia.
Incubators can assess the newborn’s temperature through skin
sensors and probes or infrared thermography, which has the
advantage of being contactless and non-invasive, and may
adapt the environmental temperature to the newborn’s skin
temperature (Verklan and Walden, 2014). Due to the sensitive
skin of newborns, cutaneous sensors could create stress and even
damage the skin (Topalidou et al., 2019).

Despite continuous monitoring to assure high care standards,
much of this collected information remains unused. This
situation is worth noting since integrating these vital signs could
improve the predictive power of the NICU monitors and better
help reduce infants’ mortality (Sullivan et al., 2018; Joshi et al.,
2020; Kumar et al., 2020).

Besides monitoring the infant’s clinical condition,
incorporating the infant’s history would also be of the utmost
importance. Information about the baby’s fetal health, labor,
and past adverse events (e.g., brain injuries) could augment the
interpretation of the aforementioned vital signs. In fact, different
pathologies in different babies could induce similar alterations in
vital signs, and the knowledge of the infant’s history could help
recognize what is happening (Kumar et al., 2020).

In this difficult task, NICU monitors based on ML algorithms
could be useful for clinicians: integrating the infant’s past
and present data, they could discriminate among the several
pathologies that could affect the infant, thus pointing at the
best preventive and therapeutic strategy. ML algorithms have
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already helped in predicting the risk of various conditions (e.g.,
cerebral hemorrhage and hyperbilirubinemia) and in reducing
false alarms, thus improving neonatal care (Daunhawer et al.,
2019; Malacova et al., 2020; Ostojic et al., 2020; Turova et al., 2020;
Vassar et al., 2020).

The Current State of HRV Assessment
and Limitations
The gold standard to evaluate HRV consists of specific
calculations on the electrocardiographic HR registrations (time
elapsed between two adjacent R peaks) in term and preterm
newborns (Kevat et al., 2017).

However, ECG does not seem to be always used properly,
and as a consequence, HRV measurement may suffer from
methodological issues: for instance, the NICU tools used to
monitor HR may have a low sampling frequency (<200 Hz),
making the HRV analysis unreliable under several circumstances
(e.g., patients with low RR variability due to heart failure), in
particular for frequency and non-linear metrics. Some authors
indeed advised to use a sampling frequency of at least 500 Hz
(Laborde et al., 2017; Shaffer and Ginsberg, 2017). Moreover,
in the research field, there is the tendency to use proprietary
software without specifying the exact algorithms used to extract
the HRV parameters and, thus, limiting the usefulness of the
results (Heathers, 2012; Pagani et al., 2012).

Particularly interesting is the case of the frequency-domain
metrics, LF and HF. Despite being widely used, the frequency
threshold of 0.15 Hz is used to discriminate between them in
adults derived from animals, and it seems that it has never been
validated in humans (Hayano and Yuda, 2019). Therefore, the
frequency-domain metrics could be biased from the beginning:
this could be a reason why LF and HF do not reflect a specific
physiologic function, but the interaction between PNS, SNS, and
respiratory activity (Hayano and Yuda, 2019). Moreover, not all
studies on newborns use the same thresholds for discriminating
between LF and HF (Andersen et al., 2019).

Among the several HRV metrics (Table 1), few of them have
been validated (Table 2; Shaffer and Ginsberg, 2017; Hayano and
Yuda, 2019), especially in newborns and infants (Cardoso et al.,
2017; Oliveira et al., 2019b). For several metrics, their significance
can also change according to the measurement duration: short
(about 5 min) or long term (until 24 h) (Pernice et al., 2019b).

Therefore, standardizing how researchers and clinicians
should monitor HRV and calculate their metrics is essential.
A uniform methodology could also help in defining normative
HRV values for infants (stratified for their age and other fetal
development characteristics)—during the years, several studies
attempted to fill this gap (Clairambault et al., 1992; Eiselt et al.,
1993; Spassov et al., 1994; Cardoso et al., 2017; Schneider et al.,
2018; Oliveira et al., 2019b; Patural et al., 2019; Shuffrey et al.,
2019)—to promptly recognize even deadly complications, but
results are still controversial.

As with the integration of the baby’s vital signs and history,
clinicians could rely on ML and AI to overcome this difficulty.
ML could both define normative HRV values for single or
complex metrics and even create models able to predict how

the newborn’s condition will evolve based on big-data analysis
(Fairchild and Aschner, 2012; Kumar et al., 2020). Indeed, in
several research fields including neonatology, neurology, and
cardiology, advanced ML is being successfully used to detect
specific pathophysiological characteristics (Fraser, 2017; Pinaya
et al., 2019; Tu et al., 2020; Turova et al., 2020; Vassar et al., 2020).

The Use of PPG to Measure HRV as an
Alternative to ECG
In the last years, a new methodology that uses PPG has been
applied to measure the peripheral pulse rate variability (PRV)
through sensors placed on the fingers (Blackford et al., 2016; Choi
and Shin, 2017). The growing interest toward PPG rests on its
simplicity, low-cost, safety, and minimal invasiveness and on its
capacity to assess signs, such as oxygen saturation, and to extract
cardiorespiratory parameters (Pernice et al., 2018, 2019a; Singh
et al., 2018).

PPG is an optical measurement technology used to detect
blood volume changes in peripheral capillaries. It needs a light
source and a photodetector that can measure the light intensity
variations related to the capillary perfusion changes. PPG is used
in physiological and clinical research to measure blood pressure
variability (McDuff et al., 2018; Pernice et al., 2018, 2019b).

The absence of electrodes helps reduce the newborn’s stress
and pain. It may also decrease the risk of limb ischemia and
skin lesions due to electrode-related irritation and, thus, the
risk of skin infections with subsequent use of antibiotics and
disinfectants, which can alter the cerebral pressure and perfusion
when inhaled (Blanik et al., 2016; Zhao et al., 2016; Cobos-Torres
et al., 2018). ECG alternatives to monitor HRV are paramount
since, due to altered evaporation of body water, electrodes on
large skin areas may influence the balance between heat and
water in preterm newborns who weigh less than 1,000 g (Blanik
et al., 2016). Avoiding electrodes would also reduce the workload
of NICU professionals since they might avoid controlling the
correct positioning of patches (Cobos-Torres et al., 2018).

From a PPG signal, a PRV time series can be registered
and analyzed similarly to HRV (Pernice et al., 2018). However,
HRV and PRV are different: HRV is calculated from the
cardiac electrical activity, whereas PRV from the mechanics of
pulsatile blood. PPG and ECG also show different waveforms:
they are differently influenced by the sampling frequency
(Choi and Shin, 2017).

PPG recording is affected by physiological factors related
to the pulse wave transmission along the vascular bed and by
measurement errors, such as artifacts due to movements. In the
last years, several authors have attempted to reduce or eliminate
these errors that can make PRV and HRV disagree (Pernice et al.,
2019b). The PRV analysis should also use a correct sampling
frequency to obtain measurements concordant with ECG (Choi
and Shin, 2017; Hejjel, 2017).

Some authors found that, for several metrics (SDNN, SDSD,
RMSSD, NN50, pNN50, TP, HF, LF/HF, LFn, and HFn), a
frequency as low as 25 Hz could give comparable results to
those obtained with a 10 kHz-sampled ECG in healthy subjects
(Choi and Shin, 2017). However, very low sample frequency
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could not correctly detect the effect of vagal modulation on
HRV/PRV (as it is associated with high frequency), making
frequency and non-linear metrics unreliable—time-domain
metrics appear instead to be more robust (Choi and Shin,
2017; Béres et al., 2019). Notwithstanding this, other studies
used a sample frequency of 200 Hz obtaining reliable results
(Sun et al., 2012; Elgendi et al., 2016). Thus it can be argued
that the above-mentioned recommendations for ECG could also
be valid for PPG.

Most studies consider PRV and HRV to be exchangeable
(Blackford et al., 2016; Pernice et al., 2018; Singh et al., 2018),
although sometimes different measurements were detected when
people (mostly adults) were under postural (45◦ head-up tilt test)
or mental (arithmetic test) stress, especially for RMSSD, LF, HF,
and LF/HF (Pernice et al., 2019b).

In the context of NICU, PPG provides accurate data in
addition to the ease of use. A recent study showed that,
through specific algorithms, PPG could detect the movement
artifacts, remove them from the recordings, and use them to
evaluate the onset and duration of the newborn’s movements:
this measurement could help assess the motor development and
even the cognitive growth related to motor control (Zuzarte
et al., 2019). These elements could favor the use of PPG over
other devices. However, some studies showed lack of sufficient
data sampling to perform adequate statistical analysis, calling,
therefore, for more robust data collection (Kevat et al., 2017;
Henry et al., 2020).

In the last years, non-contact video-photoplethysmography
(vPPG) has been introduced: a non-invasive optical technology
able to remotely detect the blood volume changes, using natural
light. A digital camera measures the little cutaneous light
intensity changes, which derive from the cardiovascular rhythm
of the skin blood perfusion (Blanik et al., 2016; Valenza et al.,
2018). vPPG could accurately monitor the newborn’s movements
(Cobos-Torres et al., 2018) and even help prevent sudden infant
death syndrome (SIDS) (Zhao et al., 2016).

Since HR tends to significantly decrease over minutes or hours
before SIDS occurrence, a technology that could continuously
monitor HR, in particular, during night-time or with low
ambient light—SIDS happens especially in these conditions—
could efficiently prevent SIDS. Using specific algorithms, vPPG
seems to make accurate HR measurements during night-time;
besides, since vPPG does not rely on skin sensors, it could
avoid fatal errors linked to their detachment due to the baby’s
movements (Zhao et al., 2016).

From the available evidence on newborns and adults, vPPG
and ECG would seem to agree in the detection of HR and
several HRV metrics (e.g., LF, HF, SDNN, SampEn, and Lyapunov
exponent): the statistical analyses (e.g., Bland–Altman tests and
Pearson’s r) showed high correlations, and the measurement
errors between the two technologies were similar to those
between ECG and other technologies, such as pulse oximeter
(Blanik et al., 2014; Villarroel et al., 2014; Blackford et al., 2016;
Valenza et al., 2018). Other studies found vPPG and PPG to
give similar measurements in the assessment of HR, LF, and
HF: since PPG is usually considered as reliable as ECG, the
authors inferred that vPPG could also agree with ECG (Sun et al.,

2012; Aarts et al., 2013; McDuff et al., 2014; Paul et al., 2020).
However, more studies on newborns are needed to improve vPPG
and to better evaluate its usefulness (Cobos-Torres et al., 2018;
Valenza et al., 2018).

Before proceeding further, we briefly mention ballistography
(BSG), another contactless and unobtrusive technology that
could help HRV assessment. BSG can detect the mechanical
forces exerted by the body, including body movements,
breathing motion, and heartbeat, through sensors placed in the
bedding or mattress under the infant’s body or even in the
incubator rack. From the mechanical signals recorded by the
sensors (e.g., including electromechanical film sensors, load-
cells, and accelerometers), BSG successfully extrapolated reliable
respiratory waveforms and HR recordings in preterm newborns
(Nukaya et al., 2014; Lee et al., 2016; Joshi et al., 2018, 2019a).
While in neonatology, BSG represents a new technology that
should be improved to optimally and precisely detect the
weak forces of the baby’s body; in adults, BSG gave reliable
HRV measurements as compared with ECG (Shin et al., 2011;
Wang et al., 2015).

Factors That Can Alter HRV Assessment
To optimally use HRV, NICU professionals must be aware there
are factors that can influence HRV recording, including the sleep
stage, the infant’s position, and the NICU/incubator environment
(De Jonckheere and Storme, 2019; Weber and Harrison, 2019).

HRV in newborns is often measured during sleep, which
shows two main stages: the quiet sleep (QS), characterized by
the absence of movements and slow rhythmic breathing, and the
active sleep (AS), characterized by myoclonic twitching, facial,
eye, and head movements, and irregular heart and breath rates
(Walusinski, 2006; Dereymaeker et al., 2017).

AS and QS show, respectively, a sympathetic and a
parasympathetic predominance (Frasch et al., 2007; Yiallourou
et al., 2012), with HRV metrics, such as SDNN, LF/HF, LF, and
TP higher in AS than in QS. Sometimes, parasympathetic-related
metrics were found to be higher during AS than QS (although by
a lower degree than the sympathetic-related metrics), maybe to
balance the sympathetic activity (Yiallourou et al., 2012; Stéphan-
Blanchard et al., 2013; Fyfe et al., 2015; Thiriez et al., 2015;
Schneider et al., 2018).

If this were the case, altered parasympathetic-related metrics
during AS could reveal that the vagal system and the ANS still
have to fully develop (Yiallourou et al., 2012). An immature
PNS may, thus, fail to balance the SNS and the hypothalamic–
pituitary–adrenal axis activity under stressful conditions, thus
increasing the risk of sepsis, necrotizing enterocolitis (NEC), or
even SIDS (Yiallourou et al., 2012; Stone et al., 2013; Sullivan
et al., 2014; Mulkey et al., 2018).

Indeed, healthy newborns show an increase in several metrics
during a head-up tilt test, thus recruiting both ANS branches
to counter the hypotensive stressor (Yiallourou et al., 2012).
Besides, newborns who later displayed abnormalities, such as
altered neurological development (i.e., cerebral palsy, language
or mental retardation, vision or hearing disability, or attention
disorders) showed altered HRV (lower total and non-harmonic
power) just during AS (Thiriez et al., 2015).
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Although the studies do not perfectly agree (Fyfe et al., 2015),
the prone position correlates with lower SDRR and RMSSD
(Galland et al., 2006; Lucchini et al., 2016) and also lower
sympathetic tone measured through LF and TP (Jean-Louis et al.,
2004): these results could indicate an altered ANS response,
possibly clarifying the higher risk of SIDS during prone sleep
(Elhaik, 2016). The side position seems to stabilize HR and
prevent oxygen desaturation during feeding in newborns with
GA < 34 weeks (Thoyre et al., 2012), although a recent study
failed to find the same results (Raczyńska and Gulczyńska, 2019).

Concerning the NICU environment, temperature, light,
and noise could be a significant source of stress that
can affect infants’ HRV (De Jonckheere and Storme, 2019;
Weber and Harrison, 2019).

Warm incubators correlated with higher HR, lower
parasympathetic activity, HF, and shorter RR intervals (Franco
et al., 2000). When the incubator temperature was 2◦C lower than
the newborn’s skin temperature, the parasympathetic-related
metric RMSSD increased in all sleep stages, together with SDNN
and HF, whereas the sympathetic-related metric CSI decreased;
the opposite findings were obtained when the incubator was
2◦C warmer (Stéphan-Blanchard et al., 2013). Therapeutic
hypothermia in case of hypoxic–ischemic encephalopathy
(HIE) could induce an increase in LF, root mean square
from detrended fluctuation analysis, which describes short-
term fluctuations (RMSS), root mean square from detrended
fluctuation analysis, which describes long-term fluctuations
(RMSL), and DFA αS (Massaro et al., 2017). Extreme variations
of environmental or core temperature in both directions can,
lastly, destabilize the ANS (as revealed by HRV alteration)
and induce possible complications (Fox and Matthews, 1989;
Mowery et al., 2011).

Light and sound can alter the newborn’s cardiorespiratory
functions, increase stress level (Williams et al., 2009; Ozawa et al.,
2010; Weber and Harrison, 2019), and modify HRV. Reducing
light exposure through eye-mask and covering incubators/cribs
can induce a QS with a stable respiratory rate (Shiroiwa
et al., 1986; Venkataraman et al., 2018). For sound regulation,
positive stimuli, such as human voice, rather than forcefully
excluding stressful events, may represent a better option (Weber
and Harrison, 2019). The use of tools, such as earmuffs,
showed ambiguous results: some studies revealed higher oxygen
saturation and quieter sleep, whereas other studies proved higher
stress and lower HF (Zahr and de Traversay, 1995; Aita et al.,
2013; Almadhoob and Ohlsson, 2020).

The incubator can influence newborns’ HRV also through the
emission of electromagnetic fields, which indeed correlate with
adverse health consequences in infancy (Li et al., 2012). When
the incubator power is turned on, LF/HF increases, whereas HF
decreases (Bellieni et al., 2008). Positioning the newborn as far
away as possible from the incubator power can limit and reverse
these effects (Bellieni et al., 2008; Passi et al., 2017).

From the HeRO experience, we also know that some
drugs (i.e., dexamethasone, paralytics, anesthetics, and
anticholinergics), surgery, and initiation of mechanical
ventilation can significantly alter various HRV metrics (Fairchild
and O’Shea, 2010; Fairchild, 2013).

If all these factors can impact HRV, thereby biasing its
measurement, a real-time monitor could overcome these biases
by recording how HRV changes before, during, and after
the occurrence of these factors. Again, ML algorithms could
help cope with these confounding factors: by weighting and
integrating their effects, such technology could help reduce false
alarms, exactly as those algorithms that can detect artifacts due to
baby’s movements (Ostojic et al., 2020).

The Clinical Usefulness of Real-Time
HRV to Monitor Newborns
As with HR and SpO2, HRV could be monitored in real-time to
provide information about the infant’s current conditions.

Real-time HRV helped identify stress-related behaviors, which
are difficult to visually recognize: for example, LF increased
during stress behaviors, whereas HF increased with self-consoling
behaviors (Gardner et al., 2018). Moreover, real-time HRV
monitoring—as revealed by changes in short- and long-term
metrics, such as RMSSD, LF/HF, SampEn, and DFA α1 (but
also SDNN, LF, HF, SD1, SD2, ApEn, and DFA α2) or in the
newborn infant parasympathetic evaluation (NIPE)—correlated
with nociceptive events, such as heel stick (Weissman et al., 2012;
Butruille et al., 2015).

Derived from short-term HRV metrics related to PNS and
reflecting HFn variations, the NIPE aims to assess in real-
time the level of the newborn’s comfort and nociception
(Butruille et al., 2015). Although it failed to correlate with
pain scales measuring acute neonatal pain (Cremillieux et al.,
2018) and with hemodynamic change following endotracheal
intubation in children aged 1–24 months (Zhang et al., 2019),
the NIPE succeeded in evaluating prolonged neonatal pain
(Buyuktiryaki et al., 2018) and the balance between nociception
and antinociception (Weber et al., 2019; Zhang et al., 2019).

Studies that continuously recorded HRV for more than 24 h,
or that reviewed those recordings if available, led to discovering
that HRV alteration can precede adverse outcomes even by 24 h
(Griffin and Moorman, 2001; Stone et al., 2013; Kumar et al.,
2020). Many of the studies about the predictive power of real-
time HRV, in particular, in case of infections, relied on the HeRO
monitor (Andersen et al., 2019; Kumar et al., 2020). The NIPE
technology represents another attempt of introducing real-time
HRV monitoring in NICUs, but it needs further evidence (Weber
et al., 2019; Zhang et al., 2019).

It was revealed that HRV measured with the HRC index
decreased 6 h before medical NEC and even 16 h before surgical
NEC, thus also indicating the severity of the newborn’s condition
(Stone et al., 2013). Abnormal heart rate characteristics (HRC)
correlated with a several-fold increase in the risk of sepsis, urinary
tract infections, and death in the day and week next to alteration
(Griffin et al., 2005), and it could also precede the occurrence of
SIDS (Zhao et al., 2016). In infants aged 28–35 weeks, low HF
(less than 4.68 ms2) was found to correlate with the incidence of
NEC stage 2+ (Doheny et al., 2014).

In a recent study, HRV combined with respiratory variability
analysis changed significantly during the 24 h before the diagnosis
of late-onset sepsis, especially in the last 6 h where real-time
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monitoring showed signals of cardiorespiratory instability. The
reduction in RMSSD, accompanied by a decrease in average
acceleration response (AAR, a robust index evaluating the heart
capacity to increase its rhythm) and an increase in respiratory
variability-related ApEn, predicted late-onset sepsis the most
(Joshi et al., 2020).

The HeRO monitor, allowing NICU professionals to
continuously observe the HR characteristics variation, reduced
relative mortality due to sepsis even more than 20% (Fairchild,
2013; Kumar et al., 2020), especially when birth weight was lower
than 1,000 g (Moorman et al., 2011).

A system that assesses real-time HRV can thus have significant
clinical implications. Such a system could display both short-
and long-term HRV metrics, thus augmenting HRV predictive
usefulness (Voss et al., 2013) and overcoming the limits of short-
time metrics, which are highly sensitive to artifacts (Stapelberg
et al., 2017). Due to being non-invasive, real-time HRV would
also be preferable to other assessment procedures that can
cause discomfort to newborns and take time to be performed
(De Jonckheere and Storme, 2019).

However, what could be the best way to make HRV an
innovative tool that could augment the newborn’s management?

THE FUTURE PERSPECTIVES FOR THE
CLINICAL USE OF HRV IN THE NICU

Technological Innovation to Monitor HRV
in Real-Time
HRV monitoring is more accessible and less invasive
than other diagnostic and predicting methods, such as
blood sampling for measuring inflammatory cytokines
and predicting sepsis (Fairchild, 2013). Real-time HRV
monitoring could, thus, represent a significant step
forward to improve baby care, especially when clinical
decision-making is based on the sole experience of NICU
professionals (Mowery et al., 2011; Oliveira et al., 2019a;
Weber and Harrison, 2019).

Relying upon the instruments already present in NICUs is
paramount (Rajalakshmi et al., 2019); in particular, due to the
advantages over ECG, PPG could be the instrument to choose,
although PPG-based computation can suffer from precision
issues compared with ECG-based computation (Kevat et al.,
2017; Pernice et al., 2019b; Henry et al., 2020).

For the sake of simplicity and for attracting clinicians to the
use of HRV (King, 2020), the first step could be introducing in
NICUs a PRV/HRV monitor that shows a single metric able to
correlate with the infants’ clinical conditions or development.
Although the literature shows that the combination of more
metrics can perform better than the use of single metrics (as
detailed in previous sections), the literature also shows that
single metrics can display good performance (more details in
the next sections).

In infants, RMSSD correlated with several outcomes in
both the short and the long term: ANS stage of development
in the case of prematurity (Hoyer et al., 2009; Lucchini et al.,

2016; Aye et al., 2018; Schneider et al., 2018), late-onset
sepsis (Joshi et al., 2020), extubation success (Latremouille
et al., 2018), recovering after admission in intensive care
units (Marsillio et al., 2019), pain behavior (Weissman
et al., 2012), short-term neurological development when
measured during low blood pressure episodes (Semenova
et al., 2018), and later neurological development at 2 years
(Dimitrijević et al., 2016). RMSSD showed also to change
according to the incubator temperature, thus revealing how
infant’s HRV changes due to environmental temperature
(Stéphan-Blanchard et al., 2013).

RMSSD seems a reliable index of HRV modulation by vagal
activity (Shaffer and Ginsberg, 2017) and has good statistical
properties (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996),
and in adult studies, it was associated with adult health more
than immune, inflammatory, and metabolic blood markers
(Jarczok et al., 2015).

The good relationship with vagal activity makes RMSSD
particularly interesting for neonatologists, for three main reasons:
(a) the PNS develops during the last weeks of gestation—when
preterm birth can occur—and after birth (Schneider et al., 2018;
Patural et al., 2019), (b) the PNS activity correlates with the
infant’s conditions and development (Mulkey and du Plessis,
2019), and (c) since vagal activity correlates positively with
inflammation regulation (Fairchild and O’Shea, 2010), RMSSD
could help detect newborn’s inflammation (as shown in animal
fetuses, Frasch et al., 2016). The relation of RMSSD with
vagal-related HRV modulation could help clinician in easily
interpreting RMSSD changes: the lower the RMSSD, the lower
the modulation by the vagal activity, and thus, the worse the
infant’s conditions.

As a time-domain metric, RMSSD has the advantage over
frequency-domain metrics of being a more “direct” measure:
RMSSD is obtained by merely calculating the root mean square
value of successive time differences between heartbeats (Shaffer
and Ginsberg, 2017). Hence, it does not suffer from the
conceptual biases that could arise with frequency-domain metrics
due to choosing a frequency threshold not validated in humans
(Hayano and Yuda, 2019).

Therefore, the NICU real-time monitor could report RMSSD
tracking in the previous 24 h, 4–5 min, and also 10–30 s—
ultra-short RMSSD recordings are as reliable as short ones
(Munoz et al., 2015). The monitor could be equipped with
an alarm that activates when the actual RMSSD value changes
over a threshold from the newborn’s past mean value. The
alarm could activate when RMSSD decreases—lower modulation
by vagal activity and, thus, risk of worse outcomes—but
also when it rises significantly. For instance, an increase
in RMSSD could represent pathological conditions, such as
severe unconjugated hyperbilirubinemia (in association with low
minimum HR) (Özdemir et al., 2018), or the occurrence of an
antenatal/intrapartum hypoxia–ischemia that could lead to brain
injury (Frasch, 2018; Yamaguchi et al., 2018).

To make HRV a gold standard, however, there is the need to
deepen the knowledge about RMSSD or any other metric: more
robust studies on larger samples are needed (Stéphan-Blanchard
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et al., 2013; De Jonckheere and Storme, 2019) as studies still show
contradictory findings that merit careful analysis (Wang et al.,
2016; Joshi et al., 2020).

A further crucial step is to integrate HRV signals with other
vital signs, such as SpO2 and blood pressure, to improve its
predictive power and reduce mortality (Sullivan et al., 2018;
Kumar et al., 2020). Even further is the integration of information
about the infant’s gestation, labor, and perinatal period is
essential: since NICU professionals have to deal with complex
pathologies, including SIDS (Siren, 2017), technological tools
that can elaborate all these types of information could become
paramount to improve clinical care (Hemphill et al., 2011).

Therefore, in parallel with introducing a real-time HRV
monitoring system, there might be the possibility to start using
the tools already present in NICUs to collect a large amount of
data about all the babies’ vital signs (Kumar et al., 2020). This
data could then be analyzed by ML algorithms, whose results
the bedside monitors would display as one or more metrics,
graphs, or models (Bravi et al., 2011; Hemphill et al., 2011;
Seely et al., 2011).

Indeed, several fields in medicine share this need of collecting
and using a large amount of data to improve patient care. An
example is the neurocritical care where, as any other intensive
care unit, “extreme complexity reigns”: continuous multimodal
monitoring is vital to guide an efficient decision-making process
with the purpose of preventing complications and warranting
survival, especially in case of emergency (Hemphill et al., 2011;
Lara and Püttgen, 2018).

However, this means revolutionizing the NICU itself. First,
the data must be stored and automatically controlled for
artifacts. Then, all the medical devices have to communicate
and to be synchronized with each other to assure the collected
data are coherent; they could also connect to a central
computer/hub that autonomously synchronizes the data process.
Synchronization is essential: otherwise, data interpretation would
become flawed. Lastly, clinicians could add laboratory values,
imaging results, and medical documentation to the patient’s
record (Hemphill et al., 2011).

Advanced bioinformatics could then follow with the use of the
many available techniques of data mining coming from statistics,
ML, and AI. For example, ML or Deep Learning approaches can
be used, including the ones based on decision trees and neural
networks, especially dynamic Bayesian neural networks, which
capture well non-linear phenomena with complex multimodal
relationships. Based on the big-data of other patients, such
approaches could elaborate the past and present information
of the actual patient to predict the evolution of the clinical
conditions. Moreover, they could visualize this prediction in
more useful ways (e.g., from numerical probability to specific
types of graphs) than raw data or simple statistical metrics
(Hemphill et al., 2011).

Multimodal monitoring and the efficient application of
data mining algorithms in medicine have yet to grow. In
fact, many obstacles (e.g., the availability of resources) may
hinder such development, but the complexity of intensive care
units makes a strong call to action, and the stakeholders in
the healthcare systems must be aware of the opportunities

informatics could give to clinical care (Hemphill et al., 2011;
Lara and Püttgen, 2018).

The stakeholders must also know that it is paramount to
establish tight collaborations between the obstetric, neonatal, and
pediatric departments: sharing data about patients’ health and
medical devices among these departments would elicit high-
quality research that would help clinicians to correlate neonatal
outcomes to their fetal development and past history, thus truly
improving neonatal care—otherwise, how would it be possible to
treat neonatal pathologies ignoring their fetal origin?

In the next sections, it is argued as HRV analysis could indeed
represent a useful tool to help both in decision-making and in
monitoring the infant’s condition.

HRV as an Innovative Tool in Neonatal
Decision-Making Intervention
Because various metrics, such as RMSSD, relate to HRV
modulation by vagal tone, which plays a significant role in infant’s
condition, HRV monitoring could give reliable information about
the infant’s level of stress (Mulkey and du Plessis, 2019).

Indeed, since LF and HF inversely correlated with salivary
cortisol levels in both healthy and NICU admitted newborns
(Hashiguchi et al., 2020), real-time HRV monitoring could
assess the actual stress level of newborns. Moreover, since
stress- and pain-related behaviors in newborns are difficult to
discriminate, real-time HRV could represent a valuable tool to
assess both neonatal stress and pain (Cremillieux et al., 2018;
Zhang et al., 2019).

As neonatal stress and pain can adversely influence
neurodevelopment and brain maturation, as well as future
health and longevity (Holsti et al., 2006; Reynolds, 2013; Pillai
Riddell et al., 2015; Simeoni et al., 2018), every procedure that
can improve the newborn’s condition is paramount, especially
in case of prematurity or pathological conditions. Knowing
when and how to apply such procedures is even more essential:
a real-time HRV monitor that gives information about the
actual newborn’s level of stress could elicit NICU professionals
to promptly adjust the NICU environment to improve the
newborn’s wellbeing and comfort.

Real-time HRV would help nurses to adopt correct
behaviors for reducing visual and auditory overstimulation:
in a complex environment, such as the NICU, it is indeed
difficult to know exactly when to perform these procedures
(Aita and Goulet, 2003).

Based on the value of the index shown by the HRV monitor,
NICU staff could increase or decrease the temperature of
the incubator, change the illumination intensity or type, and
introduce positive stimuli: for instance, human voice or songs,
even recorded, cloths with parent-scent, eye contact, and gentle
touch (Ozawa et al., 2010; Stéphan-Blanchard et al., 2013; Weber
and Harrison, 2019).

Real-time HRV could also help choose between “positive”
procedures, such as facilitated tucking—manually supporting
the baby by holding the upper and lower extremities in
flexion—plus human voice or skin-to-skin contact between
the mother and the newborn: these procedures, if well
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performed, should increase the level of newborn’s comfort,
and a HRV monitor could be able to show their actual
benefit (Alexandre et al., 2013; Butruille et al., 2017;
Marvin et al., 2019).

As shown in sections “The ANS Development and Its
Relationship With HRV” and “ Factors That Can Alter
HRV Assessment”, HRV metrics could change according to
environmental factors. However, this knowledge must be
deepened, and the faster way to achieve this result could be
introducing HRV monitoring in as many NICUs as possible and
by collecting a large amount of data, from which ML applications
could extrapolate models or metrics suitable and clinically-sound
for the above-mentioned conditions.

A real-time HRV monitor could help understand when
newborns need analgesic medications to withstand better
invasive and noxious procedures (Weber et al., 2019)
or adjuvant neuroprotective therapies in case of HIE—
infants who subsequently died due to HIE showed lower
LF and higher HF—(Massaro et al., 2014), and it could
also help choose better how to administer surfactant in
case of respiratory distress syndrome—the NIPE index
showed different values according to the technique used
(Okur et al., 2019).

In the same way, HRV could guide the choice among
various respiratory supports post-extubation, besides predicting
the outcome of extubation. Indeed, RMSSD, SDNN, pNN50,
TP, and VLF were higher during non-synchronized non-
invasive ventilation than during nasal continuous positive
airway pressure (CPAP) in extreme preterms who were
reintubated a few hours later (Latremouille et al., 2018). Such
difference was not found in infants who showed successful
extubation, even though every HRV metric analyzed was
higher (but not significantly) during ventilation than nasal
CPAP. Therefore, the authors speculated that those variations
could correlate with the failure in extubation, and that non-
invasive ventilation could better modulate the ANS of less
stable infants than nasal CPAP (Latremouille et al., 2018).
HRV measured as SDRR was also found to increase during
high flow nasal cannula, but not during nasal CPAP, in
extremely preterm infants who succeeded in being extubated
(Latremouille et al., 2019).

HRV as an Index to Monitor Clinical
Improvement
To be an all-round innovative tool, real-time HRV should
not only predict future outcomes with good accuracy but
should also provide useful information to monitor the current
condition of the newborn.

The question is: could HRV help understand whether the
baby’s condition is deteriorating or improving?

A real-time HRV monitoring system could give a clear answer.
Besides, this is another field in which more data and the use of
ML software could dramatically increase the clinical usefulness
of HRV, and thus another reason to introduce HRV monitors
in NICU and to integrate their recordings with the infant’s
development over time.

HRV—measured through several metrics including HRC
index, DFA αS, RMSS, RMSL, LF, and HF—could change greatly
in case of pathological conditions, such as congenital heart
disease, cardiac failure in persistent ductus arteriosus, respiratory
deterioration with apnea, respiratory distress syndrome,
inflammation, hyperbilirubinemia, respiratory syncytial virus,
and sepsis. Indeed, inflammatory cytokines (e.g., IL-6, IL-8, and
IL-13), bacterial toxins, and free bilirubin could pass through the
immature brain–blood barrier and exert neurotoxic activity, thus
negatively influencing the nervous system. The same negative
effect can be induced by the cardiorespiratory pathologies (van
Ravenswaaij-Arts et al., 1991; Prietsch et al., 1992; Stock et al.,
2010; Raynor et al., 2012; Sullivan et al., 2014; Uhrikova et al.,
2015; Al-Shargabi et al., 2017; Mulkey et al., 2020).

Since HRV modifications correlated with inflammatory
cytokine levels (Al-Shargabi et al., 2017), real-time HRV
could be a useful marker of clinical acuity: indeed, HRV
alterations—a decrease in RMSS, RMSL, DFA αS, LF, HF,
and TP or an increase in HRC index—correlated with the
pathology severity (Sullivan et al., 2014; Al-Shargabi et al.,
2018). Variations in LF, HF, and LF/HF correlated with
HIE severity, although more studies are needed to resolve
conflicting results between studies (Andersen et al., 2019).
In a recent paper on a pediatric population, compared
with the time of admission in the intensive care units,
RMSSD, SDNN, and pNN50 continuously rose as the time
of discharge approached, that is, as the infants recovered
(Marsillio et al., 2019).

The correlation between HRV alterations, inflammation,
and inflammation-related pathologies can be better understood
through the cholinergic anti-inflammatory pathway (CAP).
Briefly, the CAP begins with the afferent vagus nerve that
detects inflammatory cytokines or bacterial toxins and
transmits these signals to several brain nuclei, which then
induce an anti-inflammatory response through the release of
acetylcholine. This response involves complex interactions
between both ANS branches and plays a paramount role
in finely tuning the immune response and avoiding tissue
damages in case of inflammation (Garzoni et al., 2013;
Bonaz et al., 2017).

The CAP can fail to properly function in case of ANS
dysfunction, but also due to pathogens and inflammation:
pathogens can rapidly activate but desensitize the CAP (i.e., alter
cholinergic receptors) (Fairchild et al., 2011), whereas prolonged
inflammation can induce apoptosis in the brainstem vagal nuclei
(Fritze et al., 2014). As a result, HRV decreases, and adverse
outcomes can occur: indeed, low vagal activity and reduced
CAP efficiency correlate with increased inflammation, morbidity,
and mortality, in both infants and adults (Garzoni et al., 2013;
Bonaz et al., 2017).

In fetuses, the CAP, although at the early stage of maturation,
might also modulate local and systemic inflammation (Garzoni
et al., 2013). Indeed, animal studies suggested that in ovine
fetuses, CIMVA applied to fHRV found several metrics
that uniquely predicted, 1.5 days in advance, M1 and M2
macrophages activation and occludin expression (i.e., increased
leakiness) in the terminal ileum (Liu et al., 2016). Therefore,
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if cytokines and toxins can alter HRV through the CAP, it
might be intuitive why HRV analysis can inform about the
global health of the infant and predict future inflammation-
related development.

HRV modifications could also reflect the effect of treatments,
such as ventilation, antibiotics, and phototherapy. To date, a clear
correlation is still lacking, and better research is needed, although
initial evidence is available (Sullivan et al., 2014; Uhrikova et al.,
2015; Al-Shargabi et al., 2017; Latremouille et al., 2018). For
instance, as RMSS, RMSL, DFA αS, LF, HF, and TP decreased
around 48 h before NEC occurred, the same metrics recovered
to their baseline values during the first 60 h after NEC diagnosis
(Al-Shargabi et al., 2018). Monitoring HRV in the 60 min prior
to extubation could help predict which babies will have an
adverse outcome, since they could show much lower TP, LF, HF,
LF/HF, and VLF than babies who will succeed in being extubated
(Kaczmarek et al., 2013).

Other indications about the clinical usefulness of HRV, and
real-time monitoring, come from the studies on HIE severity
and ANS in infants. During therapeutic hypothermia for HIE,
lower RMSS, RMSL, DFA αS, and LF and higher HF indicated a
higher risk of secondary energy failure, brain injury, and death,
thus helping in identifying the infants who failed to respond
to hypothermia and needed adjuvant neuroprotective therapies
(Govindan et al., 2014; Massaro et al., 2014; Metzler et al., 2017).
The analysis of DFA αS, RMSS, and RMSL could also prove useful
to discriminate among different types of brain injury, such as
white matter injury, watershed stroke, basal ganglia injury, or
global injury (Metzler et al., 2017). As shown with fHRV analysis,
HRV monitoring, especially during labor, could also predict
which newborns are at risk of developing neuroinflammation
and, thus, brain injury—neuroinflammation is correlated to
severe acidemia, and fHRV monitoring could detect it with 1 h
of advance. Since therapeutic hypothermia is poorly applied,
either because often the brain injury has already developed
or because neonatologists lack tools to properly recognize
which newborns require hypothermia, HRV monitoring could
overcome this predicament (Frasch et al., 2014; Xu et al., 2014;
Gold et al., 2019).

Real-time HRV is shown to be useful for monitoring
how infants react to routine-care procedures, such as diaper
changes or pupil examination, and for revealing neurological
abnormalities. Indeed, infants with HIE and impaired ANS—
defined as at least one alteration in LF, HF, DFA αS, RMSS, or
RMSL—showed HR, blood pressure, and cerebral blood flow
alteration during those procedures. Moreover, the more the
number of altered HRV metrics, the worse the outcome, i.e.,
moderate severe brain injury or death (Campbell et al., 2018).

Real-time HRV could also help mothers and fathers to
monitor the interaction with the baby: using a feedback and
feedforward process, parents could see how their actions affect
their baby (Van Puyvelde et al., 2019a,b; these studies, however,
examined how touch influenced RSA and RR intervals, not
specific HRV metrics).

Furthermore, real-time HRV could help control how the
infant’s condition progresses in different positions (supine, prone,
or side-lying). This monitoring would be useful, for example, to

balance the need for proper oxygenation and avoiding adverse
outcomes, such as SIDS. Infants who succumbed to SIDS showed
lower RSA during all sleep stages (Kluge et al., 1988) and
altered Poincaré plots compared with controls (Schechtman
et al., 1992). Those infants showed also higher basal HR during
QS (Kelly et al., 1986), lower HF, and higher LF before pre-
apneic sighs than those infants who did not die from SIDS
(Franco et al., 2003).

Newborns who develop SIDS seem to show an autonomic
instability that impedes them from facing a life-threatening event
(Elhaik, 2016; Zhao et al., 2016). Real-time HRV could help
prevent this adverse scenario. Besides, due to the uncertainty
still surrounding SIDS—for instance, infants who succumb to
SIDS could even show the same RSA and HR, but higher LF
than controls (Gordon et al., 1984)—, continuous monitoring
data analyzed by AI algorithms could help shed more light
on SIDS occurrence by giving useful information about the
newborn’s ANS condition.

Speaking of which, an ML algorithm based on boosted
decision trees increased the predictive power of HRV during
episodes of low mean blood pressure in preterm infants
with a GA between 23 and 31 weeks. Although good
results were obtained even with single metrics—among time,
frequency, and non-linear ones, RMSSD gave the best area
under the curve (0.87)—combining all the metrics through the
mentioned algorithm gave an area under the curve of 0.97
for predicting short-term neurological outcomes (i.e., grade
III/IV intraventricular hemorrhage or cystic periventricular
leukomalacia, NEC, bronchopulmonary dysplasia, infection, and
retinopathy) (Semenova et al., 2018).

Lastly, real-time HRV monitoring could give information
about the neurological development. Indeed, newborn’s HRV
predicted the occurrence of neurological abnormalities—cerebral
palsy, language or mental retardation, vision or hearing
disability, or attention disorders—at 2 years (Thiriez et al., 2015;
Dimitrijević et al., 2016). Twenty-four hour RMSSD, SDANN,
and SDNN were particularly good predictors, respectively, 88.9,
83.3, and 83.3% specificity and 100% sensibility using the
threshold values of 17, 38, and 47 ms—and also improved
the prognostic value of general movements assessment: among
newborns with poor repertoire general movements, those with
higher RMSSD, SDANN, and SDNN showed better neurological
development (Dimitrijević et al., 2016).

HRV Potential Usefulness in Middle- and
Low-Income Realities
HRV could be a useful non-invasive tool to assess infant’s
conditions and to reduce the risk of adverse outcomes and, as
the HeRO monitor showed, mortality from sepsis. This last result
is worth noting since neonatal sepsis remains one of the major
causes of neonatal mortality, together with prematurity and
birth-related complications, and this holds especially in middle-
and low-income countries (WHO, 2016).

Indeed, only 15 in 48 Asian and African countries reported
having an indicator about sepsis management in their Health
Management Information Systems (WHO, 2017). In countries,
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such as South Africa and India, about 1 infant in 35 dies before
the first birthday, even more than ten times compared with
developed countries, such as Japan, Sweden, or Italy (about 1
in 350–500) (OECD, 2020). Closing this large gap by reducing
worldwide neonatal mortality to less than 1 infant in 100 was
deemed by the WHO as one of the top priorities in 2015 (WHO,
2016). Of notice, the first 28 days after birth shows the highest
mortality risk (United Nations Inter-agency Group for Child
Mortality Estimation (UN IGME), 2019).

The studies that investigated the reasons behind the difference
in mortality highlighted that the barriers to efficient care were
twofold. On the one hand, people tend to delay seeking care
due to lack of knowledge about neonatal health, sociocultural
behaviors (e.g., relying on traditional practices), and several
concerns about the cost of healthcare, the attitude of NICU staff,
and the lack of appropriate medical equipment (Watson et al.,
2020). On the other hand, obstetrics and neonatal evidence-
based practices fail to be introduced due to lack of financial
resources, workforce capacity, and specific training in case of
emergency. The effect is a low-quality screening for pathological
conditions, such as IUGR or sepsis, which can lead to severe
neonatal health problems and even death (Hoyer et al., 2017;
Otieno et al., 2018).

To date, real-time HRV monitoring cannot solve all these
complex problems, but it could surely address financial- and
efficiency-related obstacles. Indeed, HRV monitors based on
PPG, contactless vPPG, or even BSG could be low-cost and easy-
to-use devices (Sun et al., 2012; Sun and Thakor, 2016; Joshi et al.,
2018) that allow midwifery and NICU staff to efficiently monitor
the newborn’s development, screen for pathological conditions,
and choose the best treatment (Hoyer et al., 2017). A recent paper
showed that the HeRO monitor could also help reduce, even
if a modest effect was shown, the use of antibiotics and blood
culture tests for suspicion of sepsis in the first 120 days of life
(King, 2020).

Moreover, if relying on big-data and the Internet, the HRV
monitors could even be simple systems that monitor the babies,
send information to a central hub (e.g., through the Cloud),
and receive the corresponding elaboration, thus having the

same efficiency of HRV monitors in high-income countries
(Werth, 2019).

CONCLUSION

The present paper reviewed the use of HRV in the neonatal
field and the utility of real-time HRV monitoring to assess
the newborn’s clinical conditions, showing that several
metrics and computed metrics change in conjunction with
stress-/pain-related behaviors, inflammation, pathological
conditions, such as cardiac failure, respiratory distress
syndrome, hyperbilirubinemia, NEC, and sepsis, and
neurological development.

The paper also reviewed the NICU technology to evaluate how
to measure real-time HRV efficiently. Indeed, a system based on
PPG could be the optimal solution due to being low-cost, easy-to-
use, and non-invasive, although PPG-based computation seems
less precise than ECG-based computation. Therefore, future
studies will have to carefully assess if the outcomes reviewed in
this paper might be influenced by this difference in precision
between PPG and ECG.

In the next decade, introducing real-time HRV in NICUs
would be a great step forward in the improvement of
neonatal care, especially if supported by the advancements
in bioinformatics, which could easily extrapolate accurate
predicting models from all the data collected in the NICUs,
although several concerns and limitations have to be
overcome before fully implementing the system into a daily
NICU routine care.
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