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A recurrent de novo mutation in the transcriptional corepressor CTBP1 is
associated with neurodevelopmental disabilities in children (Beck et al., 2016, 2019;
Sommerville et al., 2017). All reported patients harbor a single recurrent de novo
heterozygous missense mutation (p.R342W) within the cofactor recruitment domain of
CtBP1. To investigate the transcriptional activity of the pathogenic CTBP1 mutant allele
in physiologically relevant human cell models, we generated induced pluripotent stem
cells (iPSC) from the dermal fibroblasts derived from patients and normal donors. The
transcriptional profiles of the iPSC-derived “early” neurons were determined by RNA-
sequencing. Comparison of the RNA-seq data of the neurons from patients and normal
donors revealed down regulation of gene networks involved in neurodevelopment,
synaptic adhesion and anti-viral (interferon) response. Consistent with the altered
gene expression patterns, the patient-derived neurons exhibited morphological and
electrophysiological abnormalities, and susceptibility to viral infection. Taken together,
our studies using iPSC-derived neuron models provide novel insights into the
pathological activities of the CTBP1 p.R342W allele.

Keywords: transcriptional repression, CtBP, de novo mutation, interferon response, intellectual and
developmental disabilities, transcriptome analysis

INTRODUCTION

The C-terminal Binding Protein (CtBP) family consists of two highly related paralogs, CtBP1
and CtBP2 (and their splice forms) in vertebrates (Chinnadurai, 2007). The nuclear isoforms of
CtBP1 (CtBP1-L, NM_001328.2) and CtBP2 (CtBP2-L, NM_022802.2) function as transcriptional
corepressors (reviewed in Chinnadurai, 2007). CtBPs mediate transcriptional repression by
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targeting various chromatin-modifying enzymes to the promoter
regions and by interacting with DNA-bound repressors. CtBPs
bind with the chromatin modifying factors and various repressors
through a high-affinity protein-binding interface known as
PXDLS-binding cleft. In addition, an auxiliary protein-binding
interface termed RRT-binding groove in CtBPs is involved
in interaction with certain Zinc-finger-containing transcription
factors. The CtBP1 corepressor complex mediates coordinated
histone modifications by deacetylation and methylation of
histone H3K9 and demethylation of histone H3K4 (Shi et al.,
2003). CtBPs also activate transcription under certain specific
contexts (Fang et al., 2006; Paliwal et al., 2012; Bajpe et al., 2013;
Itoh et al., 2013; Ray et al., 2014). Since CtBPs are NAD(H)-
binding proteins (Kumar et al., 2002; Nardini et al., 2003),
the intracellular levels of NAD(H) dinucleotides differentially
regulate their transcriptional activity through oligomerization
(Zhang et al., 2002).

Studies on mice with disruptions in the ctbp genes, showed
that ctbp1 and ctbp2 play overlapping and unique transcriptional
roles during development (Hildebrand and Soriano, 2002). While
homozygous deletion of the ctbp2 gene was embryonic lethal
affecting brain and heart development, homozygous deletion of
ctbp1 resulted in viable mice with reduced size and lifespan.
In humans, overexpression of CTBP1 and CTBP2 was reported
in a number of epithelial cancers and was associated with
transcriptional activity that leads to epithelial to mesenchymal
transformation (reviewed by Chinnadurai, 2002; Byun and
Gardner, 2013; Dcona et al., 2017). A role of CTBP1 in
human neurodevelopment was revealed with the discovery of a
recurrent de novo missense mutation in CTBP1 (c.991C → T,
p.R331W in NM_001012614.1; p.R342W c.1024 C → T in
NM_001328.2) in patients with neurodevelopmental features
including intellectual disability, ataxia, hypotonia, as well as
tooth enamel defects (Beck et al., 2016, 2019; Sommerville
et al., 2017). The neurodevelopmental phenotypes conferred
by the CTBP1 mutant allele provide genetic evidence that
CTBP1 is important for normal human brain development.
Previous biochemical studies also suggested that CtBPs might
be important for certain brain developmental functions (Sahu
et al., 2017; Shen et al., 2017). CtBP1 has been reported to
mediate transcriptional repression of a number of neuronal genes
involved in synaptic activities of the inner ear hair cells, the
retina (Ivanova et al., 2015) and the synaptic ribbon complex
(Tom Dieck et al., 2005).

The mechanism by which the pathogenic CTBP1 mutant
allele contributes to neurodevelopmental disease is not known.
The mutation (referred here as p.R342W) maps within an
α-helical region (α-5) of CtBP1 that forms a part of the
PXDLS-protein interaction cleft. In a glioblastoma cell line
with exogenously expressed CTBP1 p.R342W, the interactions
of various CtBP-cofactors were reduced with the mutant
protein (Beck et al., 2019). In order to determine the altered
transcriptional profiles in patient-derived cell models, we
generated iPSCs from dermal fibroblasts, differentiated them
into early stage neurons, and determined their transcriptional
profiles by RNA-seq. The morphological and physiological
changes inferred from the altered gene expression profiles of

patient-derived cells were also determined. Here, we report that
genes involved in neurodevelopment, adhesion and antiviral-
response pathways are downregulated in CTBP1 heterozygous
p.R342W neurons. Consistent with the transcriptome data,
patient-derived heterozygous p.R342W neurons also showed
morphological and physiological abnormalities and susceptibility
to neurotropic viral pathogenesis.

RESULTS

Neuronal Cell Models
Since the CTBP1 p.R342W mutation is associated with
neurodevelopmental disabilities, we designed experiments to
compare the transcriptional profiles of patient and healthy
control derived neuronal cell models. We generated iPSCs
from the dermal fibroblasts of two patients with the CTBP1
p.R342W heterozygous mutation and two age-matched normal
donors using Sendai virus delivery of the Yamanaka factors
(Klf-4, Sox-2, Oct3/4, and c-Myc) (Ban et al., 2011; Nayler
et al., 2017). We further differentiated the iPSC (Supplementary
Figure 1A) into neural stem cells (NSC) (Supplementary
Figure 1B) and early (14-days of differentiation) neurons
(Figure 1) using neural differentiation media. These neurons
were used for transcriptional profiling and morphological and
electrophysiological comparisons.

The phase contrast images of iPSC/NSC-derived neurons
of normal donors and patients revealed typical neuronal
morphology, exhibiting ability to grow and extend robust
neurites and form inter- connections (Figure 1). To quantify
the differences in neurite length and number, phase contrast
images were measured using the ImageJ software, NeuronJ
(Meijering et al., 2004; Pemberton et al., 2018). While there
were no significant differences between patient and control
cells in these outgrowth parameters (Figures 1D,E), analysis
of neurite thickness demonstrated a significantly decreased
primary neurite thickness in patient cells compared to control
cells (Figure 1A, arrows; Figure 1F). The neurons were also
analyzed by immunocytochemistry labeling of the cytoskeletal
markers beta-3 Tubulin (green) (Figure 1B) and Microtubule-
Associated Protein 2 (MAP2, red) (Figure 1C). This analysis
confirmed robust and extensive internetworks formed by both
control- and patient-derived neurons. We also quantified the
staining of nuclei with DAPI (blue). Compared to controls,
patient cultures had, in general, fewer DAPI-positive cells
(Figure 1G). Together, these results indicated that neurons
derived from CTBP1-mutated stem cells survived less in
culture. Although they were able to form and extend neurites,
like control neurons, the neurites of patient neurons were
significantly thinner.

Transcriptomic Profiling of
iPSC/NSC-Derived Neurons
To determine the transcriptional profiles altered by the CTBP1
mutant allele (p.R342W) in patient-derived cell models, we
prepared RNA from the neurons (14-days after differentiation)
generated from two different patient-derived NSC and two
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FIGURE 1 | Morphology of iPSC/NSC-derived neurons. Neurite networks of healthy donor control (Ct1 and Ct2) and patient (Pt1 and Pt2) neurons were revealed by
phase contrast imaging (A) and immunofluorescence imaging of cells stained with antibodies to cytoskeletal proteins beta-3-Tubulin (B) and MAP2 (C). The length
(D), number (E) and thickness (F) of neurites were measured from phase contrast images and quantified. There were no significant differences in either the number
or the length of neurites between control or patient-cells. Specifically, the average neurite length (D) of different cells was: Ct1, 93.2 ± 8.4 µm; Ct2, 94.6 ± 11.6 µm;
Pt1, 96.1 ± 10.1 µm; and Pt2, 86.2 ± 7.0 µm (p = 0.882; n = 5). The average number (E) of neurites per image was: Ct1, 225.8 ± 46.4; Ct 2, 247.2 ± 54.6: Pt1,
236.0 ± 42.4; and Pt2, 225.4 ± 39.8 (p = 0.985; n = 5). The average neurite thickness (F) in Ct1 was 5.4 ± 0.3 µm, Ct2 was 5.8 ± 0.2 µm, Pt1 was 4.5 ± 0.2 µm,
and Pt2 was 4.3 ± 0.2 µm (p = 0.03 for Ct1 vs Pt1; p = 0.00045 for Ct2 vs Pt1; p = 0.005 for Ct1 vs Pt2; p = 0.00004 for Ct2 vs Pt2; n = 10 primary neurites
measured in 5 phase contrast images for all conditions, totaling 50 neurites measured per condition). * Indicates a significance level of p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001. (G) Number of DAPI-Positive Cells Bar Graph. DAPI staining of nuclei revealed fewer patient neurons adhered to the culture dish.
Number of DAPI-positive cells in Ct1 was 49.2 ± 14.4, in Ct2 was 73.4 ± 19.5, in Pt1 was 19.5 ± 4.5, and in Pt2 was 22.3 ± 14.3 (p = 0.0507; n = 6, 6, 5, and 3
fluorescent images analyzed for Ct1, Pt1, Ct2, and Pt2, respectively). Scale bar is 25 µm.

healthy donor NSC lines. The cDNA generated from RNA
derived from the early neurons were sequenced on an Illumina
HiSeq 3000 with single-end 50 base pair reads. The sequence
reads were aligned with STAR (Dobin et al., 2013), and were

quantitated with Subread (Liao et al., 2014). The gene counts
were analyzed using established methods for quantifying gene
expression: the R/Bioconductor package Limma (Ritchie et al.,
2015) and SVA (Leek et al., 2012). Our analysis revealed that out
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of 15,942 gene transcripts robustly expressed at greater than 1
count-per-million in at least 5 samples, 7,141 were differentially
expressed between patient and control neurons (FDR ≤ 0.05).
Among these transcripts, 6,500 genes were protein-coding. As
depicted in the volcano plot, among the differentially expressed
protein-coding transcripts, 161 were down-regulated and 36
were up-regulated by 3-fold or more in patient-derived neurons
(Figure 2A). All genes were then tested for perturbations in gene
ontology (GO) biological processes (Figure 2B).

The differentially expressed genes were then subjected
to Weighted Gene Correlation Network Analysis (WGCNA)
(Langfelder and Horvath, 2008). A matrix of de novo color-
coded modules found by WGCNA and correlated with
the mutation are shown in Figure 2C. The modules with
high correlations (Pearson correlations >75%) to CTBP1
p.R342W mutant cells were selected for further analysis;
darkturquoise (Figure 3), pink (Supplementary Figure 2)
and white (Supplementary Figure 3). The correlation of the
eigengenes for every cluster revealed a highly negative correlated
module labeled in darkturquoise containing 102 transcripts
and highly positively correlated modules labeled in pink (451
transcripts) and white (78 transcripts). GO enrichment analysis
of the darkturquoise module revealed highly significant down
regulation of genes involved in neuronal development/functions,
synaptic cell adhesion, and type 1 interferon signaling and
response (Figures 3A,B). A heat-map of these highly correlated
genes confirmed that the genes associated with these biological
processes were down-regulated across all CTBP1 mutant samples
(Figure 3C). The genes that were significantly up-regulated in
patient cells in the pink cluster (Supplementary Figures 2A–
C) appear to be involved in diverse biological processes such
as protein synthesis and protein targeting/localization, RNA
catabolic process and apoptosis signaling. The white module
of up-regulated genes in CTBP1 mutant cells were significantly
enriched for metabolic processes, transcriptional initiation and
translation as shown in Supplementary Figures 3A–C.

Considering the neuronal developmental phenotypes,
including intellectual disability exhibited by patients with the
CTBP1 p.R342W mutation and adherence phenotypes of the
mutant cells observed while differentiating NSC to neurons
(not shown), we pursued RNA sequencing and observed
the suppression of genes involved in neuronal development
and cell adhesion (Figure 4A and Supplementary Table 1).
We then focused on the genes of down-regulated biological
processes for validation by RT-qPCR analysis (Figure 4). The
down-regulated transcriptional pattern was prominent in the
transcriptome data analysis and the expression patterns of
a number of transcripts were readily validated by RT-qPCR
analysis. Further, the known functions of several down-regulated
genes appeared to be relevant to the patient phenotypes (see
Supplementary Table 2). In contrast to the down-regulated
transcripts, up-regulated transcripts were diverse (see below).
The down-regulated genes included those involved in neuronal
development and cell adhesion (Figure 4A and Supplementary
Table 1). In agreement with the RNA-seq data sets, RT-qPCR
analysis revealed that several genes involved in type I interferon-
response were also repressed in patient neurons (Figure 4B

and Supplementary Table 1). In contrast to the negatively
correlated and down-regulated genes in darkturquoise, the
more variable heatmaps and lower statistical significance of
genes in the positively correlated up-regulated pink and white
clusters were diverse. Query with RT-qPCR analysis of several
up-regulated genes suggested that these clusters did not merit
further pursuit (data not shown). However, the possibility
of up-regulation of isolated genes (none identified here)
cannot be ruled out.

Physiological and Biological Activities of
CTBP1 p.R342W-Mutated Neurons
Calcium transients: The above transcriptome analysis revealed
down-regulation of neurodevelopmental and interferon response
genes, we carried out additional assays to examine whether
CTBP1 p.R342W mutation affects factors such as cytosolic
calcium (Ca2+) levels and plasma membrane ion currents
that are involved in normal neuronal functions. It is well
known that brief and repetitive elevations of intracellular
calcium levels (spontaneous calcium transients) are important
in regulating various neural developmental processes, including
neural survival, differentiation, neurite outgrowth, synaptic
transmission and plasticity (Spitzer et al., 1994; Spitzer, 2006;
Rosenberg and Spitzer, 2011). To assess the effect of CTBP1
p.R342W on calcium transients, we performed fluorescent
calcium imaging experiments on control donor and patient
neurons. Our results revealed that neurons derived from patients
exhibited differences in the frequency and/or amplitude of
Ca2+ transients as compared to control neurons (Figure 5).
Specifically, both control neurons (Ct1 and Ct2) exhibited
regular compound patterns of calcium oscillations, and showed
regular spiking activity with the ability to return to the baseline
between spikes (indicated by blue arrows in Figure 5, left
two panels). Interestingly, the patient neurons (Pt1 and Pt2)
showed either more sustained elevation of intracellular Ca2+ with
significantly reduced amplitude (p < 0.05, Figure 5) or more
frequent, irregular patterns of Ca2+ transients with the calcium
levels rarely returning to baseline (indicated by blue arrows in
Figure 5, right two panels). These results indicate that CTBP1
p.R342W impacts internal Ca2+ oscillations, either affecting
their amplitudes or spiking patterns leading to dysregulation
of Ca2+ homeostasis in patient neurons. We note that in
spite of the inter-patient variations between the two patient-
derived cell lines (Pt1 and Pt2), they both exhibited consistent
irregular Ca2+ transients. It is possible that the effect of CTBP1-
mutation might be additionally influenced by other stochastic
intra-patient environments.

Because spontaneous Ca2+ transients are normally driven
by active firing of neuronal action potentials mediated by the
functional expression of inward sodium (Na+) and outward
potassium (K+) currents, we next examined whether the
CTBP1 p.R342W mutation alters these currents in neurons.
We specifically focused on the impact of CTBP1 p.R342W on
the voltage-gated Na+ currents, which are essential for the
ability of neurons to generate action potentials. Our whole cell
patch clamping data (Supplementary Figure 4) showed that
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neurons from control donors exhibited normal expression of
Na+ currents. However, the neurons derived from one patient
(Pt1) expressed little or no Na+ currents in all neurons examined
and the neurons derived from the second patient (Pt2) exhibited
either smaller or much larger Na+ currents (Supplementary
Figure 4). As in the case Ca2+ transient measurements, both

Pt1 and Pt2 cells showed inter-patient variations in Na+
current measurements. Taken together, our data suggest that
the CTBP1 p.R342W mutation may affect the normal neuronal
functions such as intracellular Ca2+ homeostasis and membrane
excitability, two fundamental factors that mediate neuronal
communications in the nervous system.

FIGURE 2 | Continued
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FIGURE 2 | (A) Volcano Plot: Volcano plot of 15,942 gene transcripts with log 2 fold changes observed by Limma. 7,141 were differentially expressed between
patient and control neurons (FDR ≤ 0.05). Among these transcripts, 6,500 genes were protein-coding. Out of these, 161 were down-regulated (Blue) and 36 were
up-regulated (Red) by 3-fold or more. (B) Global GO Biological Process Perturbation Bar Plot: All 15,942 transcripts were interrogated by Gage for level
perturbations across all known GO biological process gene sets. The significance and mean log 2 fold change of each term was evaluated by t-tests. (C) Module
and Trait Eigengene Correlation and Significance Matrix: Matrix of de novo color coded modules found by WGCNA and their respective eigengene Pearson
correlation (top value in each cell) and p-values (bottom value in each cell) for the mutation and statistical covariates. Bright red modules are high positively correlated
and bright deep blue are high negatively correlated transcripts. Modules with absolute value Pearson correlations greater than 75% to the mutant samples (pink,
white, and darkturquoise) were considered the best candidates for further investigation.

Adhesion activities: While performing routine cell culture
procedures, we observed that CTBP1-mutated cells exhibited
increased ability to become detached from the culture surface
as individual cells when treated with cell detachment agents.

Our transcriptome analysis revealed down-regulation of several
adhesion molecules involved in cell-cell and synaptic adhesion
(Figure 3B and Supplementary Table 2). To experimentally
determine whether the CTBP1 p.R342W neurons exhibit less
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FIGURE 3 | Continued
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FIGURE 3 | GO network plot for down-regulated genes and heat maps: (A) Darkturquoise GO Biological Process Enrichment Bar Plot. All 102 negatively correlated
WGCNA de novo clustered darkturquoise genes were tested for enrichment across known GO biological processes with the R/Bioconductor package clusterProfiler.
The color illustrates the significance of the enrichment and the size of each bar characterizes the number of genes for each enriched term. The down regulation and
negative correlation of darkturquoise module genes alludes to the down regulation represented by each significant term. (B) GO Category Network Plot: The
negatively correlated genes clustered into a WGCNA de novo network labeled as darkturquoise were tested for enrichment across known GO biological processes
with the R/Bioconductor package clusterProfiler. Significant terms with overlapping genes are clustered together while the overlapping genes represented in the
darkturquoise network module illustrate the connections between those terms. (C) Heat map: Heat map representing 102 genes in the darkturquoise WGCNA
module whose z-scores illustrate their down regulation and high negative correlation across all mutant samples.
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FIGURE 4 | RT-qPCR validation. The experiment was carried out in triplicate and the relative quantification (RQ) values are plotted and the data analysis done in
Thermo Fisher ConnectTM (Cloud) https://www.thermofisher.com/us/en/home/digital-science.html. Endogenous and reference control used in the experiment is
Actin and control (Ct1), respectively. (A) Relative quantification of genes involved in neuronal development and cell adhesion. (B) Relative quantification of genes
involved in Interferon responses.

adhesion activities, we carried out a “flipping” assay (Langhe
et al., 2016). The control and patient cells were plated onto
Geltrex coated chamber slides and incubated. After short culture
time, the adherent and non-adherent cells were determined by
flipping one set of plates. The cells in both flipped and un-flipped
plates were fixed and stained with DAPI and MAP2-antibody.
The percentage of adhered (flipped) cells was calculated based
on un-flipped cells. We found that the percent of adherent
cells were statistically lower in patient-derived neurons. As
shown in Figure 5B, the patient-derived neurons exhibited
significantly less adhesion than controls (Pt1-p < 0.05; Pt2-
p < 0.01). As cadherins function in cell-cell contacts, reduced
adherence of patient neurons suggest that the expression of these
molecules may be affected. This in vitro result correlates with our
transcriptome analysis where several cadherins (CDH10, CDH12
and KRREL3) are down-regulated (Supplementary Table 2).

Response to neurotropic virus infection: Our transcriptome
analysis revealed prominent down regulation of homeostatic
levels of interferon-stimulated genes. West Nile Virus infection
is known to directly infect neurons both in mice (Shrestha
et al., 2003) and in humans (Diamond et al., 2009) and can
cause neuronal injury by direct cytopathic effect. Multiple studies
have demonstrated that WNV is highly susceptible to antiviral
interferon stimulated genes (ISG), which can act to reduce viral
titer and alter cell susceptibility (Jiang et al., 2010). Therefore, we
hypothesized that CTBP1 p.R342W neuronal cells would be more
susceptible to WNV replication as compared to healthy control
neurons. To test this, we performed a single step growth curve

using WNV on both patient and healthy control-derived neurons
(Figure 6). We noted that there was a higher level of WNV
replication in the patient-derived CTBP1 p.R342W neuronal
cells as compared to healthy control neurons from 4 h post
infection until the end of the assay. These results were statistically
significant at 20 h post infection (p ≤ 0.01). We interpret these
results to mean that the CTBP1 p.R342W neurons might be more
susceptible to WNV infection as the virus replicated to higher
titers in mutant neurons compared to control neurons for most
of the time points tested (about 100-fold at 20 h after infection).
These results are consistent with the levels of expression of
various anti-viral response genes in the patient neurons.

DISCUSSION

A specific W342 mutation in the transcriptional corepressor
CTBP1 leads to prominent neurodevelopmental manifestations
including intellectual disability, ataxia, and hypotonia in
affected patients (Beck et al., 2016, 2019; Sommerville et al.,
2017). The neurodevelopmental phenotypes conferred by the
CTBP1 p.R342W allele provide genetic evidence that CTBP1 is
important for normal human neurodevelopment. We employed
patient iPSC-derived neuronal cell models to determine the
transcriptional activities of the pathogenic CTBP1 p.R342W
allele and the potential link to functional abnormalities in
neurons. By using iPSC-derived “early” neurons of two different
patients with CTBP1 p.R342W mutations (out of 12 known

Frontiers in Neuroscience | www.frontiersin.org 9 October 2020 | Volume 14 | Article 562292

https://www.thermofisher.com/us/en/home/digital-science.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-562292 October 21, 2020 Time: 20:6 # 10

Vijayalingam et al. CTBP1 Mutation in Neuronal Developmental Defects

FIGURE 5 | (A) Calcium imaging data. Top panels show raw traces of spontaneous calcium transients recorded from neurons of control donors and patients.
Bottom bar graphs are quantitative data of the mean peak amplitudes and spiking frequency of calcium transients. Our data show that neurons from patients (Pt1
and Pt2) exhibited significant changes in either the amplitude or the frequency of calcium transients with the inability to return to basal levels compared to their
matched donor controls (Ct1 and Ct2). Arrows indicate basal levels between calcium transcients. (B) Adhesion activity of neurons. Control (Ct1 and Ct2) and
patient-derived (Pt1 and Pt2) neurons (6-days after differentiation from NSC) were plated onto Geltrex coated 8-well glass slide Chamber and incubated at 37◦C for
30 min, the dishes were flipped to remove non-adherent cells. The adherent neurons were stained with an antibody specific to MAP2 and DAPI and
MAP2-expressing cells were counted. Percentage of adherent (flipped) cells was calculated based on un-flipped cells. Patient-derived cells exhibited statistically less
adhesion than control cells Ct1 and Ct2: Pt1 (p < 0.05) and Pt2 (<0.01). n = 3.

patients) and two healthy age-matched donors, we determined
the transcriptional profiles through RNA-seq analysis. These
results revealed down-regulation of genes involved in three major
neuronal functions: including cell adhesion, neurodevelopment,
and antiviral (type I interferon) response (Figure 3). The
altered gene expression profiles appear to be consistent
with intellectual and movement disorder phenotypes seen
in patients with CTBP1 mutations (Beck et al., 2016, 2019;
Sommerville et al., 2017).

Our results revealed down-regulation of several neuronal
adhesion genes such asKIRREL3,CDH10 andCDH12 (Figure 4A

and Supplementary Table 1). Reduced expressions of these
genes or specific mutations in these genes have previously
been implicated in intellectual disabilities (see citations in
Supplementary Table 2). For example, the intellectual disability
gene KIRREL3 was shown to regulate target-specific mossy
fiber synapse development in the hippocampus, and cadherin
12 (CDH12) was shown to mediate calcium dependent cell-
cell adhesion. The neuronal adhesion genes appear to exert
their effects through alterations of synaptic adhesion of
neurons. Similarly, the expression of several genes involved
in neurodevelopment (e.g., SOX14), ion channel activities
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FIGURE 6 | Single step growth curves for WNV replication in neurons: The single step growth curves were generated by determining the viral titers at different times
after infection in triplicates. The media supernatants of infected cells were collected at indicated times during 24 h of infection and stored at –80◦C prior to viral titer
analysis by focus forming assay. The average mean (±SD) of controls (Ct1 and Ct2) and patient cells (Pt1 and Pt2) are on the left. The values for the individual control
and patient cells are on the right.

(e.g., BRINP2 and KCNIP2) and neuronal receptors (GFRA3,
NR4A2, RET and ISLR2) is also reduced in our patient-
derived neurons. Mice lacking Brinp2 were reported to
exhibit neurodevelopmental phenotypes while Kcnip2 and
associated subunits were shown to regulate homeostatic neuronal
excitability (ref. in Supplementary Table 2). Additionally, the
expressions of certain neuronal transcription factors that are
involved in neuronal development and survival (ETV5, TAL1 and
EN1) were also reduced in patient neurons. These results suggest
that the neurodevelopmental phenotypes caused by the CTBP1
p.R342W allele may be related to global down regulation of a
number of genes that are involved in neuron survival, growth,
membrane excitability, synaptic transmission and plasticity.

Here, we have used physiologically relevant patient-derived
and age-matched control neuronal cell models to determine
the transcriptional profiles of primary iPSC-derived neurons.
Many human neuronal diseases (including CTBP1p.R342W-
mutated developmental defects; our unpublished data) do not
appear to manifest phenotypes in the mouse models. In the
lack of suitable animal models, human neuronal cell models
are most relevant. However, we acknowledge the limitations of
our study. It involved cells derived from a limited number of
patients (2 out of 12 known patients that were available) and
these cell models exhibited inherent inter-patient differences.
However, application of suitable data analysis approaches
revealed a prominent patient-centric transcriptional pattern
that was validated by RT-qPCR analysis. We note that the
transcriptional patterns of iPSC-derived patient cell models is
somewhat different from that of a reconstituted exogenously
introduced CTBP1p.R342W mutant allele (Beck et al., 2019),
suggesting that the cell type (glioblastoma vs primary neuron)
and/or the endogenous chromatin context influence the gene
expression of the CTBP1 mutant allele.

Our phase contrast images and immunostaining of DAPI
and cytoskeletal β-tubulin and MAP2 markers revealed that
patient neurons exhibited thinner neuritic processes and fewer
cell bodies as compared to those in control donor neurons.
This decrease in DAPI-positive cells in patient cultures could

be the result of a decrease in cell survival, proliferation or a
change in cell fate. This could be due to the aforementioned
compromised cell adhesion genes/proteins in CtBP1 patients’
neurons because adhesion molecules have been reported to play
important roles in various neuronal developmental processes
including neural precursor cell proliferation, differentiation,
growth cone pathfinding, neural excitability, and cell-cell
communications (Dihne et al., 2003; Valente et al., 2016). The
significant thinner neuritic processes in patients’ neurons may
indicate smaller neuritic surface areas for housing ionic channels
and transmitter receptors, resulting in the decreased efficiency
of neuronal conductivity and synaptic communication. These
data suggest that CTBP1 p.R342W mutation may negatively
impact the production of key molecular components of neural
cytoskeletal structures. Although no studies have demonstrated a
direct link between CtBP1 and the cytoskeleton in mammalian
cells, it has been reported that a “CtBP/BARS-like” protein in
plants has a direct activity on the microtubule cytoskeleton
(Folkers et al., 2002). Specifically, the plant CtBP homolog,
Angustifolia (AN) was reported to control polar elongation of
leaf cells via regulation of microtubule cytoskeleton proteins and
mutations in AN caused aberrant development and distribution
of the microtubules. Thus, our results along with previously
published data suggest that CtBP1 may be important for normal
development of neural cytoskeletal structures which in turn
contribute to neural morphogenesis and synaptic function.
The pathological phenotypes in patients with CTBP1 p.R342W
mutations may be caused by impairments in microtubule
development and neuronal connections.

In addition to its roles in neuron morphological development,
CtBPs also regulate genes involved in neuronal excitability. For
example, CtBPs affect gene expression in epileptogenesis (Hubler
et al., 2012; Goldberg and Coulter, 2013; Liu et al., 2017), and are
highly expressed in many brain regions where they may play a
role in synaptic transmission and plasticity (Tom Dieck et al.,
2005; Jose et al., 2008). We showed here that neurons derived
from patients with CTBP1 p.R342W mutations had altered
spontaneous Ca2+ waves and whole-cell Na+ currents, further
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implying its involvement in neural excitability and synaptic
function. Intracellular Ca2+ is essential to many developmental
events including neural survival, differentiation, proliferation,
and neurite outgrowth as well as synapse formation, synaptic
transmission, and plasticity (Rosenberg and Spitzer, 2011;
Grienberger and Konnerth, 2012). It is becoming increasingly
clear that the common pattern of Ca2+ signaling in neurons
is a pattern of spiking activities (Ca2+ transients), and the
amplitude and frequency of Ca2+ transients are key determinants
for normal neuronal development and function (O’Donovan,
1999; Dupont et al., 2011; Gasperini et al., 2017). For example,
Ca2+ transients but not sustained Ca2+ elevations play important
roles in axon growth and branching, growth cone turning,
and cytoskeletal stabilization in developing mammalian neurons
(Tang et al., 2003). Interestingly, our study revealed that Ca2+

in neurons derived from CTBP1- mutated patients exhibited
more sustained patterns, and the amplitude and frequency of
Ca2+ were significantly altered compared to those in control
donor neurons (Figure 5A). Because of the central role of
Ca2+ in neuronal physiology, even moderate alterations of
Ca2+ homeostasis may lead to profound functional impairments
as shown in several neuronal disorders (Wojda et al., 2008;
Kawamoto et al., 2012; Oliveira et al., 2014). Therefore,
the CTBP1 mutation-mediated alteration in Ca2+ transients
may in turn contribute to the morphological abnormalities
in the neuritic cytoskeleton observed in our study. In line
with this postulation is a study showing that CtBP1 was
a molecular constituent of the subfamily 2 of voltage-gated
Ca2+ channel (CaV2) proteome in the rat brain, which co-
purified with cytoskeletal proteins. These results raised the
possibility that CtBP1 may regulate Ca2+ signaling via CaV
and could play a role in regulating cytoskeletal function.
However, future studies are warranted to investigate the exact
mechanistic action of CtBP1 on the functions of CaV and
cytoskeletal proteins.

Here, we also provide evidence that CTBP1 mutation alters
whole cell ionic currents including voltage-gated Na+ (NaV)
currents. NaV channels are essential for neuronal electrical
activity generation and propagation. The abnormal NaV currents
detected in CTBP1-mutated neurons in our study suggest that
CtBP1 may interact with NaV channels and regulate its expression
and/or function in neurons. Furthermore, our RNA-seq data
showed that the CTBP1 p.R342W mutation down regulated
KCNIP, a gene encoding a Ca2+-binding protein that is an
integral subunit component of KV4 (Burgoyne, 2007). Activity
of KV4 currents contributed to neuronal excitability in response
to changes in intracellular Ca2+ (Burgoyne, 2007). Together
these studies provide insights into the involvement of specific
ions such as Ca2+, Na+, or K+. Altering the homeostasis
of these ions is indicative of changes in action potentials in
neurons. However, future studies on direct measurement and
comparison of action potentials using isogenic cell models would
be of interest to elucidate misregulation of neuronal activities by
altered ionic homeostasis.

Brain imaging results have been reported for a subset of
patients with CTBP1 p.R342W mutations and those studies
revealed cerebellar volume reduction in consecutive scans (Beck

et al., 2016; Sommerville et al., 2017). Among the various human
tissues, CTBP1 is highly expressed in the cerebellum1. It was
reported that CtBP(1/2) proteins play an anti-apoptotic role
in primary cerebellar granule cells as well as in dopaminergic
neuron-like cells (Stankiewicz et al., 2013). Our results showed
that the patient neurons expressed reduced levels of the
homeodomain transcription factor, Engrailed 1 (EN1). The
activity of EN1 is required for normal cerebellar differentiation
(Wurst et al., 1994; Joyner, 1996) and survival of dopaminergic
neurons (Chi et al., 2003; Alvarez-Fischer et al., 2011), suggesting
the possibility that reduced expression of EN1 in patients
might contribute to the cerebellar pathology of CTBP1-mutated
patients, hence future investigation of CTBP1 mutation in
cerebellar function is also much wanted.

The effect of CTBP1 p.R342W on interferon-response genes
was unexpected since patients have not demonstrated any
increased susceptibility toward infections although this has not
been characterized in detail. Our results suggest that the iPSC-
derived “early” neurons express constitutive basal levels of type I
interferon-response genes and that the expression is diminished
in patient-derived “early” neurons. Although the interferon
signaling pathway in neurons is not well-studied, homeostatic
expression of type I interferon response genes in neurons
have been reported (Cavanaugh et al., 2015; Drokhlyansky
et al., 2017). Developing neurons respond to pathogenesis by
neurotropic viruses via production of type I interferon (reviewed
by Chakraborty et al., 2010; Nallar and Kalvakolanu, 2014).
Since the expression of interferon response genes is lower in
CTBP1-mutated early neurons compared to the constitutive
levels in control cells, our results suggest a role for CTBP1 in
the regulation of interferon response in early neurons. Thus far,
a direct role for CtBP1 in regulating the expression of interferon-
response genes has not been identified. However, the histone
methyltransferase PRDM16 which interacts with CtBPs was
reported to repress type I interferon response genes in adipocytes
(Kissig et al., 2017) in intestinal epithelium (Stine et al., 2019).
PRDM16 also plays critical roles in neuronal development and
was previously shown to control embryonic and post-natal neural
stem cell maintenance and differentiation in the brain (Inoue
et al., 2017; Shimada et al., 2017). It is possible that the CTBP1
p.R342W allele may augment the activities of repressors such as
PRDM16 to reduce the level of constitutive interferon signaling
in early neurons. Additionally, it remains to be seen whether
peripheral blood from patients demonstrates a similar decrease in
interferon-response to neurons. Our results suggest that patients
with CTBP1 mutations may have an additional risk factor of
increased susceptibility to neuronal viral pathogens.

The mechanism by which the CTBP1 p.R342W allele regulates
transcription in neuronal cells remains to be determined. All
known CTBP1-mutated patients contained the same c.C991→T
(CTBP1-S) transition within the CTBP1 gene. Since the mutation
is heterozygous, it appears that the mutation may either act as
a dominant negative or gain of function. An in silico prediction
suggests potential dominant negative phenotype for the CTBP1
p.R342W allele (Beck et al., 2016). There have been multiple

1www.proteinatlas.org/ENSG00000159692-CTBP1/tissue
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reports of frame-shift mutations in individuals who are not
affected (ExAC database: PMID:27535533), implying that one
allele of CTBP1 is enough to avoid neurologic phenotype.
Potential dominant negative activity of the mutant allele may
affect functions of both CtBP1 and CtBP2 (Figure 7). It should
be noted that Arg at residue 342 is conserved in most vertebrate
(including CtBP2) and invertebrate CtBPs, suggesting a pivotal
role for it in CtBP functions. The mutation CTBP1p.R342W
is located within the major protein-interaction cleft (known as
PXDLS-binding cleft) that is involved in binding with different
transcriptional repression molecules of the CTBP1/2-repression
complex (Chinnadurai, 2007), and the mutation was shown
to impair such interactions (Beck et al., 2019). Recently, two
different CTBP1-mutated patients with two different mutations
within CTBP1 protein sequences that involved interaction
with the components of the CTBP-repression complex have
also been identified (David Beck; Nijala Al-Sweel; personal
communications). It is possible that the heterozygous CTBP1
mutant alleles may function as dominant repressors by not
dissociating from the target gene promoters (Figure 7).
Alternative models may include compromised transcriptional
repression activity of the heterozygous CTBP1 alleles, resulting
in relief of repression of a master transactional repressor. Such a
repressor may directly repress different neuronal target genes.

Phenotypes caused by the CTBP1 p.R342W allele partially
overlap with some core phenotypes of Wolf-Hirschhorn
syndrome (WHS). WHS patients exhibit deletions in the
chromosomal region (chromosome 4p16.3) that spans
chromosome CTBP1 locus (Battaglia et al., 2008; Zollino
et al., 2008). In certain patients with the smallest micro-deletions
in 4p16.3, a cluster of four genes including NSD2 and CTBP1
is deleted, implicating CTBP1 in neurodevelopmental disorders
including epilepsy in some WHS patients (Misceo et al., 2012).
Thus, it appears that deleting CTBP1 may contribute to some
WHS phenotypes, in addition to mutations in WHS genes.
Disrupting C. elegans CtBP1 also results in exploration and
movement phenotypes (Reid et al., 2015; Yeon et al., 2018). Thus,
multiple investigations, including our current transcriptional
profiling studies, indicate an emerging importance of CtBP1 in
normal neuronal development and activities.

MATERIALS AND METHODS

Fibroblasts: The human dermal fibroblasts from patients (CSC43
and CSC44, designated here as Pt1 and Pt2, respectively)
and healthy donors (LE028 and NT011, designated Ct1 and
Ct2, respectively) were received from Columbia University,
Department of Pediatrics and Medicine and were grown
in DMEM supplemented with 10% fetal bovine serum.
Informed consent was obtained from all individual participants
included in the study.

Stem cells: Patient and donor iPSCs were generated by
reprogramming dermal fibroblasts by transduction of Sendai
virus (SeV) vectors expressing the Yamanaka factors. Fibroblasts
were transduced with CytoTune SeV reprogramming vectors.
Eight days after transduction with SeV, colonies were harvested

and re-plated on Mouse Embryonic Fibroblast (MEF) culture
dishes. The transduced cells were expanded on MEF culture
dishes and were then shifted to iPSC medium (ThermoFisher
Scientific). The medium was composed of Dulbecco’s Modified
Eagle Medium F-12 Mixture (DMEM/F-12), KnockOut Serum
Replacement (KnockOut SR), Non-Essential Amino Acids, Basic
Fibroblast Growth Factor (FGF-Basic), and 2-mercaptoethanol.
Colonies were stained with live cell imaging agent TRA-1-60
Alexa flour 594 conjugate antibody (ThermoFisher Scientific)
and picked for further propagation and characterized by
immunocytochemistry using iPSC marker, SOX2. In order
to convert iPSCs to Neural Stem Cells (NSCs), the cells
were plated on Geltrex coated plates and grown with PSC
Neural induction media as per the protocol (ThermoFisher
Scientific). The differentiated NSC cells were characterized by
immunocytochemistry using NSC makers, Nestin.

Early neurons: Early neurons were generated by
differentiation of NSC. For this, NSCs were first plated on
poly-ornithine and laminin coated plates and grown using NSC
Serum Free Media (SFM) (ThermoFisher Scientific) for the first
2 days. The NSC SFM was composed of Knockout DMEM/F-12,
Stempro Neural Supplement, Recombinant FGF-Basic (Human),
GlutaMAXTM-I Supplement, and recombinant EGF (Human).
After 2 days, they were grown in differentiation medium,
which is composed of 1X neurobasal medium, serum free B-27
supplement, and GlutaMAXTM-I supplement.

RNA sequencing and data analysis: Cells were grown in a
6-well plate. Cell culture media was aspirated and cells were
lysed with Trizol (Zymo Research, Irvine, CA, United States).
Total RNA was purified using the Direct- Zol RNA kit (Zymo
Research, Irvine, CA, United States) following the manufacturer’s
protocol. Library preparation was performed with 1 µg of total
RNA, concentration was determined by Qubit and integrity
was determined using an Agilent tapestation or bioanalyzer.
Ribosomal RNA was removed by a hybridization method using
Ribo-ZERO kits (Illumina). Depletion and mRNA yield was
confirmed by bioanalyzer. mRNA was then fragmented in buffer
containing 40 mM Tris acetate pH 8.2, 100 mM potassium
acetate and 30 mM magnesium acetate and heating to 94
degrees for 150 s. mRNA was reverse transcribed to yield
cDNA using SuperScript III RT enzyme (Life Technologies, per
manufacturer’s instructions) and random hexamers. A second
strand reaction was performed to yield ds-cDNA. cDNA
was blunt ended, had an A base added to the 3’ends, and
then had Illumina sequencing adapters ligated to the ends.
Ligated fragments were then amplified for 12–15 cycles using
primers incorporating unique index tags. Library molarity was
determined by Qubit assay for concentration and tapestation for
size. An equimolar pool was made of all libraries with unique
indices. Fragments were sequenced on an Illumina HiSeq-3000
using single reads extending 50 bases.

Basecalls and demultiplexing were performed with Illumina’s
bcl2fastq software and a custom python demultiplexing program
with a maximum of one mismatch in the indexing read. RNA-
seq reads were then aligned to the Ensembl release 76 top-
level assembly with STAR version 2.0.4b. Gene counts were
derived from the number of uniquely aligned unambiguous
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FIGURE 7 | Model for transcriptional down-regulation of neuronal target genes by CTBP1 mutant allele. CTBP1 mutant protein may homo/heterodimerize with
CTBP1 wt or CTBP2 wt. The homo/heterodimeric/oligomeric CTBP-complex may lead to enhanced repression of neuronal target genes as a result of defective
dissociation from the target gene promoters directly or indirectly through reduced expression of transcriptional activators (A). Alternatively, the heterodimeric complex
may result in up-regulation of a certain transcriptional repressors that may repress a battery of neuronal target genes (B). The down-regulated neurodevelopmental
genes function in cell-cell/synaptic adhesion, neuronal transcription, axon growth, ion channel and anti-viral response genes. The transcriptional model does not
exclude any potential cytosolic effects of CTBP1 mutant protein indirectly influencing the transcriptional outcome.

reads by Subread:featureCount version 1.4.5. All gene counts
were then imported into the R/Bioconductor package EdgeR
and TMM normalization size factors were calculated to adjust
for samples for differences in library size. Ribosomal genes
and genes not expressed in at least five samples greater than
one count-per-million were excluded from further analysis.
The TMM size factors and the matrix of counts were then
imported into the R/Bioconductor package Limma. Weighted
likelihoods based on the observed mean-variance relationship
of every gene and samples were then calculated for all samples
with the voomWithQualityWeights. Unknown latent effects
were estimated with surrogate variable analysis and differential
expression analysis was then performed to analyze for differences
between conditions and the results were filtered for only those
genes with Benjamini-Hochberg false-discovery rate adjusted
p-values less than or equal to 0.05. Global log 2 fold-change
perturbations in known Gene Ontology (GO) terms and KEGG
pathways were detected using the R/Bioconductor package
GAGE and deemed significant with Benjamini-Hochberg false-
discovery rate adjusted p-value less than or equal to 0.05.

To find the most critical genes, the raw counts were variance
stabilized with the R/Bioconductor package DESeq2 and then
interrogated via weighted gene correlation network analysis
with the R/Bioconductor package WGCNA. Briefly, all genes
were correlated across each other by Pearson correlations and
clustered by expression similarity into unsigned modules using
a power threshold empirically determined from the data. An
eigengene was then created for each de novo cluster and its
expression profile was then correlated across all coefficients of
the model matrix. Because these clusters of genes were created
by expression profile rather than known functional similarity,
the clustered modules were given the names of random colors
where gray is the only module that has any pre-existing definition
of containing genes that do not cluster well with others. For
modules where the eigengene correlation exceeded 75%, the
modules of genes were tested for functional enrichment of
known GO terms with hypergeometric tests available in the

R/Bioconductor package clusterProfiler. Significant terms with
Benjamini-Hochberg adjusted p-values less than 0.05 were then
collapsed by similarity into clusterProfiler category network plots
to display the most significant terms for each module of hub genes
in order to interpolate the function of each significant module.
The hub genes for each significant module were then assessed for
whether or not those features were also found to be significantly
differentially expressed using Limma.

Confocal imaging and immunocytochemistry: Phase
contrast images of iPSC/NSC-derived neurons were taken
on an inverted microscope (Olympus CKX53). Images were
taken under a 20× objective lens and image acquisition
parameters were kept consistent between control and patient
neurons. After imaging, cells were fixed for 30 min with 4%
paraformaldehyde and subsequently washed three times with
1× PBS, permeabilized for 5 min with 0.3% Triton in 1× PBS,
and blocked with 5% goat serum diluted in 1× PBS for 1 h.
Preparations were then incubated overnight with monoclonal
anti-beta-3 Tubulin or anti-MAP2 antibodies produced in mouse
(1:500) (Sigma, T0198 for anti-beta-3 Tubulin and Invitrogen,
13-1500 for MAP2). Cells were rinsed three times with 1×
PBS the next day. Cells were then incubated with either Alexa
Fluor 488 goat anti-mouse IgG secondary antibody (1:500)
(ThermoFisher Scientific, A11029) for labeling beta-3 Tubulin
or Alexa Fluor 546 goat anti-mouse IgG secondary antibody
(1:500) (ThermoFisher Scientific, A11030) for labeling MAP2
for 1 h at room temperature (21–22◦C) under dark conditions.
Cells were rinsed three times with 1× PBS, and mounted using
MOWIOL mounting media with 4′6-diamidino-2-phenylindole
dihydrochloride (Sigma, F6057). Samples were acquired and
viewed using laser scanning confocal microscopy (Leica TCS
SP8 STED 3X super-resolution system) under a 40× oil objective
at 488 nm excitation (green, beta-3 Tubulin) with a 515/30
emission filter and 543 nm excitation (red, MAP2) with a 590/50
emission filter. Stack images of 0.7 µm were first collected and
compressed into single 3D images. Image acquisition parameters
for control and patients’ neurons were kept the same.
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To quantify morphological differences between patient and
control cells, ImageJ and its plugin NeuronJ were utilized as
previously described (Meijering et al., 2004; Pemberton et al.,
2018). For neuronal growth parameters (neurite length, number
and thickness), phase contrast images were taken of 14-day
differentiated neurons as described above. The NeuronJ software
was programmed to output length of each neurite (µm) and
number of neurites measured in each phase contrast image. For
neurite thickness analyses, primary neurites extending directly
from a cell body were identified. In each phase contrast image,
10 primary neurites were randomly identified, and the thickest
part of the neurite was measured and averaged. To determine
differences in the number of DAPI-positive cells between patients
and controls, confocal images were analyzed in ImageJ, and the
number of DAPI-stained cells was counted. A one-way analysis
of variance (ANOVA) was completed to statistically analyze all
data followed by Tukey’s HSD Post hoc test as appropriate. Data
are presented as mean± SEM.

Ca2+ Imaging: Ca2+ imaging experiments were performed
using Fura-2 acetoxymethyl ester (AM) ratiometric Ca2+

indicator for monitoring basal intracellular Ca2+ levels in
iPSC/NSC cells derived from control and patients. Cells
differentiated into neurons for about 14 days were loaded with
5 µM Fura-2 AM (ThermoFisher Scientific Cat #: F1201) in
HBSS for 30 min at 37◦C followed by four 10 min washes in
HBSS. Cells sat for 15 min to ensure full conversion of the dye
before imaging. Images of each wavelength were taken once every
second on an inverted microscope (Olympus IX73) installed
with a Retiga R1 camera (Qimage). Excitation wavelengths of
340 and 380 nm were delivered using a LAMBDA XL equipped
with high-speed wavelength switcher (Sutter Instrument, Novato,
CA, United States) through a 40× objective for 10–20 min.
The emitted fluorescence signal was collected at 510 nm by the
Retiga R1 camera. Images were acquired with the MetaFluor
Imaging software (Olympus) and processed and analyzed using
ImageJ. Comparisons were made between individual control and
mutant samples using student’s t-Test with Benjamini-Hochberg
procedure to control for multiple comparisons.

Whole-Cell Patch-Clamp Recordings: Whole-cell patch-
clamp recordings of voltage-dependent ionic currents were
performed on neurons after 14 days of differentiation in
culture using a Multiclamp 700B amplifier (Axon Instruments;
Sunnyvale, CA, United States) connected to an analog-to-
digital interface Digidata 1500A (Axon Instruments). Signals
were acquired and stored through pClamp 10.6 software (Axon
Instruments). Whole-cell currents were recorded under voltage-
clamp mode with the holding potential of −70 mV. Currents
were evoked by voltage steps ranging from −90 mV to +60 mV
in 10 mV increments. The external solution contained (in
mM) NaCl, 135; CaCl2, 3; KCl, 5; MgCl2, 2; HEPES, 10;
D-Glucose, 10; pH adjusted to 7.3 with NaOH. The internal
pipette solution was composed of (in mM) CsCl, 130; MgCl2,
0.3; HEPES, 10; EGTA, 0.1, ATP-Mg, 3; GTP-Na, 0.6; pH
adjusted to 7.3 with CsOH. The osmolarity for internal solution
was approximately 300 mOsm (295–305) and for external
solution approximately 330 mOsm (320–340). Borosilicate glass
pipettes were pulled using a horizontal micropipette puller
(Model P-1000, Sutter instrument Co., United States) and had

a tip resistance ranging from 3 to 6 M� after filling with
internal solutions. Only cells with series resistances less than
∼20 M� and leaks less than ∼80 pA were selected for the
analysis. Traces were processed using Clampfit 10.6 software
(Axon Instruments).

Cell adhesion assay: The adherence activity of control and
CTBP1-mutated neurons was determined by a “flipping” assay
(Langhe et al., 2016). NSCs were differentiated to neurons
(6 days) and dissociated using StemPro Accutase. Cells were
counted and plated (1 × 104 cells) onto Geltrex coated Lab-Tek
II Chamber 8-well glass slides and incubated for 30 min at 37◦C.
One set of dishes was flipped over and shaken to remove non-
adherent cells. The adherent cells were fixed and stained with
DAPI and immunostained with MAP2 antibody. The numbers
of adherent cells were determined by counting 3 independent
areas for each experiment. The cells were counted using Cytation
3 Cell Imaging Multi-Mode Reader (BioTek). The percentage
of adhered (flipped) cells was calculated based on un-flipped
cells. Comparisons between control and mutant adherence were
performed using one-way analysis of variance (ANOVA) with
Bonferroni Multiple Comparisons post hoc test. All experimental
data were reported as mean ± SEM and three independent
experiments were performed. P < 0.05 was considered
statistically significant.

West Niles Virus (WNV) replication assay: WNV-NY (strain
3000.0259) passaged once in Vero cells (African green monkey
kidney epithelial cells) was purchased from American Type
Culture Collection (ATCC CCL-81). The virus was titered
using a standard focus forming assay (FFA) on Vero cells as
previously described (Pinto et al., 2014). WNV replication was
determined by single step growth in human CTBP1-mutated
or healthy control neurons. The 14-days differentiated neurons
were infected with WNV at MOI = 1 and allowed to incubate
for 1 h before the virus was removed. The progeny viral titers
were determined by focus forming assay (FFA) as described
(Pinto et al., 2014).
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Supplementary Figure 1 | iPSC and NSC immunostaining.

Supplementary Figure 2 | GO network plot for positively regulated genes and
heat maps. (A) GO Biological Process Enrichment Bar Plot (pink): All 454
positively correlated WGCNA de novo clustered pink genes were tested for
enrichment across known GO biological processes with the R/Bioconductor
package clusterProfiler. The color illustrates the significance of the enrichment and
the size of each bar characterizes the number of genes for each enriched term.
The up-regulation and positive correlation of pink module genes alludes to the up
regulation represented by each significant term. (B) Module GO Category Network
Plot: Positively correlated genes clustered and labeled as pink and tested for
enrichment across known GO biological processes with the R/Bioconductor
package clusterProfiler. Significant terms with overlapping genes are clustered
together while the overlapping genes represented in the pink network module
illustrate the connections between those terms. (C) Heat map: Heat map
representing positively correlated genes in the pink module whose z-scores
illustrate their up regulation and high positive correlation across
all mutant samples.

Supplementary Figure 3 | (A) GO Biological Process Enrichment Bar Plot
(white): All 81 negatively correlated WGCNA de novo clustered white genes were
tested for enrichment across known GO biological processes with the
R/Bioconductor package clusterProfiler. The color illustrates the significance of the
enrichment and the size of each bar characterizes the number of genes for each
enriched term. The up-regulation and positive correlation of white module genes
alludes to the up-regulation represented by each significant term. (B) White
Module GO Category Network Plot: All 81 correlated genes clustered into a
WGCNA de novo network labeled as white were tested for enrichment across
known GO biological processes with the R/Bioconductor package clusterProfiler.
Significant terms with overlapping genes are clustered together while the
overlapping genes represented in the white network module illustrate the
connections between those terms. (C) White Heat map: Heat map representing
81 genes in the white WGCNA module whose z-scores illustrate their
up-regulation and high positive correlation across all mutant samples.

Supplementary Figure 4 | Whole-cell patch-clamping. Whole-cell patch-clamp
currents were elicited by step depolarizations, and the peak inward currents at
−10 mV were analyzed. Left panels show representative raw traces recorded and
right panels show the statistical data. Our results, comparing to the matched
control donors (Ct1 and Ct2), showed that CTBP1 mutation either significantly
reduced the inward sodium currents in neurons from one patient (Pt1), or induced
much larger sodium currents in the other patient (Pt2). Note that Pt2 cells
expressed excessively robust inward current which reached to ≥4 nA.

Supplementary Table 1 | List of highly down-regulated genes in patient neurons.

Supplementary Table 2 | Neurodevelopmental genes down-regulated in
CTBP1-mutated patient neurons.
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