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The enzyme aromatase catalyzes the final step in estrogen biosynthesis, converting
testosterone to estradiol, and is expressed in the brain of all mammals. Estrogens
are thought to be important for maintenance of cognitive function in women, whereas
testosterone is thought to modulate cognitive abilities in men. Here, we compare
differences in cognitive performance in relation to brain aromatase availability in healthy
men and women. Twenty-seven healthy participants were administered tests of verbal
learning and memory and perceptual/abstract reasoning. In vivo images of brain
aromatase availability were acquired in this sample using positron emission tomography
(PET) with the validated aromatase radiotracer [11C]vorozole. Regions of interest were
placed bilaterally on the amygdala and thalamus where aromatase availability is highest
in the human brain. Though cognitive performance and aromatase availability did
not differ as a function of sex, higher availability of aromatase in the amygdala was
associated with lower cognitive performance in men. No such relationship was found
in women; and the corresponding regression slopes were significantly different between
the sexes. Thalamic aromatase availability was not significantly correlated with cognitive
performance in either sex. These findings suggest that the effects of brain aromatase
on cognitive performance are both region- and sex-specific and may explain some
of the normal variance seen in verbal and nonverbal cognitive abilities in men and
women as well as sex differences in the trajectory of cognitive decline associated with
Alzheimer’s disease.
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INTRODUCTION

The last and obligatory step in estrogen biosynthesis in all organs and species is catalyzed by
the enzyme aromatase (estrogen synthase, Cyp19 gene product), which converts the androgens
androstenedione and testosterone, to the estrogens, estrone, and estradiol (Simpson et al., 2002).
In reproductively competent women, the ovary is the primary source of circulating estrogens
(Simpson, 2003). In both sexes, a major site of extra-gonadal estrogen synthesis is the brain, and it
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is characterized by widespread but heterogeneous aromatase
availability (Biegon et al., 2010a, 2015; Azcoitia et al., 2011;
Takahashi et al., 2018). A recent study revealed some region-
and sex-specific associations between aromatase availability in
the human brain and personality characteristics (Takahashi
et al., 2018). To date, however, there are virtually no in vivo
human studies testing the relationship between brain aromatase
availability in the human brain and basic cognitive functions.
The potential role of aromatase in cognition is supported by
animal studies and studies in women with breast cancer reporting
that administration of aromatase inhibitors (AIs) is linked to
cognitive dysfunction (Rosenfeld et al., 2018). The most common
deficits in women were seen in executive function and verbal
episodic memory performance, although the effects of aromatase
manipulation on neurobehavioral function in both animals and
humans appeared to be sexually dimorphic (Shay et al., 2018).
Further support of the role of aromatase in human cognition
comes from postmortem studies in humans, which demonstrate
region-specific changes in aromatase levels in Alzheimer’s disease
(Ishunina et al., 2005; Prange-Kiel et al., 2016), suggesting that
aromatase may be implicated in normal as well as pathological
variations in learning and memory.

The development and application of positron emission
tomography (PET) tracers for aromatase have afforded the
ability to measure its availability in different brain regions
noninvasively in the living human brain (Biegon et al., 2010a,
2015; Takahashi et al., 2018). With the use of this technology,
it has been demonstrated that the regional distribution pattern
of [11C]vorozole is heterogeneous with the highest levels of
aromatase availability found in the thalamus and amygdala. In
the present study, PET with [11C]vorozole was used to measure
aromatase availability in the bilateral amygdala and thalamus
of healthy men and women. Blood levels of testosterone and
estrogen were also obtained. Participants completed tests of
verbal learning and memory and perceptual reasoning in order
to explore differing domains in cognitive functioning that utilize
both verbal and nonverbal abilities, exploring a sex-specific
aromatase–cognition association.

MATERIALS AND METHODS

Participants
The study population comprised 27 healthy adult participants
(men, n = 12; women, n = 15), age 21–67 years. All
individuals provided written informed consent prior to study
participation in accordance with the Institutional Review Board
and the Radioactive Drug Research Committee of Stony Brook
University/Brookhaven National Laboratory. Participants were
excluded for (1) recent or current use of gonadal steroids
(including hormonal contraceptives); (2) cigarette smoking
(Biegon et al., 2010b, 2012, 2015), recreational drug use,
and medications affecting brain function; (3) neurological,
psychiatric, or metabolic disorders; and (4) pregnancy in women.
During the screening visit, premenopausal women reported the
date of their last menstrual period, and PET scans were scheduled
to coincide with the early follicular stage.

Verification of Hormonal Status on Study Day: On the day
of the PET study, blood samples were obtained and sent to an
outside laboratory (ARUP) for measurement of hormone levels.
In men, free testosterone and estradiol levels were obtained
to exclude hypogonadism. Serum estradiol (E2) concentration
was determined by tandem mass spectrometry (TMS). In
order to calculate free testosterone (fT), total testosterone
and sex hormone binding globulin (SHBG) were measured
by quantitative electrochemiluminescent immunoassay. Adult
male reference intervals for fT (47–244 pg/ml) and E2
(10.0–42.0 pg/ml) were provided by ARUP. In women,
progesterone and luteinizing hormone (LH) were additionally
measured to verify the stage of the menstrual cycle as well as
menopausal status. Five of the 15 women were postmenopausal,
defined as age above 50 and more than 12 months since
the last menstrual period by self-report and confirmed by
high levels of LH, and low estradiol and progesterone in
the postmenopausal range. Reference values for the various
hormones supplied by ARUP included the following: LH females:
follicular: 2.4–12.6 IU/L; mid-cycle: 14.0–95.6 IU/L; luteal: 1.0–
11.4 IU/L; postmenopausal: 7.7–58.5. Estradiol: follicular phase,
27–122 pg/ml; mid-cycle phase, 95–433 pg/ml; luteal phase,
49–291 pg/ml; postmenopausal, <41 pg/ml. Progesterone: cycle
days reference interval (ng/ml) 1–6, ≤0.17; 7–12, <1.35; 13–15,
≤15.63; 16–28, ≤25.55; postmenopausal: ≤0.10 IU/L).

Cognitive Tests
Participants completed the California Verbal Learning Test-
Second Edition (CVLT-II) (Kramer et al., 2000) by the standard
method. The CVLT-II is an individually administered test
assessing episodic verbal learning and memory. It measures recall
and recognition of two word-lists containing 16 words each
recalled over immediate and delayed memory trials. There are
five presentation trials followed by an immediate recall of the first
list (A), followed by a one-time presentation and immediate recall
of the interference list (B). Measures of free and semantically
cued recall are obtained after the trial with List B (Short Delay
free or cued recall), followed by a 20-min delay (Long Delay
Free or Cued Recall) during which the participant cannot engage
in verbal tasks. After the delay, a recognition trial is completed
during which the participant is asked to identify the items from
List A from a larger list that contains distractor words. Following
another 10-min delay, a forced-choice trial is administered.
We chose select outcome variables aimed at indexing learning
through memory [total recall over the five learning trials of list
A (Trials 1–5), Short and Delayed Cued Recall, and Short and
Delayed Free Recall] as the primary measures of learning on the
CVLT-II (Elwood, 1995).

Participants also completed the Matrix Reasoning subtest
of the Wechsler Abbreviated Scale of Intelligence (Wechsler,
1999), which is designed to assess nonverbal abstract problem
solving, spatial, and inductive reasoning and is considered a
general estimate of nonverbal intelligence. In addition, the
word reading subtest of the Wide Range Achievement Test-3
(WRAT-3) (Wilkinson, 1993), an estimate of verbal intelligence
also considered to be a valid measure of education level, was
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administered to ascertain letter and word decoding abilities
(Wilkinson, 1993; Manly et al., 2002).

Positron Emission Tomography Scans
The PET images were acquired over a 90-min period using a
whole-body positron emission tomograph (Siemen’s HR1, spatial
resolution 4.5 mm × 4.5 mm × 4.8 mm, at the center of field
of view). Radiotracer synthesis, image acquisition, and PET data
analysis were carried out as previously described (Kim et al.,
2009; Biegon et al., 2010a). Briefly, subjects were administered
[11C]vorozole (3–8 mCi; specific activity >0.1 mCi/nmol at the
time of injection) intravenously. A metabolite-corrected arterial
plasma input function for [11C]vorozole was obtained from
arterial blood samples withdrawn every 2.5 s for the first 2 min
(Ole Dich automatic blood sampler) and then at 3, 4, 5, 6, 8, 10,
15, 20, 30, 45, 60, and up to 90 min (end of study).

Image Analysis
Time frames were summed over the 90-min scanning period. The
summed PET images were co-registered with structural three-
dimensional magnetic resonance images of the same subject
when available, using PMOD software (PMOD Technologies,
Zurich, Switzerland) to confirm the anatomical location of
tracer accumulation (Figure 1, right panel). Regions of interest
(ROIs) were placed bilaterally on the summed image and then
projected onto the dynamic images to obtain regional time
activity curves. Regions occurring bilaterally (i.e., at a distance
from the midline) were averaged. Carbon-11 concentration in
each ROI was divided by the injected dose to obtain the %
dose/cm3. A two-compartment model was used to estimate the
total tissue distribution volume, VT , which includes free and
nonspecifically bound tracer as well as specifically bound tracer
(Innis et al., 2007). The four model parameters of the two-
compartment model were optimized to obtain the best fit to the
ROI data for each participant (Flannery et al., 1990; Innis et al.,
2007; Biegon et al., 2010a; Pareto et al., 2013; Logan et al., 2014).

Statistical Analysis
Statistical analyses were conducted using SPSS Statistics software
(Version 25, IBM). Independent t-tests were used to determine if
men and women differed on age, education estimates, cognitive
performance, and aromatase availability. The scores on cognitive
performance, as well as aromatase availability in the ROIs,
were normally distributed; thus, our primary analyses were five
general linear models such that sex (categorical), aromatase
availability in the amygdala or thalamus (continuous), and their
interaction were entered to predict each of five memory outcomes
(CVLT-II outcome: Trials 1–5, Long and Short Delay Free and
Cued Recall). The same approach was taken for the Matrix
Reasoning subtest. A general linear model was used such that
sex (categorical), amygdala or thalamus aromatase availability
(continuous), and their interaction were entered to predict the
estimate of perceptual reasoning. Next, we performed two-
tailed Pearson correlations between aromatase availability in the
amygdala or thalamus and cognitive performance both across
the whole sample and as a function of sex. We further tested

the difference in regression slopes between the separate test-
by-sex correlations. The cognitive tests use normative data that
have been stratified based on age and/or education level(s) as
these factors have been found to be consistently correlated with
performance, supporting our approach of separate sex by test
correlations. Age and education were used as covariates in these
analyses, as increasing age and lower education are associated
with poorer performance on tasks of verbal learning and memory
(Wilkinson, 1993). For education, we used the raw score on
the Reading subtest of the WRAT (Manly et al., 2002) as a
valid indicator of grade level (Wilkinson, 1993). Finally, we
tested whether plasma testosterone and estradiol levels in our
sample affected the aforementioned analyses. For this purpose,
first, we conducted partial correlations between the cognitive test
scores, aromatase availability, and blood measures of estradiol
and testosterone. Second, we entered estradiol and testosterone
levels in our general linear models to test whether their presence
changes the models. All analyses were considered significant at
the p < 0.05 threshold.

RESULTS

There were no significant differences between men and women
in age, education estimates, and aromatase availability in the
amygdala and thalamus (Table 1). Likewise, there were no
differences between men and women on their performance on the
verbal or nonverbal cognitive tasks (Table 2). However, amygdala
aromatase availability correlated with cognitive performance
scores (Table 3). Analyses showed that in men only, lower
amygdala aromatase availability was associated with better
performance on the CVLT-II—recall following a short or long
delay (r = -0.57 to -0.66, p < 0.05). Indeed, the interaction
of correlation trend lines, sex × aromatase availability in the
amygdala predicted free recall performance following a short
delay (free: F1,22 = 5.76, p = 0.025; cued: F1,22 = 6.51 p = 0.018,
Figure 1 top left). Similar results were found for recall after
a long delay (free: F1,22 = 4.85, p = 0.038) with a trend for
Long Delay Cued Recall (F1,22 = 3.16, p = 0.089). The same
pattern was revealed on the nonverbal test, Matrix Reasoning
(F1,21 = 5.32, p = 0.035) (Figure 1, bottom left). In the thalamus,
there were no correlations between aromatase availability and
cognitive performance in men or women (men, r = -0.08 to
0.30, p > 0.35; women, r = -0.46–0.25, p > 0.09). Plasma levels
of estradiol and testosterone did not correlate with aromatase
availability in either the amygdala or thalamus, nor with any of
the cognitive test scores (p > 0.05). Furthermore, adding blood
measures of estrogen and/or testosterone to the aforementioned
general linear models did not change the results.

DISCUSSION

Here, we have used [11C]vorozole, a thoroughly validated
radiotracer for brain aromatase (3; 6; 18, 21; 22) in conjunction
with PET to examine the relationship between aromatase
availability in high-density regions (amygdala and thalamus) and
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FIGURE 1 | Aromatase availability in the amygdala and cognitive performance in men and women. The PET image on the right (coronal plane, overlaid on MRI)
shows the regional distribution of tracer uptake at the level of the amygdala (red circles). The image was pseudocolored using the rainbow scale, with purple/blue at
the low end and orange/red at the high end. The graphs on the left show the regression lines between a verbal (top left) and nonverbal (bottom left) task performance
and aromatase availability in the amygdala (VT) in men (blue circles) and women (empty circles).

cognitive abilities in healthy subjects. Our data show that brain
aromatase availability predicted individual differences in verbal
and nonverbal cognitive performance in men but not in women.
Men with lower amygdala levels of aromatase had better recall
for a list of words (Short Delay Free and Cued Recall and Long
Delay Free Recall), on the CVLT-II. Similarly, men with lower
aromatase in the amygdala also performed better on the Matrix
Reasoning test. These effects were not dependent on plasma levels
of estradiol and testosterone.

Animal studies suggest that brain aromatase availability is
higher in males than in females and is modulated by changes in
testosterone levels (Abdelgadir et al., 1994). As in our previous
studies on this cohort (Biegon et al., 2010a, 2015), there were

TABLE 1 | Age, reading ability, and aromatase availability in the brains of men and
women.

Test p-value Male Female

(N = 12) (N = 15)

Age (years) t25 = -0.56 p = 0.58 41.17 ± 16.44 37.53 ± 16.81

WRAT-3 reading
subtest

t20 = -0.23 p = 0.82 101.50 ± 14.01 100.00 ± 16.41

Aromatase VT

Amygdala t25 = 0.60 p = 0.55 2.80 ± 0.60 2.97 ± 0.82

Thalamus t25 = 0.63 p = 0.54 4.68 ± 0.86 5.04 ± 1.82

Values are means ± SD.

no statistically significant differences in aromatase availability in
the amygdala as a function of sex, in line with previous human
studies that reported comparable levels of brain aromatase and
gene expression in men and women (Steckelbroeck et al., 1999;
Stoffel-Wagner et al., 1999). There were also no significant effects
of age or hormonal status on aromatase in the brain or any other
organ beside the ovary, confirming the organ- and tissue-specific

TABLE 2 | Comparisons between male and female performance on tests of
perceptual reasoning and verbal learning and memory.

Test p-value Male Female

(N = 12) (N = 15)

Matrix reasoninga F1,8 = 0.077 p = 0.78 10.90 ± 3.90 11.18 ± 2.79

CVLT-IIb

Trials 1–5 F2,4 = 2.15 p = 0.15 50.75 ± 5.08 54.79 ± 8.09

Short Delay Free
Recall

F2,4 = 2.20 p = 0.15 10.50 ± 3.00 11.73 ± 2.22

Short Delay Cued
Recall

F2,4 = 3.22 p = 0.09 11.50 ± 2.43 12.87 ± 2.13

Long Delay Free
Recall

F2,4 = 838 p = 0.37 11.33 ± 2.64 12.20 ± 2.34

Long Delay Cued
Recall

F2,4 = 400 p = 0.53 12.17 ± 2.08 12.60 ± 2.35

Values are means ± SD. aValues for Matrix Reasoning were calculated using Wide
Range Achievement Test-3 (WRAT-3) Standard Score as a covariate. bValues for
California Verbal Learning Test-Second Edition (CVLT-II) are calculated using age
as a covariate.
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TABLE 3 | Results of Pearson’s correlations between aromatase amygdala
availability and measures of abstract reasoning and verbal learning and memory.

All participants
(N = 27) r

Males only
(N = 12) r

Females only
(N = 15) r

Matrix reasoninga
−0.34 −0.84** −0.08

CVLT-IIb

word recall 1–5 −0.17 −0.66* −0.04

short delay free recall −0.06 −0.59# 0.26

short delay cued recall −0.10 −0.68* 0.15

long delay free recall −0.11 −0.60* 0.14

long delay cued recall −0.06 −0.57# 0.14

r = Pearson’s correlation coefficient. #trend (0.1 > p > 0.05). *Correlation is
significant at the 0.05 level. **Correlation is significant at the 0.01 level. aValues for
Matrix Reasoning are calculated using Wide Range Achievement Test-3 (WRAT-3)
Standard Score as a covariate. bValues for California Verbal Learning Test-Second
Edition (CVLT-II) are calculated using age as a covariate. Bolded values indicate
correlations are significant or approaching signifiance.

regulation of aromatase expression (Bulun and Simpson, 1994;
Biegon et al., 2010a, 2015). Imaging studies suggest that even
in the absence of behavioral sex differences, there are clear sex-
dependent activations in regions of the brain associated with
memory tasks (De Vries, 2004; Gillies and McArthur, 2010),
which could be attributed to sex-linked levels of estrogens,
androgens, and their receptors in the brain (Cahill, 2006).
Therefore, it is not unexpected that despite the absence of sex-
based differences in the amygdala aromatase availability and
in cognitive performance, the relationship between the two is
nonetheless sexually dimorphic.

In this regard, it is important to note that aromatase activity,
while giving rise to estrogen, also decreases testosterone levels.
In humans, testosterone has been shown to enhance spatial
performance in men, whereas estradiol has been shown to
enhance verbal memory in women (Matousek and Sherwin,
2010). Furthermore, postmortem studies in brains of men who
died with Alzheimer’s disease consistently show large declines
in testosterone levels, which correlated with levels of amyloid, a
disease pathological marker (Rosario et al., 2004, 2011).

An additional compelling reason to support the sex-specific
relationship between aromatase in the amygdala and cognitive
function in our cohort, composed of mostly premenopausal
women, is that in men, in whom circulating estrogen levels
are low, aromatase-dependent production of estrogens from
androgens is the main source of estrogens in the brain. This is not
true in reproductively competent women, in whom brain levels
of estrogen derive from local production as well as peripheral
estrogens produced in the ovary, which diffuse freely into the
brain. Since ovarian and brain aromatase expression are regulated
independently (Rosario et al., 2004) via organ-specific promoter
control (Golovine et al., 2003; Rosario et al., 2011), it is to be
expected that androgenic and estrogenic modulation of brain
function will be regional as well as more tightly correlated with
local aromatase availability in men relative to women (Bulun
et al., 2003; Golovine et al., 2003).

Our results further suggest that extra-gonadal (i.e., brain)
estrogen synthesis and testosterone metabolism, mediated by

aromatase, is implicated in verbal and nonverbal cognitive
processes and therefore reveals a previously unappreciated
sex-dependent relationship between aromatase and cognitive
function in humans. Men with lower amygdala levels of
aromatase, expected to result in lower estrogen and higher
testosterone levels, had better recall for a list of words on the
CVLT during short and long delay following encoding. These
findings also resonate with a report showing that aromatase
inhibition before and during a learning task improved working
memory in male rats (Alejandre-Gomez et al., 2007). To date,
there have been very few in vivo studies of brain aromatase
and behavior in humans, yet recently published studies show
that individual differences in brain aromatase availability are
associated with individual differences in personality traits, with
some sex-specific findings (Takahashi et al., 2018; Biegon et al.,
2020). This is the first in vivo study to show that individual
differences in aromatase availability correspond to cognitive
performance, including memory. While the amygdala is a
brain region best known for modulation of emotion, it is also
thought to play a major role in higher cognition (Schaefer
and Gray, 2007; Janak and Tye, 2015), and some of these
effects are sex-dependent (Cahill, 2010; Carre et al., 2013;
Shvil et al., 2014). Based on several studies and theories in
the last decades, it is asserted in the literature that amygdala
function is implicated in long- and short-term memory, abstract
reasoning, and attention vigilance during mentally demanding
cognitive tasks such as used in this paper. Even in the absence
of emotion triggers during neutral cognitive tasks, attention
vigilance and suppression of emotion are needed, implicating
the amygdala in the output of every cognitive demand [(for
good reviews, see Schaefer and Gray (2007) and Janak and Tye
(2015)]. Lastly, robust sex differences have been reported in
the functional connectivity of the human amygdala, specifically
cortical connections, (Kilpatrick et al., 2006) further suggesting
that the effects of varying levels of aromatase in the human
amygdala on cognitive function are also likely to be sex-
dependent. Notably, we have not observed significant sex
difference in verbal learning and memory in our relatively small
cohort, although better performance on CVLT in women is
a consistent finding across age groups (Kramer et al., 2003;
McCarrey et al., 2016; Graves et al., 2017). However, the absolute
difference is also consistently small (∼10%, ibid), and studies
reporting this difference as significant need a much larger sample
(more than 400 subjects/sex, ibid).

CONCLUSION

This study used PET with [11C]vorozole to document for the
first time the association between availability of aromatase
in the amygdala and individual differences in cognition in
healthy men and women. We demonstrate a clear sex-specific
relationship between aromatase levels in the amygdala and
cognitive performance, showing that men with lower aromatase
availability in the amygdala had better verbal memory and
spatial reasoning performance than men having higher amygdala
aromatase availability. These findings also suggest that the
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cognitive impact of brain aromatase is both region- and sex-
specific, potentially contributing to the normal variation of
cognitive performance in healthy men and women.
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