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Alzheimer’s disease is associated with the cerebral accumulation of neurofibrillary tangles

of hyperphosphorylated tau protein. The progressive occurrence of tau aggregates in

different brain regions is closely related to neurodegeneration and cognitive impairment.

However, our current understanding of tau propagation relies almost exclusively on

postmortem histopathology, and the precise propagation dynamics of misfolded tau

in the living brain remain poorly understood. Here we combine longitudinal positron

emission tomography and dynamic network modeling to test the hypothesis that

misfolded tau propagates preferably along neuronal connections. We follow 46 subjects

for three or four annual positron emission tomography scans and compare their

pathological tau profiles against brain network models of intracellular and extracellular

spreading. For each subject, we identify a personalized set of model parameters that

characterizes the individual progression of pathological tau. Across all subjects, the mean

protein production rate was 0.21 ± 0.15 and the intracellular diffusion coefficient was

0.34 ± 0.43. Our network diffusion model can serve as a tool to detect non-clinical

symptoms at an earlier stage and make informed predictions about the timeline of

neurodegeneration on an individual personalized basis.

Keywords: tau PET, Neuroimaging, model calibration, Alzheimer’s disease, network diffusion model

1. INTRODUCTION

The accumulation of pathological amyloid-β and hyperphosphorylated tau protein is a classical
hallmark of Alzheimer’s disease that occurs years to decades before a clinical diagnosis is possible
(Duyckaerts et al., 2009). The widely accepted amyloid cascade hypothesis is based on the
assumption that the abnormal aggregation of amyloid-β is the disease initiator, which then causes
a series of pathological events including the production and propagation of misfolded tau protein
followed by neurodegeneration, regional atrophy, and ultimately cognitive impairment (Jack and
Holtzman, 2013). Even though recent years have brought a better qualitative understanding of the
various biomarkers involved in Alzheimer’s disease (Jack et al., 2013), little is known about the
causal, quantitative, and temporal relationships between those markers. Mathematical models can
help establish these relations, but they often lack reliable longitudinal data for model calibration
and validation.

Positron emission tomography (PET) is a non-invasive imaging technique that enables the
tracking of amyloid and tau distributions in a living brain non-invasively in vivo (Johnson et al.,
2016; Villemagne et al., 2018). The tau PET tracer [18F]-AV-1451 binds to paired helical filaments
within tau’s neurofibrillary tangles (NFT), as proven in postmortem studies when comparing PET
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signal to histology (Marquié et al., 2015). Hyperphosphorylated
tau plays a central role in disease progression due to its
confirmed direct relation to neurodegeneration and cognitive
impairment (Bejanin et al., 2017; Xia et al., 2017). This
relation was first revealed in postmortem histological analyses
showing strong correlations between the location and density
of tau neurofibrillary tangles and sites of neurodegeneration
(Giannakopoulos et al., 2003). Imaging studies confirmed that
the intensity of in vivo tau PET signal was strongly correlated
to regional tissue atrophy measured in longitudinal magnetic
resonance images (MRI) (Gordon et al., 2018; Iaccarino et al.,
2018; La Joie et al., 2020).

Today, it has become widely accepted that tau is more closely
associated with the neurodegenerative process than amyloid-β
(Buckley et al., 2017). The observation of pathological amyloid-β
and tau protein is not unique to Alzheimer’s disease and is
similarly associated with healthy aging (Knopman et al., 2003).
However, in Alzheimer’s disease patients, the propagation
sequence of tau protein differs from the one observed in
cognitively unimpaired older adults and seems to follow a
consistent, stereotypical and reproducible pattern: In cross-
sectional autopsy studies, pathological tau first appeared in the
transenthorinal cortex before spreading into neighboring regions
in the limbic and temporal cortex. After this, neurofibrillary
tangles were found to propagate into a wide range of the
association isocortex and finally into the primary sensory
cortex (Braak and Braak, 1991; Braak et al., 2006). However,
the precise spreading pattern of misfolded tau, from one brain
region to another, remains incompletely understood. Evidence
from animal models suggests that hyperphosphorylated tau
propagates along the brain’s anatomical neuronal connections
(De Calignon et al., 2012; Liu et al., 2012). This is in line
with findings from PET imaging studies, which revealed a
striking similarity between patterns of in vivo tau PET signal
and the brain’s connectome (Jones et al., 2017; Pereira et al.,
2019). Studies have detected higher PET signal intensity
in strongly interconnected regions, indicating increased
accumulation of tau in these connectivity hubs (Cope et al.,
2018).

Tau PET imaging has only been developed recently and
longitudinal studies that follow the spatio-temporal distribution
of tau in one and the same subject are still rare. A few longitudinal
studies exist, but they are limited to a single follow-up visit (Jack
et al., 2018; Harrison et al., 2019). To better understand the
spreading of misfolded tau, modeling groups have implemented
network diffusion and epidemic spreading models to simulate
the propagation of tau through the brain and claim good
performance when using functional or structural connectomes
as basis for their models (Raj et al., 2012, 2015; Torok et al.,
2018; Vogel et al., 2020; Weickenmeier et al., 2019). However,
none of these models is validated on longitudinal tau data
with multiple points in time. Instead, these studies either base
their conclusions on atrophy data by postulating correlations
between tau topology and atrophy (Raj et al., 2012, 2015; Torok
et al., 2018), or on cross-sectional tau PET images that require
additional assumptions regarding the initial conditions and
model configuration (Vogel et al., 2020).

Recent studies suggest to model the accumulation and
spreading of misfolded protein using partial differential
equations on a network model based on the brain connectome
(Raj et al., 2012; Iturria-Medina et al., 2014; Henderson et al.,
2019). Within this framework, the complex pathogenic cascade
of protein production, conversion, aggregation, and clearance
is captured in, and simplified to, a Fisher-Kolmogorov model
(Fisher, 1937; Kolmogorov et al., 1937; Fornari et al., 2019, 2020).
While these models show good qualitative agreement with the
pathological stages from histopathology (Braak and Braak, 1991),
they have not yet been calibrated and validated with real patient
data. A calibrated model of misfolded tau protein would enhance
our understanding of disease progression, from a qualitative to
a quantitative level. Characterizing the typical time-dependent
evolution of disease biomarkers is essential for developing new
diagnostic tools to detect non-clinical symptoms at an earlier
stage and for evaluating potential new treatments.

Here we use longitudinal tau PET images from 46 subjects
to calibrate the parameters of two competing network diffusion
models based on either anisotropic intracellular spreading
in a connectivity-weighted network or isotropic extracellular
spreading in a distance-weighted network. A side-by-side
comparison of both models with the longitudinal PET
images allows us to test the hypothesis that misfolded tau
spreads preferably intracellularly, along neuronal connections.
In contrast to previous studies, we do not make artificial
assumptions about initial tau seeding or the age at onset. Instead,
we directly extract the initial conditions from the first PET scan
and use the second, third, and fourth scans for personalized
model calibration.

2. MATERIALS AND METHODS

2.1. Image Data Selection
Our study uses longitudinal imaging data from the Alzheimer’s
Disease Neuroimaging Initiative database (ADNI), a multisite,
longitudinal, public database of MRI and PET images for
normal cognitive aging, mild cognitive impairment, and early
Alzheimer’s disease ADNI (2020). We include data from 46
participants who have undergone at least three consecutive
annual tau PET scans. Of these, 16 are diagnosed as cognitively
normal, 9 with significant memory concern, 19 with mild
cognitive impairment, and two with clinically confirmed
Alzheimer’s disease. A total of 26 are classified as amyloid
positive based on previously evaluated β-amyloid PET images
(Landau et al., 2013). To decrease bias, we conduct our study
blind to diagnosis status. All acquired AV1451-PET scans have
previously been preprocessed according to standard ADNI
protocols (ADNI, 2020) to be co-registered and averaged, and to
have a standardized image and voxel size and a uniform image
resolution of 8 mm FWHM. For each PET scan, we obtain a
corresponding high resolution T1 weighted magnetic resonance
image (MRI) from the database, recorded on average within 3
months prior or post PET acquisition. When a concurrent MRI
scan is not available, we use data acquired at the closest visit in
time. The average time span between longitudinal tau PET scans
was 1.0 year, ranging from 0.6 to 2.8 years.
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FIGURE 1 | Image data analysis. Workflow for region of interest (ROI) based positron emission tomography (PET) image analysis. For each subject, at each time point,

we co-register the PET images to the T1 weighted magnetic resonance images (MRI), which we segment using FreeSurfer to calculate the standardized uptake value

ratios (SUVR) for each region of interest (ROI). Our study contains 46 subjects, 3–4 time points, and 83 regions of interest.

2.2. Image Data Analysis
For each subject, we analyze the longitudinal PET data using
the method summarized in Figure 1 (Baker et al., 2017).
Briefly, we co-register the PET images to the corresponding
MRI scan using SPM (SPM, 2020) with 4th degree spline
interpolation and run a full reconstruction of the T1 MRI
using FreeSurfer (FreeSurfer, 2020). This segments the brain
into 68 cortical and 45 subcortical regions and allows us to
extract regional values of tau binding from the PET images.
We define an inferior cerebellar gray matter reference region
using the SUIT template (Diedrichsen, 2006), which we reverse
normalize into the subject’s native T1 MRI space. To create
regional standardized uptake value ratios (SUVR), we normalize
all regional uptake values with respect to the tracer uptake
value from the reference region. Known off-target binding
sites, e.g., the basal ganglia and vascular structures like the
choroid plexus and dural venous sinuses, have been shown
to contaminate the AV1451 PET signal in subcortical regions
and the hippocampus (Lowe et al., 2016; Marquié et al., 2017;
Lemoine et al., 2018). We exclude these regions from the
analysis and focus our model optimization on the 66 remaining
cortical regions.

2.3. Brain Network Modeling
We model the spreading of hyperphosphorylated tau in the
brain as a diffusion process within a network, which we
represent as a weighted undirected graph G with N nodes and
E edges. To test the hypothesis of preferred tau spreading along
neuronal connections, we create two competing network models,
a connectivity-weighted network for anisotropic intracellular

spreading and a distance-weighted network for isotropic
extracellular spreading.

For the connectivity-weighted network, we extract the graph
Gcon from diffusion tensor MRI data of 418 healthy subjects
from the Human Connectome Project (McNab et al., 2013)
using the Budapest Reference Connectome v. 3.0 (Szalkai et al.,
2017). We map the original graph with N = 1, 015 nodes
onto a graph with N = 83 nodes (Fornari et al., 2019).
These 83 nodes correspond to the brain regions extracted in
the FreeSurfer segmentation of cortex and subcortex, allowing
us to directly compare our model degrees of freedom with the
regional tau signal. Figure 2 shows the connectivity-weighted
network with strong connections in red and weak connections
in blue. In this graph, each edge is weighted by the average
number of fibers nij detected between two nodes i and j
divided by the average fiber length lij along this connection
across all 418 brains. This introduces the adjacency matrix
of the connectivity-weighted network as Acon

ij = nij/lij.

Figure 2 shows the adjacency matrix of the connectivity-
weighted intracellular spreading model with a small number
of strong connections within each hemisphere and only few
connections between them.

For the distance-weighted network, we construct a graph Gdist

with the same 83 nodes as the first graph Gcon. However, for
this case, we define an edge between each pair of nodes and
weight it by the inverse of the Euclidian distance dij between the
two nodes. This introduces the adjacency matrix of the distance-
weighted network as Adist

ij = 1/dij. Figure 2 shows the adjacency

matrix of the distance-weighted extracellular spreading model
with a large number of moderately strong connections across the
entire brain.
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FIGURE 2 | Brain network models. Connectivity-weighted network from the human brain connectome and adjacency matrices of connectivity-weighted intracellular

spreading model and distance-weighted extracellular spreading model. The intracellular spreading model features a small number of strong connections within each

hemisphere and only few connections between them; the extracellular spreading model features a large number of moderately strong connections across the entire

brain. Colors represent the connectivity between two brain regions.

2.4. Network Diffusion Modeling
Motivated by the hypothesis that tau protein misfolds and
spreads in a prion-like fashion (Jucker andWalker, 2011; Fornari
et al., 2020), we use a Fisher-Kolmogorov model (Fisher, 1937;
Kolmogorov et al., 1937) to characterize the accumulation of
pathological tau in the brain (Fornari et al., 2019; Thompson
et al., 2020). The model is governed by a single non-linear
reaction-diffusion equation that predicts the spatio-temporal
evolution of the unknown, the concentration of misfolded
protein c,

dc

dt
= ∇ · (D · ∇c)+ α c [ 1− c ], (1)

where D and α denote the diffusion tensor and the local
production rate of misfolded protein. The production rate α

captures the processes of protein production, clearance, and
conversion (Fornari et al., 2019). To model diffusion within a
network, we discretize Equation (1) on the undirected graphs
Gcon and Gdist. We introduce the concentration of misfolded
proteins ci at all i = 1, ...,N nodes and express the change in the
concentration as

dci

dt
= −κ

N∑

j=1

Lij cj + α ci[ 1− ci], (2)

where κ characterizes the global diffusion between two regions
and α the local production or clearance of misfolded protein. A
central element of Equation (2) is the weighted graph Laplacian
Lij, a square matrix, which we construct from the adjacency
matrix Aij. The sum of all elements across each row of the

adjacency matrix Aij defines the degree matrix Dii,

Dii = diag

N∑

j=1,j 6=i

Aij. (3)

The graph Laplacian Lij, the difference of the degree matrix and
the adjacency matrix, summarizes the connectivity of the graph,

Lij = Dij − Aij. (4)

For each subject, we identify a personal diffusion coefficient κ and
a personal protein production rate α that best characterize the
progression of pathological tau from their individual longitudinal
PET scans. Depending on the type of model, we replace
the adjacency matrix Aij in Equations (3) and (4) with the
connectivity weighted or distance weighted adjacency matrix,
Acon
ij or Adist

ij . For comparison, we normalize both matrices such

that their entries lie within the [0,. . .,1] interval. Using these
normalized matrices, we identify the intracellular or extracellular
diffusion coefficient κ and the production rate α.

2.5. Parameter Identification
The simulation with the network diffusion model provides
a region-specific normalized concentration csim with values
between zero, for no misfolded protein, and one, for a maximum
misfolded protein concentration, 0 ≤ csim ≤ 1. To map the
recorded PET standardized uptake value ratios into a zero-to-
one interval, we fit a two-component Gaussian mixture model to
the raw PET data from all subjects, time points, and regions. We
assume that many regions and subjects are free from pathological
tau and use this distribution to identify a tau positivity threshold
of 1.1. We set all values below this threshold to zero and map
the remaining values craw onto the scaled values cpet using

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 566876

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Schäfer et al. Modeling Longitudinal Tau PET Data

the maximum and minimum non-zero PET signals cmax =

max{craw} and cmin = min{craw} as cpet = [ craw− cmin ]/[ cmax−

cmin ], such that 0 ≤ cpet ≤ 1. We adopt a least squares
optimization to identify the personalized diffusion coefficients
κ and production rates α that best reproduce the progression
of tau for each subject. Specifically, we optimize the parameter
set for the connectivity-weighted and the distance-weighted
networks by minimizing the squared error between the simulated

concentrations csimi,t and the PET recorded concentrations c
pet
i,t

within one subject for all i = 1, ..., nroi regions of interest and
all t = 1, ..., nvisit follow-up visits,

err =

nroi∑

i=1

nvisit∑

t=1

β [ csimi,t (κ ,α)− c
pet
i,t ]2 . (5)

Here, β is a scalar factor to improve numerical stability, nroi is
the number of cortical regions for which we have high confidence
data according to section 2.2.

2.6. Model Performance
For comparison, we perform the optimization on three null
models to probe the importance of the different model
components. For the first null model, we leave out the term
for local protein production, α = 0, and optimize solely the
diffusion coefficient κ . For the second null model, we leave out
the diffusion term, κ = 0, and optimize solely the protein
production rate α. For the third null model, we assume that tau
is neither spreading nor produced, κ = 0,α = 0, which implies
that the protein concentration in each region remains constant
across all follow-up visits. We identify the subjects with positive
production rate, α > 0. We assume these are the subjects with
pathological tau expression who are more likely to develop or
have signs of Alzheimer’s disease and focus our further analysis
on this subgroup. For the two network models and the three
null models, we compare the performance in terms of the global
residual error across all subjects, all cortical regions of interest,
and all follow-up visits. We plot the observed vs. predicted values
and calculate a correlation coefficient to illustrate the quality of
the respective fits. We use paired-sample t-tests to determine
whether differences in subject-wise prediction error between
different models are significant. Furthermore, we use Fisher’s R-
to-z transform to determine whether differences in correlation
coefficients between different models are significant.

2.7. Model Prediction
Our dataset only spans a time period of 2–3 years whereas
the accumulation of tau typically spans a period of around 15
years (Bateman et al., 2012). We use the connectivity-weighted
intracellular model and distance-weighted extracellular model to
predict the tau concentrations across the brains of all 46 subjects
for a time window of 15 years. This allows us to explore the long-
term performance of the two models, compare their predictions
against histopathological findings, and test our hypothesis of
intracellular spreading.

3. RESULTS

3.1. Regional Tau PET Concentration
Figure 3 illustrates the regional average standardized uptake
value ratios across all subjects and visits on a template brain
surface. The temporal lobes show the highest tau PET signal
intensity, followed by occipital and frontal lobes. The precentral
and postcentral gyrus display the lowest tau signal intensities.

3.2. Longitudinal Tau PET Concentration
Figure 4 illustrates the results of our image analysis for all 46
subjects, shown as blocks of columns, all time points, shown as
columns, and 66 cortical regions as well as the hippocampus,
shown as rows. The color code indicates the normalized tau
standardized uptake value ratios. On the horizontal axis, subjects
are ordered according to their overall tau load averaged across
all regions and visits, with the most affected subject on the left
and the least affected subject on the right. On the vertical axis,
regions are ordered with respect to their overall tau load averaged
across all subjects and visits with the regions showing the highest
involvement at the top and regions with the lowest involvement
at the bottom. The inferiortemporal, middletemporal, and
fusiform gyrus, the amygdalae, and the hippocampus are the
regions that are most consistently affected with high tau signals.
They are followed by the inferiorparietal lobule, the precuneus,
the entorhinal cortex, and the temporalpole. Interestingly,
we see bands of moderately but consistently affected regions
involving the orbitofrontal cortex, the frontalpole, and the
inferiorfrontal gyrus including the parsorbitalis, parstriangularis,
and parsopercularis. For most regions, the right hemisphere
seems to be less affected by tau than the left hemisphere. This
asymmetry is especially prominent for the temporalpole, the
inferiorfrontal gyrus, the middlefrontal gyri, and the posterior
cingulate cortex. The precentral, paracentral, and postcentral
gyrus are the least affected regions. The hippocampus and
amygdalae appear to be affected above average in most subjects,
even in subjects with very low tau signal in all other regions
of interest.

3.3. Parameter Identification
Figure 5 indicates the ranges of the personalized production
rates α and diffusion coefficients κ for the connectivity-
weighted intracellular and distance-weighted extracellular
diffusion models for 21 subjects. Out of the 46 subjects, 21
exhibited a longitudinal tau signal that was best fit using a
positive protein production rate, α > 0 and 25 exhibited a
signal best fit using a negative production rate, α < 0. We
postulate that the 21 subjects with a positive production rate
are the subjects with pathological tau expression who are
more likely to develop Alzheimer’s disease and focus on the
results of this subgroup. The majority of these 21 subjects, 16
out of 21, were identified with a positive amyloid status. Of
the remaining five, two had no amyloid status reported, one
reported a positive cerebrospinal fluid amyloid status, and
two reported a negative PET and cerebrospinal fluid amyloid
status. While the production rates for the connectivity-weighted
intracellular and distance-weighted extracellular models with
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FIGURE 3 | Regional tau PET concentration. Mean tau concentration from PET scans across all 46 subjects with 3–4 annual scans across all brain regions. Red

regions consistently exhibit high tau loads in all subjects while blue regions tend to be free of tau in most subjects.

FIGURE 4 | Longitudinal tau PET concentration. Standardized uptake value ratios from PET scans for 46 subjects with 3–4 annual scans in 66 cortical regions and

the hippocampus. Regions on the vertical axis are sorted by mean tau load, from top to bottom. Subjects on the horizontal axis are sorted by mean tau load across all

regions and visits, from left to right. Each block of columns represents data for one subject. Within each block, each subcolumn represents data from one annual PET

scan.

α = 0.21 ± 0.15 and α = 0.20 ± 0.14 are in a similar range,
the diffusion coefficient for the connectivity-based model with
κ = 0.34 ± 0.43 is notably larger than for the distance-weighted
model with κ = 0.01 ± 0.01. This difference in the diffusion
coefficients compensates the difference in magnitude of the
entries in the adjacency matrices of the two models, which we
can see in Figure 2. For the connectivity-weighted intracellular
model, the diffusion coefficient κ shows three outliers associated

with subjects that exhibit more and faster spreading than the
average subject.

3.4. Model Performance
Figure 6 summarizes the performance of the two network
models compared to the four null models described in
section 2.6, the intracellular and extracellular spreading
models without production, the pure production model
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FIGURE 5 | Parameter identification. Personalized production rate α and diffusion coefficient κ for the intracellular and extracellular diffusion models, only including the

21 subjects with a positive production rate. For the connectivity-weighted intracellular spreading model, α = 0.21± 0.15 and κ = 0.34± 0.43. For the

distance-weighted extracellular spreading model, α = 0.20± 0.14 and κ = 0.01± 0.01.

FIGURE 6 | Model performance. Simulated concentration csim and PET-based concentration cpet of pathogenic tau protein for intracellular and extracellular network

diffusion models and null models without production, without diffusion, and without both. Each data point represents the simulated and PET-based concentration for

one subject, one visit, and one region of interest. The further a data point is away from the gray line, the worse the prediction. The global residual error err of each

model measures the overall prediction error of each model. (*) indicates a subject-wise error significantly higher than for the full model in paired-sample t-test. The

correlation coefficient R measures the correlation strength between prediction and observation for each model. (**) indicates a correlation coefficient significantly lower

than for the full model using Fisher’s R-to-z transform.

without diffusion, and a model without diffusion and
production. Each data point represents the simulated

concentration csim and PET-based concentration cpet

for one subject, one visit, and one region of interest.
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FIGURE 7 | Model performance. Inherent data correlation. Baseline and final PET-based concentrations cpet, and simulated concentration csim over PET-based

concentration cpet of pathogenic tau protein for intracellular and extracellular network diffusion models. Each data point represents the PET-based concentration for

one subject, one region of interest, and one visit. (**) Correlation coefficient R is significantly lower than for the two proposed models.

FIGURE 8 | Personalized model prediction. Regional tau concentrations from raw and scaled standardized uptake value ratios craw and cpet vs. simulated tau

concentrations csim with a connectivity-weighted intracellular and a distance-weighted extracellular model for personalized initial conditions, production rates, and

diffusion coefficients of subject #12 from Figures 9, 10. Lateral view, left hemisphere.

For an ideal fit, all points would lie on the gray
diagonal line.

The lowest residual error, and best correlation between the
simulated and PET-based concentration was achieved with the
distance-weighted extracellular model with err = 2.3861 and

R = 0.9756, followed closely by the connectivity-weighted
intracellular model with err = 2.4618 and R = 0.9752. A
paired-sample t-test showed no significant difference between the
subject-wise errors associated with extracellular and intracellular
models (perr = 0.07). Fisher’s R-to-z transform showed
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FIGURE 9 | Personalized model prediction. Regional tau concentrations from raw and scaled standardized uptake value ratios craw and cpet vs. simulated tau

concentrations csim with a connectivity-weighted intracellular and a distance-weighted extracellular model for personalized initial conditions, production rates, and

diffusion coefficients of subject #12 from Figures 9, 10. Medial view, right hemisphere.

no significant difference between the correlation coefficients
associated with extracellular and intracellularmodels (pR = 0.59).
Eliminating the production term from the diffusion equation,
α = 0, significantly increased the prediction errors for both
the intracellular and extracellular models, to err = 4.3736 (perr
= 5.7e-04) and err = 4.2912 (perr = 6.0e-04). The correlation
coefficients significantly decreased to R= 0.9528 (pR = 0.0) and R
= 0.9533 (pR = 0.0) when eliminating the production term. The
prediction error of the null model without diffusion, κ = 0, with
err= 2.7269 is significantly higher than with the full models (perr
= 0.002, perr = 0.0015), but significantly lower than with the null
models without production (perr = 0.0012, perr = 0.0016). This is
not surprising, when considering how close to zero the diffusion
coefficient was for the distance-weighted extracellular model in
Figure 5. Notably, the correlation coefficient R = 0.9740 is not
significantly lower for the model without diffusion compared to
the full models with diffusion (pR = 0.0012). The final null model,
which assumes that all tau concentrations remain constant at the
value from the first scan, results in the largest residual error of err
= 4.5624 with significantly higher subject-wise prediction errors

than all other null models (perr ≤ 0.0051) and significantly lower
correlation strength R = 0.9514 (pR = 0.0). On the personalized
level, the distance-weighted extracellular model performs better
for 13 subjects and the connectivity-weighted intracellular model
performs better for the remaining 8. The model performance
suggests that the production term α is a critical component of the
tau pathology model that significantly affects the quality of model
prediction. Additionally, we see that the data imply existing tau
propagation from region to region, even though the diffusion
term seems to have overall less importance than the production
term. Finally, even with the most simplified null model for which
the tau PET concentration does not change in time, the data
points are, even though slightly scattered, still relatively close
to the diagonal line that marks the perfect correlation between
simulation and PET data. This emphasizes the limitation of the
current approach, which only contains longitudinal data from 2
to 3 years. We will continuously update our model as more time
points become available to address this limitation.

Figure 7 illustrates the correlation between baseline and final
observed PET data for all subjects and regions of interest. The
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FIGURE 10 | Model prediction of intracellular model. Simulated tau concentrations csim with connectivity-weighted intracellular model for 21 subjects for 15 years in

66 cortical regions and the hippocampus. Each block of columns represents the simulation for one subject with their personalized initial conditions, production rate α,

and diffusion coefficient κ. Within each block, each subcolumn represents simulated concentrations for 1 year.

plot shows that the data inherently exhibits a high correlation,
with a correlation coefficient of R= 0.9496. This again highlights
how small the observed changes in tau load are over the
observation period of 2–4 years. Fisher’s R-to-z transform
however confirms that the correlation significantly increases with
our proposed intracellular and extracellular models (pR = 0.0).

3.5. Model Prediction
To investigate the predictive nature of the connectivity-
based intracellular and distance-based extracellular models, we
simulate the spatio-temporal pathogenic tau distribution for all
21 subjects with positive production rate throughout a period
of 15 years using the models from sections 2.3, 2.4 with the
personalized initial conditions, production rate α, and diffusion
coefficient κ .

Figures 8, 9 show the personalized model predictions for a
single subject, with personalized initial conditions, production
rates, and diffusion coefficients. The first and second row
showcase the PET tau concentrations from the raw and scaled
standardized uptake value ratios craw and cpet for 3 years. The
third and fourth row show the simulated tau concentrations
csim from the connectivity-weighted intracellular model with
α = 0.422 and κ = 0.133 and the distance-weighted
extracellular model with α = 0.437 and κ = 0.007 for
the first 3 years and for year 10. Both models first follow
the observed PET concentration closely with only marginal
differences in the predictions. However, after 10 years, the

predicted tau concentration pattern from the intracellular model
is much more heterogeneous than the concentration from the
extracellular model. This is especially visible in the medial view
of the right hemisphere in Figure 9, where the colors of the
intracellular model still range from dark blue to red, whereas in
the extracellular model predicts values in the color range from
yellow to red.

Figures 10, 11 show the predictions for the connectivity-
weighted intracellular model and the distance-weighted
extracellular model. Each block of columns represents
the simulation for one subject for the 15-year window.
For some subjects, the predicted long-term response is
similar for both models. However, in most subjects, the
predicted pathological pattern differs between the intracellular
and extracellular approach. Interestingly, the intracellular
model maintains a staggered and sequential involvement
of different regions within one subject, the extracellular
model predicts a more homogeneous and smoothened
spatial distribution of pathological tau protein. In this
sense, the intracellular model preserves the inhomogeneous
topology of the tau spreading process, in which individual
regions of the cortex begin to express high concentrations of
pathological tau in a sequential way, with successively more
regions affected over time. In contrast, the extracellular
model predicts a gradual increase in pathological tau
protein, but involves all regions homogeneously at the
same time.
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FIGURE 11 | Model prediction of extracellular model. Simulated tau concentrations csim with connectivity-weighted intracellular model for 21 subjects for 15 years in

66 cortical regions and the hippocampus. Each block of columns represents the simulation for one subject with their personalized initial conditions, production rate α,

and diffusion coefficient κ. Within each block, each subcolumn represents simulated concentrations for 1 year.

4. DISCUSSION

The objective of this study was to identify personalized
parameters of a network diffusion model for pathogenic tau
propagation using longitudinal tau PET data. As part of this
study, we tested the hypothesis that misfolded tau spreads
through the brain primarily along neuronal connections.
To test this hypothesis, we compared the performance
of two competing network models, a connectivity-based
intracellular spreading model and a distance-based extracellular
spreading model. Ultimately, both modeling approaches
resulted in good correlations between the observed tau PET
concentrations and the simulated tau concentrations. While
we were not able to confidently confirm our hypothesis
about the transport mechanism of tau because of the
limited amount of available longitudinal data, the long-term
predictions of tau pathology support our intracellular spreading
hypothesis. The intracellular spreading model predicted a
more heterogeneous tau spreading that agrees better with the
well-accepted histopathological staging than the extracellular
spreading model.

Previous studies that model the propagation of tau pathology

have used cross-sectional PET (Vogel et al., 2020) or atrophy data

(Raj et al., 2012; Torok et al., 2018) for mode validation. However,
even though longitudinal tau pathology has successfully been

correlated with atrophy patterns (La Joie et al., 2020), there are
multiple factors calling into question the use of tissue atrophy as

a direct predictor for tau pathology. First, there is a considerable

time lag between tau accumulation and neurodegenerative tissue
atrophy in Alzheimer’s disease (Bejanin et al., 2017; Harrison
et al., 2019), the exact magnitude of which is unknown. Second,
tau accumulation is not a unique cause for atrophy during aging
and disease, so directly inferring tau topology from atrophy
measurements could be misleading. Opting for tau PET data
allows for a more direct quantitative validation. However, using
cross-sectional PET data for calibration of a time-dependent
model introduces a certain bias, as it requires additional
assumptions for initial conditions at disease onset, age at onset
and propagation speed. Cross-sectional studies also neglect inter-
individual differences in disease progression. Here, instead, we
evaluate the performance of tau pathologymodels calibrated with
longitudinal tau PET data. This inherently removes the need to
make assumptions about initial conditions and minimizes bias.

From the longitudinal data, we inferred a sequence of regions
earliest and most affected by misfolded tau. This sequence is—
despite some slight differences in the initial regions—in line
with the results from cross-sectional studies (Cho et al., 2016;
Vogel et al., 2020) and with the well-accepted histopathological
staging (Braak and Braak, 1991; Braak et al., 2006): Histologically,
neurofibrillary tangles were first observed in the transentorhinal
cortex before spreading into proper entorhinal cortex and the
hippocampus. The amygdala is one of the regions affected next,
followed by a more widespread range of regions in the inferior
facies of the temporal and occipital lobe and finally other regions
of the isocortex in temporal, frontal, occipital and parietal lobe.
The only regions found to be relatively spared of pathology
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even in late disease stages were the primary sensory areas and
primary motor field in the precentral and postcentral gyrus.
Our data roughly follows this sequence, with the hippocampus
and amygdalae affected early on and in many subjects and
the postcentral and precentral gyri affected the least across all
subjects. The results of our analysis imply less involvement of
the entorhinal cortex than expected according to Braak’s stages.
This discrepancy could originate from technical limitations of
our PET image analysis. The entorhinal cortex is a very small
structure and the standardized PET image resolution is low due
to the multi-site nature of the ADNI database. Thus, uptake value
measurements in the entorhinal region could be compromised
through bleed in from other regions and tissues.

Unavoidably, all segmentation and co-registration algorithms
are associated with a certain error. For FreeSurfer’s parcellation
and segmentation algorithm, the entorhinal cortex is associated
with a relatively low correlation between manual and automated
segmentation when compared to other regions (Desikan et al.,
2006; McCarthy et al., 2015). Therefore, errors in segmentation,
co-registration and the low PET resolution may have caused
inaccuracies in our measurements for the entorhinal cortex and
led to the resulting low rankings of 15 and 18 in our sequence.
However, a longitudinal PET study has recently shown that early
tau accumulation can be more widespread and is not necessarily
confined just to the entorhinal cortex in all individuals (Jack
et al., 2018). The tau PET signal in the hippocampus is known
to be often compromised by off-target binding to the nearby
choroid plexus (Lemoine et al., 2018). This could explain, why
we observe consistently high binding to the hippocampus in our
dataset, even in subjects that have a very low tau load in all other
regions. Overall, the results from our longitudinal image analysis
are reasonable, especially when considering the integral image
quality, and are in general agreement with existing literature.

We identified the parameters of two network diffusion
models using longitudinal PET data of 46 subjects. We then
focused on the 21 subjects with a positive protein production
rate. We postulate that those individuals are most likely to
follow the typical Alzheimer’s disease cascade with prion-
like tau pathology. The majority of those subjects had been
classified as amyloid positive, which supports our hypothesis, and
indicates an abnormal accumulation of amyloid-β prior to the
observed accumulation of tau. The distribution of personalized
model parameters from the model optimization process exhibits
a notable variance considering inter-individual differences in
disease progression. In a recent study, which compared the
performance of a connectivity-based to a distance-based network
model with respect to cross-sectional tau PET data of 312
subjects, the connectivity-based model was clearly superior in
reproducing the data (Vogel et al., 2020). However, when directly
comparing the two models with respect to our longitudinal tau
data, we did not see a clear superiority of the connectivity-
weighted model. In fact, both models performed nearly equally
well, resulting in good correlations between simulated and
observed tau PET distributions over time. This is likely due to
the limited time span of our data, covering disease development
only within 3–4 years. We found the change in tau burden—
especially the propagation from region to region—to be so low
that even a model without diffusion term would simulate the data

acceptably well. Solely based on our parameter identification,
it is thus not possible to solidly confirm the hypothesis that
tau spreads along the brain’s connectome. However, when
comparing the long-term prediction of the two models, we
found that the connectivity-weighted intracellular model predicts
more defined and distinct distributions of tau that are in line
with the histopathologically observed heterogeneity of tangle
spread. As more longitudinal tau PET data become available
over the course of the next years, we will revisit our analysis to
draw more sophisticated conclusions and confirm or disprove
our hypothesis.

While our connectivity-based network diffusion model is able
to describe the spatio-temporal evolution in our data well, it is
still associated with some residual error. These shortcomings of
themodelmay arise from the fact that there could be other factors
influencing the spread of misfolded tau through the brain. For
example, it has been suggested that differences in gene expression
between regions could cause regionally varying production and
clearance rates of healthy or misfolded tau and thereby affect
the progression of pathology (Grothe et al., 2018). This regional
vulnerability could be included in our model in the future by
allowing the production rate α to be a region-specific parameter
informed by gene expression.

We have previously proposed and examined a coupled non-
linear finite element model for the simulation of Alzheimer’s
disease related atrophy dependent on local tau pathology
(Weickenmeier et al., 2018; Schäfer et al., 2019). The model
parameters of our network diffusion model could directly be
applied to inform neurodegeneration models. Since more and
more studies are confirming a qualitative correlation between tau
pathology and regional brain atrophy measurements (Harrison
et al., 2019; La Joie et al., 2020), our next step will be
to characterize this correlation more quantitatively using our
coupled model informed by the here presented longitudinal
tau PET data on the one hand and longitudinal atrophy
measurements from structural MRI of the same patients on the
other hand.

This study comes with several limitations, some of which can
naturally be addressed as more data become available: First, the
size of our cohort was limited to a small number of subjects
with a sufficient number of follow-up tau PET scans. Our data
show that there is a lot of inter-subject variability in tau PET
data. Including more subjects, will increase statistical power and
make it easier to deduce clear trends for disease progression
and typical tau pathology. To counteract potential overfitting,
in the future, we will use Bayesian hierarchical modeling, a
statistical approach allowing for the inference of personalized
parameters drawn from a common distribution. This will allow
us to account for commonalities between all subjects while
simultaneously attesting to inter-subject variability. Second, the
maximum number of visits per subject was limited to four. As
subjects will return for future scans, we will be able to follow
the observations in individual subjects over longer periods of
time and evaluate the longitudinal performance of our model.
While histopathology shows that truncated tau proteins prevail
and the presence of hyperphosphorylated tau decreases as the
disease advances, our study does not show a clear trend in this
direction, which could be a result of the limited amount of data
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and the short time window of observation. We will keep adding
future studies of years 5 and 6 to our analysis and hope to see
a clearer trend in the future. Third, since ADNI is a multi-
center study, the images are acquired on various scanner types
with various different resolutions. To balance these differences in
image quality, all data used in this work were standardized to the
lowest common resolution. This low resolution in PET images
intensifies partial volume effects, since multiple tissue types can
be contained in one voxel, resulting in contamination of regional
intensities through wash-out and bleed-in.

5. CONCLUSION

We proposed a new method to calibrate different network
diffusion models using longitudinal tau PET data. We identified
personalized model parameters that characterize the individual
nature of tau pathology progression in 46 subjects. Specifically,
we used the misfolded protein production rate to stratify
all subjects into those with a positive production rate, more
likely to develop neurodegeneration, and those with a negative
production rate. For the subjects with a positive production rate,
we found a mean production rate of 0.21 ± 0.15 and a mean
intracellular diffusion coefficient of 0.34 ± 0.43. Our results
suggest that the propagation of misfolded tau from region to
region is slow in most subjects—barely measurable within a time
frame of 3 to 4 years—calling for further investigation once
more longitudinal data become available. Our overall findings
support the hypothesis that tau pathology propagates across
the brain along structural neuronal connections. Ultimately, our
method allows us to quantitatively characterize personalized
tau pathologies in their spatio-temporal characteristics, which
can in turn be used to inform models of other related disease
biomarkers, including regional atrophy.
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