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Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain
injury which could lead to neonatal disability or even cause neonatal death. Therefore,
HIE strongly affects the health of newborns and brings heavy burden to the family
and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are
involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has
been shown that the NMDA receptor also plays important roles in HIE. In the present
review, we made a summary of the molecular mechanism of NMDA receptor in the
pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-
containing NMDA receptor subtypes and aiming to provide some insights into the clinical
treatment and drug development of HIE.
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INTRODUCTION

The clinical definition of hypoxic-ischemic encephalopathy (HIE) is “asphyxia of the umbilical
blood supply to the human fetus occurring at 36 gestational weeks or later” (Millar et al., 2017).
This is one of the most common causes of long-term neuronal impairment in children (Perlman,
1997, 2006; Maxwell et al., 2020). Studies have shown that the incidence rate of HIE for full-term
newborns with more than 36 weeks gestational age is 3/1,000 (Knox et al., 2013; Hagberg et al.,
2015), and this is approximately 7/1,000 for premature fetus within the gestational age of 33–
35 weeks (Chalak et al., 2012). When the gestational age is less than 32 weeks, the rate significantly
increases (Oskoui et al., 2013). In 2013, Oskoui et al. reported an incident rate of 62/1,000 for
28–31 weeks fetuses and more than 146/1,000 for less than 28 week fetuses (Oskoui et al., 2013).

Perinatal hypoxic-ischemic injury is characterized by high incidence and high mortality. It
can cause permanent injury to the newborn and even endanger life. The newborns who survive
usually suffer from various neurological disabilities, including developmental delay, cerebral palsy,
epilepsy, visual impairment, and learning disabilities (Li et al., 2017; Koehler et al., 2018). In
developed countries, the incidence of hypoxic-ischemic brain damage per thousand neonates is
approximately 1.5 cases (Glass, 2018), while in developing countries, the incidence increases to 26
cases per thousand neonates (Li et al., 2017).

PATHOLOGICAL PROCESS OF NEONATAL
HYPOXIC-ISCHEMIC ENCEPHALOPATHY

The pathological process of neonatal HIE includes energy failure, oxidative stress, inflammation,
and excitotoxicity. Together, these mechanisms lead to neuronal apoptosis, swelling, and necrosis.
Under normal physiological conditions, the human brain has a high demand for oxygen and
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glucose, which are used to produce adenosine triphosphate
(ATP) (Rocha-Ferreira and Hristova, 2016). In early HIE,
due to the reduced supply of oxygen and blood flow, brain
tissue turns to depend on anaerobic respiration for ATP,
which will result in the depletion of ATP and decreased
level of oxidative phosphorylation, followed by a series of
abnormal cellular activities, such as severe metabolic acidosis
induced by lactic acid accumulation. This was primary energy
failure that occurred within 6 h after HIE (Juul and Ferriero,
2014). The destruction of cell homeostasis can lead to the
imbalance of Na+, Ca2+, and water, as well as excitatory
neurotransmitter release, resulting in “excitatory oxidative
cascade reaction” (Juul and Ferriero, 2014). Then secondary
energy failure occurs after 6 h, resulting in mitochondrial
dysfunction and failure of energy metabolism in mitochondria.
This would continue to cause excitotoxicity, oxidative stress,
and inflammation and aggravate the brain tissue damage
(Yang and Lai, 2011; Rocha-Ferreira and Hristova, 2015).
These serious reactions promote the initial inflammatory
reaction (Juul and Ferriero, 2014) and further cause secondary
neuronal damage, which may last for several days, followed
by the anti-inflammatory stage and repair stage (Juul and
Ferriero, 2014; Rocha-Ferreira and Hristova, 2015). Furthermore,
studies have shown the activation of glia cells, including
the microglia, astrocytes, and oligodendrocytes in neonatal
hypoxic-ischemic brain damage, activates immune response and
results in the release of a large number of proinflammatory
cytokines that promote neuronal apoptosis (Li et al., 2017;
Mamun et al., 2020).

There are some differences between neonatal and adult
hypoxic ischemia. For example, in early development, the
N-methyl-D-aspartate (NMDA) receptor-mediated selective
vulnerability increased (Huang and Castillo, 2008). Compared
with adults, the developing brain is high in plasticity and
also more susceptible to external stimuli (Rocha-Ferreira and
Hristova, 2016). For example, it is shown that HIP3 (suffered
to HI injury at postnatal day 3) rat tolerates better than HIP11
(suffered to HI injury at postnatal day 11) rat because of its more
resilient metabolism (Odorcyk et al., 2020), but the sustained
changes of brain metabolism may in turn influence the long-term
cognitive development (Azevedo et al., 2020). Furthermore,
although the immature brain can exhibit a certain resistance
when it is subjected to hypoxia alone (Johnston et al., 2001),
the coexistence of hypoxia and ischemia could reduce the
resistance of neonatal brain, exaggerate neuronal excitability,
and thereby cause neurons to more likely be damaged, and
the injury would develop for several days (Johnston et al.,
2001). In addition, the immature brain can endure long-term
energy consumption due to its low energy demand. However,
when the exhaustion of energy reaches a threshold, this would
eventually activate the excitatory pathways and aggravate the
damage (Rocha-Ferreira and Hristova, 2016). Moreover, it is
recently reported that HIE could also impact brain development
by interfering with the maturation of several types of cells in
the central nervous system. For example, the maturation of
oligodendrocytes is impaired after HIE and therefore causes
abnormal myelination (Ziemka-Nalecz et al., 2018; Baldassarro

et al., 2020; Janowska et al., 2020). Another study found that
HIE impairs GABAergic development in hippocampus which
might be the cause of HIE-induced long-term memory deficiency
(Chavez-Valdez et al., 2020).

THE NMDA RECEPTOR IS INVOLVED IN
NEONATAL HYPOXIC-ISCHEMIC
ENCEPHALOPATHY

Glutamate mediates most of the excitatory transmissions in
the central nervous system. There are three types of ionergic
glutamate receptors in the mammalian brain: NMDA receptor,
AMPA receptor, and KA receptor (Yang and Lai, 2011). The
NMDA receptor has high affinity for glutamate (Rosenberg and
Aizenman, 1989; Rosenberg et al., 1992; Káradóttir et al., 2005).
Therefore, it plays an important role in glutamate-mediated
excitotoxicity (Rosenberg and Aizenman, 1989; Rosenberg
et al., 1992; Lynch and Guttmann, 2002; Káradóttir et al.,
2005; Makarewicz et al., 2014) and is also involved in many
physiological processes (Forrest et al., 1994). The physiological
activity of the NMDA receptor is essential for normal
neurological function, including synaptic plasticity, cognition,
learning, and memory formation. However, the excessive release
of glutamate under pathological conditions leads to the over-
activation of NMDA receptors, resulting in excessive Ca2+

influx that activates downstream death signaling pathways and
finally leads to cell necrosis or apoptosis, which is known as
excitotoxicity (Szydlowska and Tymianski, 2010; Lai et al., 2011;
Zhou et al., 2013; Wu et al., 2017; Wu and Tymianski, 2018).
NMDA receptors exist in neurons and glial cells of newborns
(Jantzie et al., 2015) and are composed of four different subunits,
including the structural subunit GluN1 and the regulatory
subunits GluN2 and GluN3 (Traynelis et al., 2010; Paoletti
et al., 2013). GluN1 knockout in mice is lethal in the perinatal
period, indicating its important role in development and survival
(Zhou et al., 2013). GluN2 subunits are regulatory subunits,
which determine the biophysical and pharmacological properties
of different NMDA receptor subtypes and affect the assembly,
downstream signaling, transport, and synaptic targeting of
NMDA receptors (Lau and Zukin, 2007). GluN2 subunits have
four different types, namely, GluN2A, GluN2B, GluN2C, and
GluN2D. Among these, GluN2A and GluN2B are the major
subunits expressed in frontal cortex and hippocampus (Monyer
et al., 1994). At the early stage of development, the GluN2B-
containing NMDA receptor is dominant, and the expression of
the GluN2A-containing NMDA receptor gradually increases in
the later stage of development and eventually outnumbers the
GluN2B-containing NMDA receptor (Knox et al., 2013). Studies
have shown that neonatal hypoxic-ischemic injury is correlated
to NMDA receptor-mediated excitotoxicity (Johnston et al., 2002;
Wu et al., 2017). Furthermore, it has also been proven that after
6 h of hypoxia ischemia, the expression of GluN2A significantly
decreases, while the expression of GluN2B exhibits an opposite
trend, which reaches a maximum at 24 h after hypoxic ischemia
(Lai et al., 2016). This suggests that GluN2A and GluN2B might
play different roles in neonatal HIE.
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The Role of the GluN2B-Containing
NMDA Receptor in Hypoxic Ischemic
Injury
Membrane-associated guanylate kinase (MAGUK) is a neuronal
scaffold protein that interacts with GluN2A and GluN2B
(Niethammer et al., 1996). The two MAGUK family members,
postsynaptic density protein 95 (PSD95) and synapse-associated
protein 102 (SAP102), were found to interact with GluN2A
and GluN2B in adult brains (Lim et al., 2002). In neonatal
neurons, the GluN2B/SAP102 complex is dominant, while
the GluN2A/PSD95 complex gradually increases during
development (van Zundert et al., 2004). In the early stage after
HIE, the interaction between GluN2B and MAGUK decreases
(Shao et al., 2017; Lu et al., 2018), while PSD95 subsequently
increases its binding with GluN2B (Shao et al., 2017).

Neonatal hypoxia ischemia can rapidly activate the
phosphorylation network of GluN2B and regulate the function
of the NMDA receptor by recruiting new proteins, including Src
family kinase (SFK), protein kinase C (PKC), calmodulin kinase
(CaMKII), and other kinases, to the postsynaptic dense region
(PSD) (Shao et al., 2017). SFK plays the role of the molecular
center in NMDA receptors coupled signaling cascade (Jiang
et al., 2008). After neonatal hypoxic-ischemic injury, SFK is
activated in the PSD area (Jiang et al., 2011) and interacts with
the GluN2B subunits (Knox et al., 2013). Fyn as a member of
SFK mainly mediates tyrosine phosphorylation at three sites
of GluN2B, including tyrosine (Y) 1472, Y1336, and Y1252
(Nakazawa et al., 2001). It has been shown that after neonatal
HIE, the phosphorylation of Y1472 would increase (Knox et al.,
2014). Furthermore, the overexpression of Fyn enhances the
phosphorylation of GluN2B in neonatal HIE (Jiang et al., 2008)
and exaggerates the neuronal damage, suggesting the pro-death
role of SFK in GluN2B-mediated neuronal death. It has also
been reported that in early stage of HIE, the phosphorylation of
DAPK1 and the P85 subunit of PI3K (Lu et al., 2018) increases.
These kinases are known to phosphorylate GluN2B and amplify
its downstream pro-death signals (Takagi et al., 2003; Tu et al.,
2010). Hence, they might also play similar roles in HIE. Although
most researches have indicated the pro-death role of GluN2B in
HIE, there is also evidence that GluN2B could protect neurons
against apoptosis during development (Martel et al., 2009; Lai
et al., 2016). Since the GluN2B-containing NMDA receptor is
the dominant subtype in early development, it remains to be
determined whether GluN2B plays dual roles in HIE.

The Role of the GluN2A-Containing
NMDA Receptor in Hypoxic Ischemic
Injury
The expression of GluN2A in neonatal brain is relatively low
in neonatal brains, and it was found that the expression of
GluN2A further decreases after neonatal HIE (Lai et al., 2016).
It has been suggested that excessive GluN2A phosphorylation in
neonates increases the NMDA receptor-mediated excitotoxicity
and affects normal brain function (Gurd et al., 2002). Therefore,
the downregulation of GluN2A after 6 h of hypoxia ischemia

injury might play a protective role (Lai et al., 2016). As mentioned
above, after HIE, the SFK is activated and recruited into PSD
(Shao et al., 2017). In addition to binding with GluN2B, they
also interact with GluN2A (Gurd et al., 2002; Jiang et al.,
2011). However, although tyrosine phosphorylation of GluN2A
was detected in adult rats (Hardingham, 2009), no change was
detected in neonatal rats (Takagi et al., 2002). Another possible
explanation is that HIE inhibits the developmental switch of
subtypes of the NMDA receptor from the GluN2B dominant to
GluN2A dominant, and this might cause long-term cognitive
impairment. Overall, despite the extensive studies of GluN2A in
adult hypoxic ischemia, its role in neonatal HIE is not clear at
present and requires further investigation.

The NMDA Receptor Subtype
Hypothesis and Neonatal
Hypoxic-Ischemic Encephalopathy
Activation of NMDA receptor can induce neuronal survival
or death during central hypoxia ischemia injury, and there
are different hypotheses about the mechanism of this
dual function of the NMDA receptor. The most famous
hypotheses include location hypothesis and subtype hypothesis
(Wu and Tymianski, 2018).

The location hypothesis suggests that the synaptic NMDA
receptors are coupled to pro-survival signaling pathways, while
the extrasynaptic NMDA receptors triggers neuronal death
(Wu and Tymianski, 2018). For example, during ischemia,
synaptic NMDA receptors activate the phosphoinositide 3
kinase (PI3K)-protein kinase B (PKB, also known as Akt)
pathway and extracellular signal-regulated kinase (ERK)-cAMP
response element-binding protein(CREB) pathway (Hetman and
Kharebava, 2006; Zhang et al., 2007; Hardingham, 2009; Zhou
et al., 2013) and exerts protective function. When synaptic
NMDA receptor is opened, PI3K is phosphorylated and activated
by calmodulin (Joyal et al., 1997) and further phosphorylates
Akt (Impey et al., 2002), followed by a series of downstream
survival cascades. In addition, synaptic NMDA receptors can
also induce survival gene expression through activating Ras-
ERK pathway and phosphorylating CREB (Wu et al., 2001;
Hardingham et al., 2002; Impey et al., 2002; Hardingham,
2009). In contrast to the synaptic NMDA receptor’s role in
protection, the extrasynaptic NMDA receptor is coupled to the
death signaling pathway. The activation of extrasynaptic NMDA
receptors deactivates the CREB pathway (Hardingham et al.,
2002; Vanhoutte and Bading, 2003; Lai et al., 2011), and at
the same time, it also phosphorylates ERK pathway to prevent
CREB activation, promote the expression of death-promoting
genes, and cause neuronal death (Vanhoutte and Bading, 2003;
Hardingham, 2009). Compared to adult neurons, a mature
spine structure is rare in neonate brain. Therefore, it remains
unclear whether the location hypothesis of NMDA receptor
also stands in HIE. Another possibility is that binding with
different signaling cascades that are designated to be synaptic and
extrasynaptic in mature neuron determines the role of GluN2A
and GluN2B in HIE.
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The subtype hypothesis suggests that different NMDA
receptor subtypes mediate different downstream signaling
molecules and play different roles in ischemia (Lai et al.,
2011; Wu et al., 2017). In adult brains, the GluN2B-containing
NMDA receptor is enriched outside the synapses and coupled
to pro-death signaling cascade, while the GluN2A-containing
NMDA receptor is mainly expressed in the synapse and mediates
neuroprotection and neuronal survival (Liu et al., 2007; Chen
et al., 2008). The roles of different NMDA receptor subtypes in
hypoxia ischemia have been extensively studied, but a consensus
is still not reached. Studies have shown that the activation
of GluN2B-containing NMDA receptors is more lethal than
GluN2A-containing NMDA receptors (Liu et al., 2007; Choo
et al., 2012; Zhou et al., 2013; Sun et al., 2015). This suggests
that GluN2B is the main hub of NMDA receptor-mediated
excitotoxicity and plays a leading role in inducing cell death (Wu
et al., 2017). However, some other researches show an opposite
role of the GluN2B-containing NMDA receptor (Soriano et al.,
2008; Martel et al., 2009).

Researches on the roles of GluN2B in neonatal HIE are
relatively abundant than GluN2A, which is perhaps due to its
high expression. The existing studies indicated that GluN2B
might have both pro-death and protective roles in HIE. Although
the activation of the pro-death signaling network coupled to
GluN2B is activated early after HIE (Jiang et al., 2008; Knox
et al., 2014; Lu et al., 2018), it has been proven that the GluN2B-
containing NMDA receptors may also promote neurogenesis in
the subventricular zone (Lai et al., 2016). Compared to GluN2B,
the role of GluN2A is even more unclear. The expression of
GluN2A is extremely low in early development and is further
decreased after HIE (Lai et al., 2016), which makes it difficult
to contribute much in mediating protection in neonate brain.
However, because the developmental switch of GluN2A and
GluN2B is required for the normal cognition, the lasting low
level of GluN2A may interfere with the normal development of
numerous neuronal functions.

Overall, since the expression pattern of GluN2A and GluN2B
of newborn is quite different from that of adult, it is possible that
their role in neonatal HIE may be different from adults.

NMDA Receptors Participate in
Glia-Mediated Neuronal Damage and
Protection
Under normal physiological conditions, microglia in neonatal
brain are more active than in adults (Li et al., 2017), these
participate in synaptic pruning and neurogenesis (Matcovitch-
Natan et al., 2016). The activation of microglia can be detected
after HIE (Hagberg et al., 2015; Zhao et al., 2016), along
with increase of glutamate, reactive oxygen species (ROS),
and nitric oxide (NO), which cause oxidative damage and
promote secondary energy failure (Jellema et al., 2013; Kaur
et al., 2013). Astrocytes play an important role in maintaining
the integrity of the blood–brain barrier and are responsible
for glutamate transport (Anderson and Swanson, 2000). They
regulate the homeostasis of extracellular ions, such as sodium
and calcium ions (Lian and Stringer, 2004; Li et al., 2017).

In addition, activated astrocytes secrete various chemokines
to attract immune cells to migrate to the injured area and
further aggravate hypoxic-ischemic brain damage (Miller et al.,
2005; Koh et al., 2015; Zhao et al., 2016). In adult ischemic
brain, astrocytes play roles in both pro-inflammation and
anti-inflammation (Dong and Benveniste, 2001). However, the
function of astrocytes in neonatal HIE remains unclear. It has
been speculated that in neonatal HIE, astrocytes may function
to attenuate inflammation (Li et al., 2017). The activation of
glutamate receptors in oligodendrocytes leads to massive calcium
influx and accumulation in mitochondria, contributing to the
production of oxygen free radicals and caspase family-mediated
cell death (Sánchez-Gómez et al., 2003; Matute et al., 2006).
There is evidence that oligodendrocytes and its precursor cells
express NMDA receptors that comprise GluN1 and GluN2A,
GluN2B, GluN2C, or GluN3A, in which the most abundant were
GluN2C- and GluN3A-containing NMDA receptors (Káradóttir
et al., 2005; Koodziejczyk et al., 2009). It was also shown
that the NMDA receptor participates in the myelination of
oligodendrocytes in neonatal rats (Káradóttir et al., 2005), and
during ischemia, the activation of NMDA receptors results
in the Ca2+-dependent detachment and disintegration of
oligodendroglial processes (Káradóttir et al., 2005; Salter and
Fern, 2005), which might contribute to developmental delay
caused by HIE.

TREATMENT OF NEONATAL
HYPOXIC-ISCHEMIC
ENCEPHALOPATHY

At present, there are few ways to effectively treat neonatal
hypoxic-ischemic injury. Among these, hypothermia is the most
widely used (Wassink et al., 2019). Hypothermia can intervene
some critical steps in the excitatory oxidative cascade. It can
reduce energy failure and protect the blood–brain barrier and
thereby reduce the glutamate release and nitric oxide production
and alleviate neuronal death (Thoresen et al., 1995; Kim et al.,
2011; Wassink et al., 2014; Sun et al., 2019). And it is recently
reported that HIE can also upregulate the expression and
releasing of erythropoietin (EPO) in astrocyte to inhibit neuronal
apoptosis (Toriuchi et al., 2020). In addition, hypothermia can
also improve the survival of hypoxic-ischemic injury and benefit
the development of the nervous system in moderate and severe
HIE (Tagin et al., 2012). In the clinic, hypothermia is the standard
treatment for hypoxic ischemic injury in neonates. After the
birth of the child, the body temperature is reduced to 33.5◦C
immediately for 72 h. However, excessively low temperatures
or long durations may lead to more severe damage (Martinello
et al., 2017). Although hypothermia can provide some protection
against hypoxic ischemic injury, improve neurocognition, and
reduce mortality (Jacobs et al., 2011; Tagin et al., 2012), statistics
show that merely one sixth of the patients benefit from this
treatment (Dixon et al., 2015). Thus, in order to provide a
complete neuroprotective effect, other adjuvant therapies are
required (Adstamongkonkul and Hess, 2017).
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Drugs such as melatonin, edaravone, erythropoietin (EPO),
and growth factor have also been used for the treatment
of hypoxic ischemic injury (Hua et al., 2017; Zhou et al.,
2020). Melatonin has antioxidant, anti-inflammatory, and anti-
apoptotic effects (Alonso-Alconada et al., 2013). In animal
models, melatonin combined with hypothermia therapy has
protective effect, which shows a good prospect as an adjuvant
therapy (Merchant et al., 2013; Shea and Palanisamy, 2015;
Cardinali, 2019). However, further research is needed on the
dosage and dosing time window (Dixon et al., 2015). Edaravone
is an antioxidant that can remove hydroxyl radicals, peroxyl
radicals, and superoxide free radicals. It can reduce blood–
brain barrier dysfunction and reduce infarct size (Lapchak,
2010). A clinical study revealed that edaravone can improve
memory and learning ability after several days of hypoxic-
ischemic injury (Lee et al., 2007). EPO can resist cell apoptosis,
reduce excitotoxicity, and promote the repair after injury by
regulating neuronal differentiation. In addition, EPO can also
promote post-damage repair by regulating the differentiation of
neurons (Lee et al., 2007; Zhu et al., 2009; Wu et al., 2012).
However, although clinical trial studies have shown that EPO
combined with hypothermia therapy is safe and effective (Hua
et al., 2017; Nonomura et al., 2019), a recent study revealed that
the therapeutic function of EPO may overlap with hypothermia,
since these two treatments share intracellular signaling cascades
(Wassink et al., 2020).

Since NMDA receptor-mediated excitotoxicity is the main
cause of HIE pathological damage, inhibiting NMDA receptors
to reduce excitotoxicity has also been considered a potential
treatment for HIE. At present, studies have explored the
therapeutic effects of magnesium, noble gas xenon, and a variety
of NMDA receptor antagonists in HIE.

Magnesium sulfate can exert neuroprotective effects by
inhibiting the activation of excitatory neurotransmitters (such as
glutamate) of NMDA receptors, but the effects of magnesium on
perinatal hypoxic-ischemic injury are not very uniform. Prenatal
administration of magnesium sulfate has been shown to have
neuroprotective effects on premature newborns (Doyle et al.,
2007; Juul and Ferriero, 2014; Cho et al., 2015; Solevåg et al.,
2019). However, in the hypoxic-ischemic piglet and neonate rat
model, magnesium sulfate failed to effectively reduce severe tissue
damage (Penrice et al., 1997; Zhu et al., 2004). In addition, the
use of magnesium sulfate did not improve the neuron loss in the
fetal sheep model with umbilical cord occlusion (Groenendaal
et al., 2002). Although the combined treatment of hypothermia
and MgSO4 has a certain effect in reducing the risk of death and
improving short-term adverse consequences, it appears to be only
effective for some children (Galinsky et al., 2014). Hence, further
evaluations are needed to determine whether this is effective
for the long-term survival and neurodevelopment of children
(Rahman et al., 2015; Nonomura et al., 2019).

The noble gas xenon is shown to have neuroprotective effects
in hypoxic-ischemic models through inhibiting NMDA receptors
by competing for the binding of glycine in many in vitro and
in vivo animal models (Hobbs et al., 2008; Zhuang et al., 2010;
Faulkner et al., 2011; Zhao et al., 2013; Juul and Ferriero, 2014;
Alam et al., 2017; Rüegger et al., 2018; Koziakova et al., 2019).

Xenon can also be used as an adjuvant with hypothermia therapy
to treat neonatal HIE and has been proven to be effective in
reducing brain injury and improving long-term recovery (Ma
et al., 2005; Chakkarapani et al., 2010; Amer and Oorschot, 2018).
However, at present, there is not enough evidence to support
xenon as a conventional clinical adjuvant neuroprotective agent
(Rüegger et al., 2017; Amer and Oorschot, 2018). Hence, further
studies are required to optimize its application for human
neonatal hypoxia ischemia.

Recent studies have shown that the non-competitive NMDA
receptor antagonist memantine has neuroprotective effects on
hypoxic-ischemic brain injury in vivo (Landucci et al., 2018),
but the damage or protection of memantine is correlated to
the dose. Melissa Trotman et al. (2015) reported that low-dose
memantine treatment can significantly reduce infarct volume and
improve behavioral prognosis, while higher doses of memantine
can significantly aggravate injury. The study conducted by
Solevåg et al. (2019) revealed that memantine combined with
low temperature can produce greater neuroprotective effects
(Liu et al., 2020). There is still controversy on the effect
of another non-competitive antagonist, MK801. Most studies
have considered that in neonatal hypoxic-ischemic injury,
MK801 alone or in combination with hypothermia can exert a
neuroprotective effect, and its effect is enhanced when applied
together with hypothermia (McDonald et al., 1987; Olney et al.,
1989; Ikonomidou et al., 1999; Alkan et al., 2001; Gerriets
et al., 2003). However, another study revealed that although
MK801 can reduce necrotic cell death, it can activate caspase-
3 in cortical GABAergic interneurons, thereby aggravating the
apoptosis (Desfeux et al., 2010). In addition, studies have shown
that MK801 may cause other side effects, including inhibiting
the spontaneous activity of mice, seizure, or increase mortality
(Ikonomidou et al., 1999; Liu et al., 2020), suggesting that
MK801 may have a dual effect or that its effect is correlated to
the type of neuron.

In addition, a variety of inhibitors of NMDA receptors have
been shown to have protective effects in adult hypoxic ischemia.
For example, ifenprodil and Tat-NR2B9c have neuroprotective
effects in adult ischemic brain injury (Cui et al., 2007; Chen et al.,
2008; Sun et al., 2008; Amico-Ruvio et al., 2012; Bhatt et al.,
2013). Among these, ifenprodil can reduce ischemic cell death
and enhance the neuroprotection induced by preconditioning
(Chen et al., 2008), Tat-NR2B9c interferes with the interaction
between NMDA receptors and PSD95 to protect neurons against
excitotoxicity and reduce ischemic damage (Cui et al., 2007; Bach
et al., 2012; Liu et al., 2020). However, it remains unclear whether
these antagonists also play a protective role in neonatal ischemic
brain injury, because the role of NMDA receptors and their
intracellular signaling are different between neonates and adults.

Importantly, it was found that the application of NMDA
receptor antagonist in neonates may cause abnormal
neurodegeneration (Ikonomidou et al., 1999; Olney et al.,
2002; Jevtovic-Todorovic et al., 2003; Nikizad et al., 2007),
because the activation of the NMDA receptor is required
for the normal development of the brain (Adesnik et al.,
2008). Therefore, the safety and long-term effect of applying
NMDA receptor antagonist for HIE treatment requires further

Frontiers in Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 567665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-567665 October 5, 2020 Time: 18:55 # 6

Zhang et al. Role of NMDAR in HIE

evaluation. Furthermore, present protective agents in adult
ischemia based on NMDA receptor, ifenprodil and Tat-NR2B9c,
exert their protective function through inhibiting the GluN2B-
containing NMDA receptor, which is the major type of NMDA
receptor in neonate brains (Sheng et al., 1994; Cull-Candy et al.,
2001; Liu et al., 2004). Therefore, normal function of NMDA
receptors may be more substantially inhibited by these two agents
in neonates than in adults. More comprehensive studies are
needed to address this issue.

CONCLUSION

Hypoxic ischemic injury in newborns is correlated to NMDA
receptor-mediated excitotoxicity. After HIE, the over-activation
of NMDA receptor leads to excessive Ca2+ influx and results
in cell damage (Monyer et al., 1994). Compared with adults,
neonatal brains are more susceptible to excitotoxic damage
(Gurd et al., 2002), while the main mechanism may be the
overexcitability of NMDA receptors (Monyer et al., 1994). The
study of hypoxia ischemia in adult rodents revealed that GluN2A
may mediate the survival effect through the ERK-CREB pathway
(Terasaki et al., 2010), while GluN2B may play a lethal role
through the GluN2B-PSD95-nNOS pathway (Wu et al., 2017).
However, for neonates, since the expression of GluN2A and
GluN2B is different from that of adults, the role of different
NMDA receptors in mediating survival and lethal signaling

pathways may be different. Recent studies have indicated that
GluN2B-containing NMDA receptors may exaggerate damage
but promote neurogenesis in the subventricular zone of neonatal
rats (Nakazawa et al., 2001; Jiang et al., 2008; Lai et al., 2016).
Therefore, regarding the important role of NMDA receptor
in neuronal development, as well as the difference between
NMDA receptor subtype expression, trafficking, and function
between neonate and adult brains, further studies are needed to
fully investigate the specific mechanism of NMDA receptors in
neonatal hypoxic-ischemic injury and develop new drugs, ways,
and methods to treat neonatal hypoxic ischemia.
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