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Emotion perception is a crucial question in cognitive neuroscience and the underlying
neural substrates have been the subject of intense study. One of our previous
studies demonstrated that motion-sensitive areas are involved in the perception of
facial expressions. However, it remains unclear whether emotions perceived from
whole-person stimuli can be decoded from the motion-sensitive areas. In addition, if
emotions are represented in the motion-sensitive areas, we may further ask whether
the representations of emotions in the motion-sensitive areas can be shared across
individual subjects. To address these questions, this study collected neural images
while participants viewed emotions (joy, anger, and fear) from videos of whole-
person expressions (contained both face and body parts) in a block-design functional
magnetic resonance imaging (fMRI) experiment. Multivariate pattern analysis (MVPA)
was conducted to explore the emotion decoding performance in individual-defined
dorsal motion-sensitive regions of interest (ROIs). Results revealed that emotions
could be successfully decoded from motion-sensitive ROIs with statistically significant
classification accuracies for three emotions as well as positive versus negative emotions.
Moreover, results from the cross-subject classification analysis showed that a person’s
emotion representation could be robustly predicted by others’ emotion representations
in motion-sensitive areas. Together, these results reveal that emotions are represented
in dorsal motion-sensitive areas and that the representation of emotions is consistent
across subjects. Our findings provide new evidence of the involvement of motion-
sensitive areas in the emotion decoding, and further suggest that there exists a common
emotion code in the motion-sensitive areas across individual subjects.

Keywords: functional magnetic resonance imaging, emotion perception, multivariate pattern analysis, motion-
sensitive areas, cross-subject decoding

INTRODUCTION

The ability to understand emotions is a crucial social skill in humans. It has been proposed
that body language plays an important role in conveying emotions (Calbi et al., 2017). Body
language refers to the non-verbal signals in which physical behaviors, including facial expressions,
body posture, gestures, eye movement, touch and the use of space, are used to express our true
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feelings and emotions. According to experts, these non-verbal
signals make up a huge part of our daily communication.
Humans can easily recognize others’ emotions from their whole-
person expressions and perceive them in a categorical manner.
Since the human brain can readily decode emotions, considerable
functional magnetic resonance imaging (fMRI) studies have
investigated the potential neural substrates and mechanisms
underlying the perception of emotions.

Neuroimaging studies on emotion perception have used
emotional faces or non-face bodies as stimuli and identified
specific areas showing preferential activation patterns,
respectively known as face-selective and body-selective areas.
Classical face-selective areas mainly contain the fusiform face
area (FFA), occipital face area (OFA), and superior temporal
sulcus (STS), which are together considered the “core system”
in Haxby’s model (Haxby et al., 2000; Kanwisher and Yovel,
2006; Gobbini and Haxby, 2007; Pitcher, 2014; Henriksson
et al., 2015). Emotional bodies are found to be represented
in the extrastriate body area (EBA) and fusiform body area
(FBA), and some similarities have been revealed between the
processing of emotional bodies and faces (Minnebusch and
Daum, 2009; de Gelder et al., 2010; Kret et al., 2011; Downing
and Peelen, 2016). In addition, the STS, which acts as a crucial
node for social information processing, has been found to
be involved in the processing of emotions in both faces and
bodies (Candidi et al., 2011; Zhu et al., 2013). Previous fMRI
studies mainly assessed the perception of emotions using either
isolated faces or non-face bodies as visual stimuli. However,
behavioral studies have indicated that human brain prefers
whole-person expressions which contain both the face and
body parts, similar to that which we commonly perceive in real
scenes, and encoding whole-person expressions in a holistic
rather than part-based manner (Soria Bauser and Suchan, 2015).
Therefore, it is essential to explore the neural representation
of whole-person expressions individually rather than in an
integrated manner based on the isolated emotional faces and
bodies (Zhang et al., 2012; Soria Bauser and Suchan, 2015).
Moreover, most previous studies used static emotional images as
stimuli, but, considering that the emotions we mostly encounter
in a natural context are dynamic, recent studies have proposed
that dynamic stimuli are more ecologically valid than their static
counterparts (Johnston et al., 2013; Yang et al., 2018). Thus,
using dynamic emotional stimuli may be more appropriate
to investigate the authentic mechanisms used to recognize
emotions in daily life.

Compared to univariate analyses that estimate emotion-
evoked responses, a multivariate pattern analysis (MVPA), as
demonstrated by recent fMRI studies, can take advantage of
distributed activation patterns in fMRI data, thus providing
a more effective method to infer the functional roles of
cortical regions in emotion perception (Mahmoudi et al.,
2012). A growing number of studies have used ROI-based
MVPA to explore emotion decoding performances in specific
brain areas (Said et al., 2010; Harry et al., 2013; Wegrzyn
et al., 2015). In addition, studies with dynamic stimuli have
found that dorsal motion-sensitive areas within human motion
complex (hMT) + /V5 and STS exhibited significant responses

to facial expressions (Furl et al., 2013, 2015). A macaque
study identified motion-sensitive areas in the STS, which
may be homologous to human STS, and found that facial
expressions could be successfully decoded from motion-sensitive
areas (Furl et al., 2012). Moreover, one of our recent studies
has also identified the successful decoding of dynamic facial
expressions in motion-sensitive areas (Liang et al., 2017).
These findings suggest that motion-sensitive areas may transmit
measurable quantities of expression information and may
play an important role in emotion perception. However,
these studies only used facial expressions as stimuli, and
the full role of motion-sensitive areas in the decoding of
whole-person expressions therefore remains unclear. Since we
commonly perceive emotions from whole-person expressions
in our daily lives, exploring the decoding performance of
whole-person expressions in motion-sensitive areas may be
meaningful in revealing the potential mechanisms by which
the human brain efficiently recognizes emotions from body
movements. Furthermore, if emotions are represented in
the motion-sensitive areas, we may further ask whether
emotion codes in the motion-sensitive areas can be shared
across individual subjects. This would shed light on whether
an individual’s subjective emotion representation in motion-
sensitive areas corresponds to those observed in others, which
would be helpful in assessing the commonality and variability
of emotion coding.

In this study, we conducted a regions of interest (ROI)
MVPA to assess the potential role of dorsal motion-sensitive
areas in emotion decoding. We performed a block-design
fMRI experiment and collected neural images while participants
viewed emotional videos expressed by whole-person expressions
(joy, anger, and fear). Dynamic emotion stimuli were used
in this study to enhance ecological validity and to assess the
authentic mechanisms of emotion recognition in daily life.
A separate localizer was used to identify individual-defined
motion-sensitive ROIs. We first examined whether emotions
could be decoded based on the activation patterns from motion-
sensitive ROIs, after which we examined whether there exists a
common representation of emotions in motion-sensitive areas
across individuals.

MATERIALS AND METHODS

Participants
A total of 24 healthy, righted-handed college students
participated in the experiment (12 males, ranging from 19–
25-years-old). All subjects had normal or corrected-to-normal
vision, with no history of neurological disorders, and signed
informed written consent forms before the experiment.
Experimental procedures were explained to them before the
scanning. The threshold for head motion was framewise
displacement (FD) < 0.5 mm (Power et al., 2012). Four subjects
were discarded due to excessive head motion, and the final fMRI
analysis was focused on the data of 20 subjects (10 males, mean
age 21.8 ± 1.83 years old). This experiment was approved by the
local Ethics Committee of Yantai Affiliated Hospital of Binzhou
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Medical University. A separate group of subjects (n = 18, 8
females, mean age: 22.2 years old) participated in a preliminary
behavioral experiment for the stimulus validation.

Experimental Procedures
The fMRI experiment was based on a block design, with four
“main experiment” runs for the emotion perception task and one
“localizer” run for the ROI identification. A separate localizer
was used in our study to ensure that the data used for the ROI
definition was independent of the data used for the classification
in the main experiment analysis (Axelrod and Yovel, 2012, 2015;
Furl et al., 2013; Harry et al., 2013).

Figure 1A shows the process of the main experiment. Each
run began with a 10 s fixation cross followed by 18 stimulus
blocks presented in a pseudo-random order (Axelrod and Yovel,
2012; Furl et al., 2013, 2015). Successive stimulus blocks were
separated by 10 s intervals of a fixation cross. For the first three
runs, three emotions (joy, anger, and fear) expressed by three
stimulus types (facial, non-face bodily, and whole-person stimuli)
were presented in different blocks, while for the fourth run,
only three emotions expressed by the whole-person stimuli were
presented. In each block, eight video clips of different examples
per emotion category were displayed (each for 2000 ms), with an
interstimulus interval (ISI) of 500 ms. At the end of each block,
there was a 2 s button task instructing participants to indicate
the emotion category they had seen by pressing a button. The
emotion stimuli were taken from the geneva multimodal emotion
portrayals (GEMEP) corpus (Banziger et al., 2012). Videos of
eight individuals (four males and four females) displaying three
emotions (joy, anger, and fear) were selected as whole-person
emotion stimuli (Cao et al., 2018; Yang et al., 2018). Facial
and bodily emotion stimuli were generated from the whole-
person videos by cutting out and obscuring the irrelevant part
with Gaussian blur masks using Adobe Premiere Pro CC (Kret
et al., 2011). All video clips were cropped to 2,000 ms (25
frames/s) to retain the transition from a neutral expression
to the emotion apex, and were converted into grayscale using
MATLAB (Furl et al., 2012, 2013, 2015; Kaiser et al., 2014;
Soria Bauser and Suchan, 2015). The resulting videos were
resized to 720 × 576 pixels and presented on the center of
the screen. All generated emotion stimuli were validated by
another group of participants before scanning, confirming the
validity of the stimuli in representing all expressions. Figure 1B
shows the examples of whole-person emotion stimuli in the
main experiment.

In the functional localizer run, participants viewed video
clips or static images of four categories: faces, non-face bodies,
whole-persons and objects. Each category appeared two times
in a pseudo-random order, resulting in 16 blocks in total (4
categories × video/image × 2 repetitions). Each block contained
8 stimuli (7 novel and 1 repeated), and each was presented for
1,400ms, separated by an ISI of 100 ms. Participants performed
a “one-back” task during the localizer run, that is, to press a
button when they observed two identical stimuli appearing in
consecutive trials.

The stimuli were presented using E-Prime 2.0 Professional
(Psychology Software Tools, Pittsburgh, PA, United States) and

the behavioral results were collected using the response pad in the
scanner. After scanning, participants were required to complete
a questionnaire recording whether participants performed the
experiment according to the instructions, their feelings during
the fMRI experiment, and any difficulties they encountered.

Data Acquisition
Imaging data were acquired from Yantai Affiliated Hospital
of Binzhou Medical University, using a 3.0-T SIEMENS MRI
scanner with an eight-channel head coil. Acquisition parameters
of task-related functional images and anatomical images were
as follows: T2∗-weighted functional images were collected using
a gradient echo-planar imaging (EPI) sequence, with repetition
time (TR) = 2,000 ms, echo time (TE) = 30 ms, voxel
size = 3.1 mm × 3.1 mm × 4.0 mm, matrix size = 64 × 64,
slices = 33, slices thickness = 4 mm, slice gap = 0.6 mm (Yang
et al., 2018). T1-weighted anatomical images were acquired using
a three-dimensional magnetization-prepared rapid-acquisition
gradient echo (3D MPRAGE) sequence, with TR = 1,900 ms,
TE = 2.52 ms, time of inversion (TI) = 1100 ms, voxel
size = 1 mm × 1 mm × 1 mm, matrix size = 256 × 256.
Participants viewed the emotion stimuli through the high-
resolution stereo 3D glasses of the VisuaStim Digital MRI
Compatible fMRI system. Foam pads and earplugs were used
during scanning to reduce head motion and scanner noise.

Preprocessing
Statistical parametric mapping 8 (SPM8) software1 was used
to preprocess the functional and structural images. For each
functional run, the first five volumes were discarded to minimize
the magnetic saturation effect. Slice-timing and head motion
correction were performed for the remaining functional images.
The threshold for head motion was FD < 0.5 mm (Power
et al., 2012). Next, the structural images were co-registered to
the mean functional image after motion correction, and were
then unified segmented into gray matter, white matter (WM)
and cerebrospinal fluid (CSF). The functional data were spatially
normalized to the standard Montreal Neurological Institute
(MNI) space using normalization parameters estimated from the
unified segmentation, after which the voxel size was re-sampled
into 3 mm × 3 mm × 3 mm. Subsequently, the normalized
functional images of the localizer run were spatially smoothed
with a 6-mm full-width at half-maximum Gaussian kernel to
improve the signal-to-noise ratio.

Localization of Dorsal Motion-Sensitive
Regions of Interest (ROIs)
Individual ROIs were defined using the localizer run data in
which participants viewed static and dynamic faces, non-face
bodies, whole persons and objects. At the first-level (within-
subject) analysis, a general linear model (GLM) was constructed
for each subject to estimate the task effect for each condition:
dynamic face, static face, dynamic body, static body, dynamic
whole-person, static whole-person, dynamic object and static

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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FIGURE 1 | Paradigm representation of the main experiment and example emotional stimuli. (A) Schematic representation of the paradigm used. A cross was
presented for 10 s before each block, after which eight emotional stimuli appeared. Subsequently, participants completed a button task to indicate their identification
of the emotion category they had seen in the previous block. (B) All emotional stimuli were taken from the geneva multimodal emotion portrayals (GEMEP) database.
Videos of whole individuals displaying three emotions (joy, anger, and fear) were used in the experiment.

object. Each regressor was modeled by a boxcar function
(representing the onsets and the durations of the stimulus blocks)
convolved with a canonical hemodynamic response function
(HRF). Several confounding nuisances were regressed out along
with their temporal derivatives, including the realignment
parameters from head motion correction and the physiological
noise from WM and CSF were regressed using the CompCor
(Behzadi et al., 2007; Whitfield-Gabrieli and Nieto-Castanon,
2012; Woo et al., 2014; Power et al., 2015; Xu et al., 2017; Geng
et al., 2018). The low-frequency drifts of the time series were
removed with a 1/128 Hz high-pass filter. The dorsal motion-
sensitive ROIs were then identified by contrasting the average
response to dynamic versus static conditions. The aim of using
this contrast was to identify the motion-sensitive areas which are
relatively domain-general, as both person and person parts, as
well as those focused on non-person objects. We were especially
interested in whether emotions perceived from whole-person
expressions could be decoded from the relatively domain-general
motion-sensitive areas, which are not specialized for representing
only facial or bodily attributes. Thus, we chose to use a contrast
which was expected to elicit motion areas to be domain general.
Previous studies have showed that combined different types of
stimuli together would be expected to localize motion-sensitive
responses subsuming areas to be relatively domain-general (Furl
et al., 2012, 2013, 2015; Liang et al., 2017). Therefore, to maximize
the available data and to identify relatively domain-general
motion-sensitive areas, we chose to average the results for ROI
definition. We identified bilateral areas within human hMT + /V5
for all twenty subjects and bilateral STS areas for eighteen
subjects, with two subjects only demonstrating a unilateral STS
area in the left or right hemisphere. The ROIs were generated
with a liberal threshold (p < 0.05; Skerry and Saxe, 2014; Miao
et al., 2018; Yang et al., 2018). Individual subjects’ motion-
sensitive ROIs were defined as 9 mm spheres surrounding the
peak coordinates. Subsequent emotion classification analyses
were carried out based on these individually defined ROIs using
the data from the main experiment runs. Table 1 summarizes

TABLE 1 | Localization of motion-sensitive regions of interest (ROIs) used in the
decoding analysis of main experiment data.

Functional
ROIs

Hemisphere Number of
Subjects

MNI Coordinates

x Y z

STS L 19 −55 ± 10 −42 ± 5 14 ± 5

R 19 57 ± 8 −39 ± 8 13 ± 6

hMT + /V5 L 20 −53 ± 5 −67 ± 5 6 ± 6

R 20 53 ± 6 −64 ± 7 3 ± 5

Number of subjects in whom the ROIs were localized and the average Montreal
Neurological Institute (MNI) coordinates (mean ± standard deviation SD) are
reported. STS, superior temporal sulcus.

the average MNI coordinates (mean ± standard deviation SD)
for each ROI, and Figure 2 shows the statistical maps of the
significant clusters in the ROI definition of a representative
subject (uncorrected p < 0.05 with a cluster size > 20 voxels).

Within-Subject and Cross-Subject
Emotion Classifications
Emotion classification analyses were conducted on the
unsmoothed data from the main experiment (Harry et al.,
2013; Yang et al., 2018) using a MVPA. We carried out MVPA
classifications within ROIs that were functionally localized based
on individual subject localizer runs. Similar procedures as those
in previous MVPA studies were used in this study. For each
participant, raw intensity values for all voxels within an ROI were
extracted and normalized using the z-score function. The MVPA
classification was carried out based on the multi-voxel activation
patterns. Feature selection was performed using an ANOVA,
which yielded a p-value for each voxel to tell the probability
that a given voxel’s activity varied significantly between emotion
conditions. Feature selection was executed only on the training
set to avoid peeking, and the threshold for ANOVA was p < 0.05.
Next, the data were classified using a linear support vector
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FIGURE 2 | Statistical maps of the significant clusters of superior temporal
sulcus (STS) and hMT + /V5 of a representative subject (uncorrected p < 0.05
with a cluster size > 20 voxels). Individual subjects’ motion-sensitive regions
of interest (ROIs) were defined as 9 mm spheres surrounding the peak
coordinates.

machine (SVM) that was implemented in LIBSVM2 (Chang and
Lin, 2011; Skerry and Saxe, 2014). The activation patterns for
each condition were used to train and test the SVM classifier to
perform classification over emotions. Figure 3 represents the
framework of our emotion classification analyses. We conducted
two types of classifications in this section to assess the potential
role of motion-sensitive ROIs in emotion decoding: first, a
classical within-subject emotion classification was carried out as
implemented in previous MVPA studies (classifier was trained
and tested within the same subject data); next, a cross-subject
emotion classification was conducted (classifier was trained
iteratively on all subjects but one and tested on the remaining
one) to assess whether there is any commonality to emotional
representations in motion-sensitive areas across individual
subjects. The cross-subject classification was performed using
a leave-one-subject-out cross-validation (LOOCV) scheme
(Chikazoe et al., 2014). In each fold of LOOCV, we trained the
classifier in all but one subject and the remaining one was used
as the test set. The cross-validation procedure was repeated
until each subject was used as the test set, and the classification
performance was averaged over all folds. The cross-subject
classification was used to further investigate whether emotion
codes in the motion-sensitive areas can be shared across subjects.

We ran both three-way (joy vs. anger vs. fear) and two-
way (joy versus anger/fear, which could be considered as
positive vs. negative) emotion classifications. The three-way
classification was implemented similarly as previous MVPA
studies (Wang et al., 2016; Liang et al., 2017), using a one-
against-one voting strategy. That is, we obtained classifiers for
each pair of emotions and these pairwise classifiers were then
added to yield the linear ensemble classifier for each emotion.
Classifying positive versus negative emotions is essential since

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

these results basically demonstrate coarse-grained emotion codes
which can clearly distinguish positive-to-negative valences in
bipolar representations, all the while taking into account the
fact that some regions may not classify specific emotions in a
fine-grained way, but may be able to distinguish positive and
negative valence emotion representations (Kim et al., 2017).
Data were partitioned into multiple cross-validation folds and
the classification accuracies were averaged across folds to yield
a single classification accuracy in each ROI. For the within-
subject emotion classification, a cross-validation was performed
across blocks, while for the cross-subject emotion classification,
the cross-validation folds were based on subjects (testing each
participant’s activation pattern by a classifier that was trained by
all other participants). For the classification of positive versus
negative emotions, half of the data from anger and fear conditions
were randomly dropped for each cross-validation, equating the
base rates and therefore generating a chance level of 0.5 (Kim
et al., 2017; Cao et al., 2018). To evaluate the emotion decoding
performance, the significance of the classification results was
established as a group level one-sample t-test above chance level
(with a chance of 0.33 for the classification of three emotions, and
a chance of 0.5 for the classification of positive versus negative
emotions; Wurm and Lingnau, 2015; Cao et al., 2018), and
were subsequently corrected for multiple comparisons by false
discovery rate (FDR) and Bonferroni corrections according to
the number of ROIs.

RESULTS

Behavioral Results
Behavioral results of the emotion classification accuracies and
the reaction times for each emotion (joy, anger, and fear) are
summarized in Table 2. These results confirmed the validity of
the emotion stimuli used in our experiment as all emotions were
well recognized with a high level of accuracy. Paired t-tests for
the classification accuracies and reaction times were performed
among the three emotions. Results showed that the classification
accuracy for joy was significantly higher than that for anger
and fear and that there was no significant difference between
the accuracies for anger and fear [joy vs. anger: t(19) = 1.831,
p = 0.041; joy vs. fear: t(19) = 2.333, p = 0.015; anger vs. fear:
t(19) = 1.286, p = 0.107; one-tailed]. For the reaction times,
participants showed a significantly quicker response to joy than
to anger or fear, and the response time for anger was shorter
than that for fear [joy vs. anger: t(19) = -3.514, p = 0.001; joy
vs. fear: t(19) = -6.180, p < 0.001; anger vs. fear: t(19) = -3.161,
p = 0.003; one-tailed].

Within-Subject and Cross-Subject
Emotion Decoding Results
In this section, we conducted MVPA emotion classifications
based on the individually defined ROIs. Two types of
classification analyses were performed to assess the potential
role of the motion-sensitive ROIs in emotion decoding. The
first one was a classical within-subject emotion classification
which was implemented in a similar way as previous MVPA
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FIGURE 3 | Flowchart of the data analysis procedure. Multivariate pattern analysis (MVPA) emotion decoding analyses were conducted based on the individually
defined regions of interest (ROIs). Two types of classification analyses (within-subject classification and cross-subject classification) were performed to examine the
potential role of the motion-sensitive ROIs in the emotion decoding. Both three-way (joy vs. anger vs. fear: J vs. A vs. F) and two-way (positive vs. negative: P vs. N)
emotion classifications were performed.

TABLE 2 | Behavioral results (mean % and standard deviations SD).

Classification Accuracy (%) Reaction Time (ms)

Mean SD Mean SD

Joy 100 0 675.25 155.35

Anger 98.75 3.05 767.05 224.22

Fear 97.08 5.59 836.10 210.54

studies (Axelrod and Yovel, 2012, 2015; Wurm and Lingnau,
2015; Liang et al., 2017). In addition, we conducted a cross-
subject emotion classification to assess whether there is any
commonality in emotion representations in motion-sensitive
areas across individual subjects. Both three-way (joy vs. anger
vs. fear) and two-way (joy versus anger/fear, which could be
considered as positive vs. negative) emotion classifications were
performed. Feature selection was conducted using ANOVA
which was executed only on the training data, with a threshold

of p < 0.05. SVM classifier was trained and tested with cross-
validation scheme to perform classification analysis over emotion
categories. The classification accuracies for each ROI and subject
were entered into one-tailed one-sample t-tests against the
chance levels (Wurm and Lingnau, 2015), and the statistical
results were corrected for multiple comparisons by FDR and
Bonferroni corrections according to the number of ROIs.
Figures 4, 5 separately show the results for within-subject
and cross-subject emotion classifications and the statistical
significances for multiple comparisons correction results are
indicated by asterisks.

Results for the within-subject emotion decoding analysis are
shown in Figure 4, which illustrates the average percent signal
change for each emotion (Figure 4A) and the classification
accuracies for three emotions (Figure 4B) and for positive versus
negative emotions (Figure 4C) in all ROIs. We found that the
classification accuracies for three emotions and for positive versus
negative emotions were significantly higher than chance in all
ROIs [For three emotions classification: left STS: t(18) = 4.692,
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FIGURE 4 | Results of the within-subject emotion decoding analysis. (A) Average percent signal change for each emotion, (B) Classification accuracies for three
emotions, and (C) Classification accuracies for positive versus negative emotions. The dashed line indicates chance level, and all error bars represent the standard
error of the mean (SEM). Asterisks indicate statistical significance with a one-sample t-test, p < 0.05 [** p < 0.05 false discovery rate (FDR) corrected; *** p < 0.05
Bonferroni corrected].

FIGURE 5 | Results of the cross-subject emotion decoding analysis. (A) Classification accuracies for three emotions, and (B) Classification accuracies for positive
versus negative emotions. The dashed line indicates chance level, and all error bars reflect the SEM. Asterisks indicate statistical significance with a one-sample
t-test, p < 0.05 [** p < 0.05 false discovery rate (FDR) corrected; *** p < 0.05 Bonferroni corrected].
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p < 0.001; right STS: t(18) = 2.336, p = 0.016; left hMT + /V5:
t(19) = 2.294, p = 0.018; right hMT + /V5: t(19) = 1.950, p = 0.033.
For positive versus negative emotions classification: left STS:
t(18) = 5.149, p < 0.001; right STS: t(18) = 5.478, p < 0.001;
left hMT + /V5: t(19) = 5.202, p < 0.001; right hMT + /V5:
t(19) = 6.548, p < 0.001).

We next assessed whether a person’s emotion representations
in the motion-sensitive areas could be predicted by others’
emotion representations. Figure 5 shows the results for the
cross-subject emotion classifications in all motion-sensitive ROIs
(Figure 5A shows the classification results for three emotions
and 5B shows the classification results for positive versus negative
emotions). When classifying emotions from the classifiers trained
by the activation patterns of other subjects, we found that
classification accuracies were significantly higher than chance in
hMT + /V5 both for the three emotions and for the positive
versus negative emotions [classification of three emotions: left
hMT + /V5: t(19) = 2.483, p = 0.01; right hMT + /V5: t(19) = 2.116,
p = 0.024; classification of positive vs. negative emotions: left
hMT + /V5: t(19) = 3.510, p = 0.001; right hMT + /V5:
t(19) = 3.523, p = 0.001]. In the STS, although the classification
accuracies for the three emotions did not achieve significance
[left STS: t(18) = 0.174, p = 0.432; right STS: t(18) = 0.351,
p = 0.365], we did find successful cross-subject positive-to-
negative emotion decoding [left STS: t(18) = 2.199, p = 0.021; right
STS: t(18) = 1.995, p = 0.031].

DISCUSSION

In this study, we performed a block-design fMRI experiment
and collected neural data while participants viewed emotions
(joy, anger, and fear) from videos representing whole-person
expressions. Both within-subject and cross-subject MVPA
emotion classification analyses were performed to examine the
decoding performance of individual-defined motion-sensitive
ROIs. We ran both three-way (joy vs. anger vs. fear) and two-
way (positive vs. negative) emotion classifications. Our results
showed that emotions could be successfully decoded based on the
activation patterns in dorsal motion-sensitive areas. Moreover,
results from the cross-subject classification analysis showed that
motion-sensitive areas supported the classification of individual
emotion representation across subjects.

Emotions Perceived From Whole-Person
Expressions Are Represented in Dorsal
Motion-Sensitive Areas
We obtained significant classification results for both the
classification of the three emotions and the positive versus
negative emotions, indicating that emotions perceived from
whole-person expressions are represented in the motion-
sensitive areas.

Previous studies on facial expressions with dynamic stimuli
have revealed a certain degree of sensitivity in dorsal temporal
areas, showing that motion-sensitive areas within hMT + /V5
and STS exhibited strong responses to dynamic facial emotions
(Foley et al., 2011; Furl et al., 2013, 2015). Considering that the

results of the average response from the univariate analysis alone
are insufficient to reveal the potential role of a specific brain area
underlying decoding (Axelrod and Yovel, 2012; Mahmoudi et al.,
2012), recent fMRI studies used ROI-based MVPA to examine
the decoding performance of motion-sensitive areas. Furl et al.
(2012) used macaque STS as a model system and revealed the
successful decoding of facial emotions in motion-sensitive areas.
Similar results were obtained in one of our recent studies (Liang
et al., 2017). These studies suggest that motion-sensitive areas
may transmit measurable quantities of expression information
and may be involved in the processing of emotional information.
In this study, we defined individual motion-sensitive ROIs and
found that emotions perceived from whole-person expressions
could be successfully decoded from motion-sensitive areas. Our
results are consistent with previous findings, and provide new
evidence that emotions perceived from whole-person expressions
are represented in the motion-sensitive areas. It should be noted
that our results revealed the emotion decoding performance
of the relatively domain-general motion-sensitive areas, as the
localization contrast we used contained both person and person
parts, as well as non-person objects, which was expected to reflect
all responses to visual motion (Furl et al., 2012, 2015). Therefore,
our results suggest that motion sensitive voxels which respond to
various motions, not only specific to facial or bodily attributes,
may make a significant contribution to emotion decoding.

Taken together, our findings provide new evidence that
emotions are represented in dorsal motion-sensitive areas,
pointing to the role of dorsal motion-sensitive areas as
key regions in the processing of emotional information in
daily communication.

Commonality of Emotion
Representations in Motion-Sensitive
Areas Across Individuals
Furthermore, we assessed whether an individual’s emotion
representation in the motion-sensitive areas corresponds to
that observed in others by conducting a cross-subject emotion
classification analysis (classifier was trained iteratively on all
subjects but one and tested on the remaining one). This may
provide evidence of whether an individual’s subjective emotion
representation in the motion-sensitive areas corresponds to
that observed in others, which may be helpful in evaluating
the commonality and variability in emotion coding (Haxby
et al., 2011; Raizada and Connolly, 2012; Chikazoe et al.,
2014). We obtained statistically significant results for both
the cross-subject classification of three emotions and positive
versus negative emotions in the hMT + /V5, indicating that
the hMT + /V5 code may reflect experienced emotions in
the same way across participants. In addition, although much
less significant emotion classification results were identified for
the three emotions, we revealed the successful cross-subject
classification of positive versus negative emotions in the STS. This
reveals that population codes in the STS were less able to decode a
specific emotion in a fine-grained way, but demonstrated that the
similarity in emotion representations among people may allow
for the robust distinction of coarsely defined positive-to-negative
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emotional valences in the context of bipolar representations
(Kim et al., 2017). Our results also suggest that subjective
emotion representations are more similarly structured across
individual subjects in the hMT + /V5 than in the STS, since
hMT + /V5 supported the cross-subject classification of both fine-
grained three emotions and coarse-grained positive-to-negative
emotions, while the STS only supported the coarse-grained
classification in a significant way.

Overall, our study indicates that the representation of
emotions in motion-sensitive areas may be similar across
participants. This may provide evidence that even in the most
subjective perception of an individual’s emotion experience, its
internal emotion coding can be predicted on the basis of the
patterns observed in others in the motion-sensitive areas. This
finding is important, since such cross-subject commonality may
allow for the common scaling of the valence of emotional
experiences across participants. In summary, we show that a
person’s emotional representations in motion-sensitive areas may
be predicted by others’ emotional representations, suggesting that
there exists a common emotion code in the motion-sensitive
areas across individuals.

In the present study, different types of emotional stimuli
(facial, bodily, and whole-person expressions) were contained
in the main experiment. Future studies with whole-person
stimuli separately may further improve the implementation of
the classification scheme and lead to better understanding of the
whole-person expressions decoding. In addition, compared with
ROI-based analyses, whole-brain group-level analyses would
provide more informative results. Future studies combine both
whole-brain activation-based and FC-based analyses would
further enrich our findings about the neural substrates and the
mechanisms for the quick and effortless recognition of whole-
person emotions.

CONCLUSION

Our results showed that emotions perceived from whole-person
expressions can be robustly decoded in dorsal motion-sensitive
areas. Moreover, successful cross-subject emotion decoding
suggests that the emotion representations in motion-sensitive
areas could be shared across participants. This study extends
previous MVPA studies to the emotion perception of whole-
person expressions, which are more frequently perceived in daily
life, and may further our understanding of the potential neural
substrates underlying the efficient recognition of emotions from
body language. Our findings provide new evidence that emotions
are represented in dorsal motion-sensitive areas, underscoring

the important role of the motion-sensitive areas in the emotion
perception. Our study also suggests that emotion representations
in motion-sensitive areas are similar across individuals.
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