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Functional connectivity analyses are typically based on matrices containing bivariate
measures of covariability, such as correlations. Although this has been a fruitful
approach, it may not be the optimal strategy to fully explore the complex
associations underlying brain activity. Here, we propose extending connectivity
to multivariate functions relating to the temporal dynamics of a region with
the rest of the brain. The main technical challenges of such an approach are
multidimensionality and its associated risk of overfitting or even the non-uniqueness
of model solutions. To minimize these risks, and as an alternative to the more
common dimensionality reduction methods, we propose using two regularized
multivariate connectivity models. On the one hand, simple linear functions of
all brain nodes were fitted with ridge regression. On the other hand, a more
flexible approach to avoid linearity and additivity assumptions was implemented
through random forest regression. Similarities and differences between both methods
and with simple averages of bivariate correlations (i.e., weighted global brain
connectivity) were evaluated on a resting state sample of N = 173 healthy subjects.
Results revealed distinct connectivity patterns from the two proposed methods,
which were especially relevant in the age-related analyses where both ridge and
random forest regressions showed significant patterns of age-related disconnection,
almost completely absent from the much less sensitive global brain connectivity
maps. On the other hand, the greater flexibility provided by the random forest
algorithm allowed detecting sex-specific differences. The generic framework of
multivariate connectivity implemented here may be easily extended to other types of
regularized models.
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INTRODUCTION

Matrices based on correlations or similar bivariate measures
have frequently been the starting point of many functional
connectivity analyses (Raichle, 2011; Bassett and Bullmore,
2017). Although this has been a fruitful approach, reliance
on bivariate associations may not be the optimal strategy
to fully explore the complex relations underlying brain
activity. Instead, a multivariate approach considering signals
from different regions of the brain seems more adequate
for this purpose.

However, such an approach is not without its technical
challenges, which include above all those related to the high
dimensionality of imaging data. In the frequent scenario where
the number of brain regions (N) is similar to the number
of available time points (p), overfitting is a risk. Also, if
voxels are considered instead of regions (i.e., the N >> p
situation), the problem of multiplicity of solutions will occur
(Hastie et al., 2009). Although these problems have traditionally
been dealt with dimension reduction method such as the
principal component analysis, independent component analysis,
and partial least squares (Calhoun et al., 2009; McIntosh and
Misic, 2013; Salvador et al., 2017), there is also the alternative of
applying model regularization.

When regularizing, a model including the full set of original
variables is fit by imposing one or more constraints on the
values of parameter estimates (Hastie et al., 2009). Usually,
regularization will involve choosing a specific shape for the
function relating the dependent variable with all independent
variables in the model. However, finding the optimal shape for
this function in a high dimensional space may be challenging,
and this is usually avoided by assuming a simple linear model,
as in ridge or lasso regressions, or by selecting a specific non-
linear shape through non-linear kernels, as it is done when
using support vector machines (Cortes and Vapnik, 1995).
Still, any of these alternatives have a good chance of missing
the optimum shape for that function. This limitation may be
overcome by considering alternatives such as random forest
(RF) regression or feed-forward neural networks, which do not
require setting a specific function shape (Hastie et al., 2009;
Goodfellow et al., 2016).

Here, we propose extending functional connectivity analyses
by fitting multivariate functions that relate the temporal
dynamics of a region with the rest of the brain. This
is carried out by means of two different regularization
methods. As a first option, ridge regression is applied, and
as a second option, RF regression, which allows relaxing
both linearity and additivity assumptions held by the ridge
model, is also considered. The information contained in
connectivity maps generated by both regularization methods
is evaluated in a resting-state functional magnetic resonance
imaging (fMRI) sample of N = 173 healthy individuals.
Specifically, connectivity patterns related to sex and age
are explored using both methods and compared with those
derived from maps of averaged bivariate correlations, also
known as weighted global brain connectivity (GBC) maps
(Cole et al., 2010).

MATERIALS AND METHODS

General Framework
As a general framework, we propose modeling the functional
coupling between the temporal dynamics of each region i and the
remaining (N-1) regions of the brain through a generic function

Yi = f (Y1, ...,Yi−1,Yi+1, ...,YN)+ εi (1)

in which the degree of coupling can be simply quantified by

Cor(Yi, f (Y1, ...,Yi−1,Yi+1, ...,YN)) (2)

i.e., the correlation between the actual values of the time points
of region i (Yi) and the values provided by the multivariate

connectivity function (
∧

Y i).

Ridge Regression Connectivity Maps
As a simple option, we may consider f to be a linear additive
model (i.e., a multiple regression model)

∧

Y i= β0 + β1Y1 + ...+ βi−1Yi−1 + βi+1Yi+1 + ...+ βNYN (3)

where Cor(Yi,
∧

Y i) (Eq. 2) will quantify the degree to which
the temporal dynamics of i and the remaining brain regions
are linearly related. However, fitting Eq. 3 to fMRI data using
standard methods (i.e., ordinary least squares) will, if even
possible, lead to unreliable estimates, as N (the number of
regions) will be similar or even larger than the number of
available time points (p), causing either overfitting or leading to
the non-uniqueness of solutions.

Such limitations, however, can be easily overcome by setting
a restriction on the parameter estimates (i.e., regularizing).
Specifically, ridge regression imposes the following restriction

N∑
i=1

β2
i < ct (4)

which makes the least-squares minimization a constrained
problem regulated by a Lagrange multiplier (λ ≥ 0). Selecting an
adequate value for λ will be important to achieve a good balance
between bias and variance (i.e., to find a model that avoids
overfitting, but it is not too constrained) (James et al., 2013). The
optimal value for λ will depend, among other aspects, on both the
number of brain regions and the number of available time points.
Crucially, once chosen, λ should remain constant through all
fittings of Eq. 3 if comparable connectivity estimates are wanted
between all regions of the brain and between all individuals of
a study. In addition, for Eq. 4 to be meaningful, all time series
will have to be previously rescaled to unit variance. A summary
of the major steps required to apply ridge regression connectivity
(RIDGEC) to an fMRI dataset is given in Figure 1A.

Random Forest Connectivity Maps
The assumptions of additivity and linearity of Eq. 3 may
be relaxed by considering non-linear relations between brain
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FIGURE 1 | Workflow listing the major steps required to calculate (A) ridge based connectivity values and (B) random forest connectivity values for each one of the
N regions extracted from an fMRI preprocessed dataset. Saving ridge regression coefficients and importance values are optional.

regions. To avoid having to choose a specific shape for Eq. 1,
one can consider other approaches that do not require specifying
such function in an explicit way. One option is using tree-based
methods, which stratify the predictor space into a number of
discrete regions when fitting the regression model (Ho, 1995).
Furthermore, results from fitting different regression trees may
be combined in what is known as a random forest to obtain more
reliable estimates. As with ridge regression, RF regression will

deliver estimates of values for region i (
∧

Y i) based on all other
regions in the brain.

∧

Y i= RF(Y1, ...,Yi−1,Yi+1, ...,YN) (5)

and again, the strength of connectivity will be quantified by Eq. 2

[Cor(Yi,
∧

Y i)].
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Like any other multivariate regression method, RFs are also
vulnerable to overfitting. For them, regularization is achieved by
averaging results from many different trees, by restricting the
number of independent variables considered in each tree, and
by allowing for a moderate amount of branching (number of
nodes in each tree) (Hastie et al., 2009). Critically, like λ in ridge,
once all these quantities are set, they should remain fixed to
be able to have comparable connectivity values for the different
regions and individuals. Figure 1B describes the major steps
involved in applying random forest connectivity (RANFORC) to
an fMRI dataset.

Getting Further Insight With Ridge
Coefficients and Variable Importance
Although both RIDGEC and RANFORC provide a single
multivariate connectivity score for each region i, fittings of their
respective models also supply exhaustive information on the
relevance of the different regions in each multivariate measure,
which is something that may bring further insights on the nature
of connectivity patterns observed in a given sample (second-
level analysis). For the RIDGEC, this information is directly
provided by the magnitude of the regression coefficients (betas)
in the fitted model of Eq. 3. For the RANFORC there are no
coefficients directly available, but an estimate of the relevance of
each variable may be obtained by quantifying the reduction in the
sum of squares of the error attributable to that variable, a quantity
that is known as variable importance (Hastie et al., 2009). As
shown in Figure 1, saving coefficients and variable importances
is a choice that will depend on the interest in carrying out
second-level analyses.

Resting-State Functional Magnetic
Resonance Imaging Dataset
To explore the properties of both RIDGEC and RANFORC
algorithms, they were applied to a sample of 173 healthy
individuals scanned at rest in a 3.0-T Philips Ingenia machine.
Table 1 provides summary statistics on age and sex for
the participants. All subjects gave written informed consent
before participation. All the study procedures had been
previously approved by the Comité de Ética de la Investigación
de FIDMAG Hermanas Hospitalarias and adhered to the
Declaration of Helsinki.

Parameters for the resting fMRI bold sequence were: repetition
time = 2s, echo time = 30 ms, flip angle = 70◦, inplane

resolution = 2.5 × 2.5 mm, slice thickness = 2.5, number of
slices = 54, and number of volumes = 256, which led to a total scan
time of 8 min and 32 s. Parameters for the T1 structural images
were: repetition time = 1 ms, echo time = 0.46 ms, flip angle = 8◦,
inplane resolution = 1 × 1 mm, and slice thickness = 1 mm.
fMRI preprocessing steps included movement correction, spike
scrubbing, regression of noise-independent components, non-
linear normalization to the Montreal Neurological Institute
space, regression of noise from ventricles and white matter, and
low-frequency filtering in the 0.1–0.02-Hz interval (Salvador
et al., 2017). Specifically, for the regression of noise-independent
components, individual independent component analyses were
previously run with Melodic, a module included in FSL (Smith
et al., 2004), and those components showing clear noise
patterns (most frequently edge effects due to movement) were
selected. Time series of the selected components were regressed
out from the time series of each voxel, and residuals were
kept as the denoised time series. Once preprocessed, mean
time series were extracted from the Brainnetome atlas, which
include 246 cortical and subcortical regions of interest (ROIs)
(Fan et al., 2016).

Processing of Individual Connectivity
Maps
Ridge regressions were carried out with functions contained
in the glmnet R library (Friedman et al., 2010), and the
randomForest R library (James et al., 2013) was used for
RF regressions. For the initial selection of the regularization
parameters, we run exploratory analyses in a single individual
using a wide range of possible values, and we selected a set
of values that neither overfit (did not lead to correlations too
close to 1) nor led to strong biases (too small correlations).
Once selected, these parameters were kept constant through all
fittings involving the different ROIs and individuals. Specifically,
a value of λ = 10 was used for the ridge, and 1,000 trees
with 10 variables each and a maximum of four nodes per
tree were used for the RFs. For the individual GBC analyses,
averages of the absolute values of bivariate correlations were
considered, but, additionally, GBC maps based on the previous
thresholding of correlations were also calculated to assess the
robustness of GBC results. With that aim, four thresholds were
applied: cor > 0, cor > 0.1, cor > 0.2, and cor > 0.3. All
connectivity measures were Fisher transformed before carrying
out the group analyses.

TABLE 1 | Summary data on sex and age for the whole sample and for the age-matched sample used to evaluate sex-specific connectivity patterns.

N Sex Age (all) Age (Females) Age (Males) T-test

Whole Sample 173 110 Females
(63.5%)

63 Males
(36.4%)

Mean = 40.42
SD = 10.37

Range = 18–61

Mean = 42.43
SD = 9.48

Range = 22–61

Mean = 36.92
SD = 10.99

Range = 18–59

t = 3.467,
df = 171,

p = 0.0007

Age-Matched Sample 126 63 Females
(50.0%)

63 Males
(50.0%)

Mean = 37.63
SD = 10.14

Range = 18–60

Mean = 38.33
SD = 9.24

Range = 22–60

Mean = 36.92
SD = 10.99

Range = 18 – 59

t = 0.781
df = 124,
p = 0.436

Last column reports results from a t-test comparing mean age between both sexes.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 569540

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-569540 December 2, 2020 Time: 19:49 # 5

Salvador et al. Regularized Brain Functional Connectivity

Group Averaged, Sex and Age-Related
Connectivity Patterns
Group average RIDGEC, RANFORC, and GBC maps, sex-
specific maps, and age-related connectivity maps were derived
from the individual connectivity images.

For the analysis of gender related connectivity patterns, an
age matched subsample of 63 males and 63 females was used
and t-tests were performed to look for gender specific differences
(see Table 1). For the analysis of age related patterns, regression
models were fit to the original sample of 173 subjects and gender
was included as covariate.

Additionally, in order to see if patterns observed could be
related to structural abnormalities, a new set of models was
fit for both age and gender taking grey matter partial volumes
as covariates. To do so, grey matter partial volume maps were
derived from individual T1 structural images by means of the

FAST module included in the FSL software (Smith et al., 2004).
These maps were then normalized to the MNI space, spatially
filtered with a gaussian filter (sigma = 3 mm) and mean values
from the Brainnetome parcellation were extracted. In all analyses
a False Discovery Rate (FDR) correction was applied to account
for multiple comparisons.

RESULTS

Average Connectivity Patterns
Group average RIDGEC, RANFORC, and GBC maps are shown
in Figure 2. As it can be appreciated from the figure, there
are clear commonalities among the three maps, including the
low connectivity levels in ventral and subcortical structures and
the high connectivity values in posterior cingulate and medial

FIGURE 2 | Maps of averages from GBC, RIDGEC, and RANFOR for the whole sample of 173 healthy individuals. Scatterplots in the bottom show, for each one of
the 246 regions of the Brainnetome atlas, their group averages in each possible pair of brain maps. All values were previously Fisher transformed into z-scores.
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frontal structures. However, as it can also be appreciated from
the scatterplots in this figure, although there is a clear linear
relation between RIDGEC and GBC and between RANFORC and
GBC, both regularized maps also contain differential connectivity
patterns not provided by the averages of bivariate correlations.

Further similarities and differences between the newly
proposed maps and the information conveyed by simple
bivariate correlations can be appreciated from second-
level analyses. As examples, values from ridge regression
coefficients and variable importances are compared with
bivariate correlations in models fit for an ROI in the right
dorsolateral prefrontal cortex (Figure 3) and an ROI in the left
posterior cingulate (Figure 4).

From both Figures 3, 4, it is clear that, as it was previously
observed for RIDGEC and RANFORC scores in Figure 2, there
are evident similarities between patterns in bivariate correlations,
ridge regression coefficients, and variance importance scores.
Still, scatterplots in both figures show that these three measures
of association differ to some degree.

Sex-Related Connectivity Patterns
Averaged GBC, RIDGEC, and RANFORC maps for the
subsample of 63 males and 63 females matched by age are shown
in Figure 5. Similarities between both sexes in the three types
of connectivity measures are evident from both sex maps and
related scatterplots. Indeed, when t-tests were run at the region
level, none of the areas of the template showed sex differences
for the GBC and RIDGEC measures. In contrast, however,
the RANFORC revealed a differential pattern of higher male
connectivity in many areas including the temporal cortex, the
dorsal cingulate and the supramarginal gyri bilaterally, the left
insula, and the right dorsolateral prefrontal cortex (see Figure 6).
Yet, these differences were not strong enough to lead to non-
overlapping confidence intervals between RANFORC and the
other two connectivity measures in most of the significant regions
(see Supplementary Figure 1).

When gray matter partial volumes were added as covariates,
both GBC and RIDGEC remained without showing significant
sex-related patterns, apart from a single region (A24rv_L in
left dorsal cingulate) with increased GBC in females (see
Supplementary Figure 2). On the other hand, RANFORC results
kept on having a similar pattern of increased connectivity in
males (see Figure 6), although these included some additions
and deletions relative to the non-corrected results (see ROI list
in Supplementary Figure 2).

When considering the four thresholded variants of the GBC,
we found the same non-significant pattern observed in the GBC
maps based on averages of absolute values (i.e., no region showed
significant differences between males and females in any of
the GBC variants).

Age-Related Connectivity Patterns
The analysis of age-related connectivity patterns in the sample
of 173 healthy individuals led to some common findings but also
many differential patterns of age-related connectivity in the GBC,
RIDGEC and RANFORC maps. Specifically, linear models taking

Fisher-transformed connectivity values as dependent variables,
age as the main independent variable, and sex as a nuisance
covariate revealed clearly significant age-related results in the
three maps (Figure 7). Of relevance, although GBC only showed
areas of significantly increased connectivity with age, both
RIDGEC and RANFORC were sensitive enough to report on
both areas of increased and decreased multivariate connectivity.
The only common connectivity pattern shared by all three brain
maps was a positive age relation in the bilateral postcentral gyrus,
whereas both GBC and RIDGEC also had increased thalamus
connectivity with age. On the other hand, shared patterns of
age-related disconnectivity in RIDGEC and RANFORC included
decreased connectivity in the bilateral anterior insula, medial
frontal cortex, and left putamen. In contrast, differential patterns
involved age increased GBC connectivity in bilateral paracentral
lobules and right posterior insula, age decreased connectivity
in RIDGEC in the left precuneus, and age reductions in
RANFORC in both caudates. However, not all differential age-
related patterns of connectivity were strong enough to elicit non-
overlapping confidence intervals between connectivity methods
(see Supplementary Figure 1).

Gray matter-corrected findings in GBC were very similar to
those of non-corrected images, only including areas of increased
connectivity with age (see Figure 7). RIDGEC results were also
similar between corrected and non-corrected maps, although the
former included four deleted and two new significant ROIs (see
list in Supplementary Figure 2). Finally, correction for gray
matter partial volumes in RANFORC led to a net, although
not severe, reduction in significant areas (5 out of 13 ROIs; see
Figure 7 and list in Supplementary Figure 2).

When considering the four thresholded variants of the GBC,
we found a similar pattern to that observed in the GBC maps
based on absolute correlations, with positive associations between
age and GBC. However, there were, as well, few differences.
These differences mainly included a small number of ROIs
becoming non-significant with the thresholding and a single ROI
of the template (A20rv_L, located in the left fusiform gyrus)
showing a negative relation with age. A comparative list of
significant regions between all versions of the GBC is provided
in Supplementary Figure 3.

DISCUSSION

It is relevant that group averaged maps for the two regularized
multivariate connectivity methods proposed here have had
similar patterns to those shown by maps based on simpler
bivariate correlations (i.e., GBC maps). To some degree, this is
not unexpected, as they all deal with similar information, and,
to some extent, it points to the absence of major flaws in the
methods proposed. On the other hand, it is also important to
keep in mind that bivariate and multivariate approaches are
exploring different aspects of brain connectivity. A multivariate
model, by construction, is bound to be potentially affected by any
change in any of the variables (brain regions) considered, whereas
the simpler approach based on averaging correlations followed
by the GBC is more likely to attenuate them (i.e., individual
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FIGURE 3 | Taking area A8vl_R of the Brainnetome atlas (located in the right dorsolateral prefrontal cortex and shown here in red) as the target area for the RIDGEC
and RANFOR fittings, the group averaged maps of ridge regression coefficients and variable importances are shown together with the bivariate correlation map (i.e.,
derived from a standard seed-based correlation analysis). Scatterplots in the lower part of the figure show, for each region of the template, its group averaged values.
Absolute values of correlations and ridge coefficients are taken to make them comparable with importances (as the latter are always positive).
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FIGURE 4 | Taking area A31_L of the Brainnetome atlas (located in the left posterior cingulate cortex and shown here in red) as the target area for the RIDGEC and
RANFOR fittings, the group averaged maps of ridge regression coefficients and variable importances are shown together with the standard bivariate correlation map.
Scatterplots in the lower part of the figure show, for each region of the template, its group averaged values. Absolute values of correlations and ridge coefficients are
taken to make them comparable with importances (as the latter are always positive).
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changes in pairwise correlations will more likely go unnoticed
after averaging).

This sensitivity to changes in single regions could be
behind the larger number of age-related patterns revealed
by both regularized methods, and especially to their capacity
to detect age-related disconnection, almost unnoticed by the
GBC maps. The higher number of subcortical patterns shown
by the two new methods is in agreement with current
studies reporting widespread age-related structural changes in
subcortical structures (Tullo et al., 2019; Wang et al., 2019),
whereas the presence of both age-related increases and decreases
in functional connectivity is more in line with recent work in
this area (Sala-Llonch et al., 2015; Ferreira et al., 2016; Chen

et al., 2019), although non-neural factors such as age-related
physiological changes might partially explain some of the findings
(Geerligs et al., 2017). In a similar way, the ability to detect sex-
related differences by RFs may be attributed to the increased
flexibility provided by the lack of additive and linear constraints.
One may argue, though, that all these findings are mainly driven
by functional artifacts created by differences in gray matter partial
volumes. However, the results of the analyses including partial
volumes as covariates have dispelled this concern, as they have
not usually led to a substantial reduction in the number of
significant regions.

From all these considerations, one may conclude that
both regularization methods proposed here are feasible

FIGURE 5 | Sex connectivity maps taken from averages of a subsample of 63 males and 63 females matched by age. Scatterplots show, for each one of the 246
regions of the atlas, their averaged scores in males and females. All connectivity values were previously Fisher transformed into z-scores.
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FIGURE 6 | Areas with significantly higher RANFORC in males as reported by tests applied to the regions included in the Brainnetome atlas, with and without
considering gray matter partial volumes as covariates in the models, and after FDR correction. No areas of significantly higher female-related connectivity were found
with any of the connectivity maps, apart from a single region in the left dorsal cingulate with increased gray matter-corrected GBC in females (not shown in the figure).

alternatives to the more frequently used dimensionality
reduction techniques. Still, some methodological aspects should
be carefully considered to appropriately apply regularization in
brain connectivity. Most crucially, the degree of regularization
should remain invariable through all analyses. That is, the
values of all regularization parameters should remain constant
for all brain regions and through all individual analyses;
otherwise, neither the models fitted nor the connectivity
scores derived will be comparable. As mentioned in the
methods, setting values for regularization parameters is a
tradeoff between variance (i.e., increased flexibility of models
with its risk of overfitting) and bias, which is generated
by imposing too much regularization and which leads to
non-flexible models.

Selecting optimal regularization values for connectivity,
though, is not straightforward as these values will depend,
among other aspects, on the amount of time points available
(i.e., length of fMRI time series) and the degree of filtering
applied, as this will modulate temporal autocorrelation and
the number of effective degrees of freedom in the data. The
presence of temporal dependencies in the data will also preclude
(or make difficult) using cross-validation techniques, which are
the standard method to fine-tune regularization parameters
in prediction problems. On the other hand, the amount of
regularization required will also depend on the number of
brain regions considered in the analyses (i.e., the number of
independent variables in the multivariate models). We run
exploratory analyses in a single individual to make the initial
selection of values for the regularization parameters. This is a
rather heuristic approach, but we expect that after the proposed
method is applied to datasets of varying characteristics, a limited
range of feasible parameter values will emerge for usage in

future studies (as it has previously happened with other relevant
imaging parameters such as the size of spatial filters, the threshold
values for clustering in task-based fMRI, or the correlation
thresholds in graph theory). A positive aspect of the methods
proposed is that, provided that models are constrained enough,
regularization techniques may successfully deal with N >> p
situations, which will certainly occur if variables are defined by
voxels or edges (although large computing capabilities will be
required in these situations).

Finally, researchers who are used to perform analyses with
correlation matrices may find it inconvenient to have to perform
second-level analyses to uncover information on specific pairwise
connections (as this information is not provided by primary
outputs from the proposed methods). On the other hand,
outcomes from our multivariate analyses may be more easily
visualized and interpreted than those provided by correlation
matrices and connectivity graphs, especially when the number
of regions considered is large. Besides, the number of statistical
tests to be performed in any intersubject analysis, and its related
problem of multiple comparisons and lack of statistical power,
will be greatly reduced if the proposed methods are used (this is a
benefit that GBC would also hold).

In summary, we propose regularization as a suitable
alternative to dimensionality reduction for developing
multivariate measures of functional connectivity. Although
the two methods proposed (RIDGEC and RANFORC)
share some similarities with the much simpler GBC
method (based on averages of bivariate correlations), their
multivariate nature provides greater sensitivity in detecting
age-related connectivity patterns. Furthermore, the greater
flexibility offered by the RF algorithm allows for detecting
sex-specific differences.
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FIGURE 7 | Areas with significant age-related connectivity increases (in yellow) and reductions (in blue) with and without considering gray matter partial volumes as
covariates in the models. Although GBC maps only reported on age-related increases, both RIDGEC and RANFORC maps were sensitive enough to find both
age-related increases and reductions. Areas shown were significantly related to age after FDR correction for multiple comparisons.
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