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In independent component analysis (ICA), the selection of model order (i.e., number
of components to be extracted) has crucial effects on functional magnetic resonance
imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have
been used to determine the number of estimated components. However, simulations
show that even when the model order equals the number of simulated signal sources,
traditional ICA algorithms may misestimate the spatial maps of the signal sources.
In principle, increasing model order will consider more potential information in the
estimation, and should therefore produce more accurate results. However, this strategy
may not work for fMRI because large-scale networks are widely spatially distributed and
thus have increased mutual information with noise. As such, conventional ICA algorithms
with high model orders may not extract these components at all. This conflict makes
the selection of model order a problem. We present a new strategy for model order
free ICA, called Snowball ICA, that obviates these issues. The algorithm collects all
information for each network from fMRI data without the limitations of network scale.
Using simulations and in vivo resting-state fMRI data, our results show that component
estimation using Snowball ICA is more accurate than traditional ICA. The Snowball ICA
software is available at https://github.com/GHu-DUT/Snowball-ICA.

Keywords: independent component analysis, functional magnetic resonance imaging, model order, dimension
reduction, mutual information

INTRODUCTION

Functional connectivity and network-based analysis of functional magnetic resonance imaging
(fMRI) have revolutionized our understanding of the overall functional organization of the brain
(Beaty et al., 2018; Pedersen et al., 2018; Sokolov et al., 2018). Independent component analysis
(ICA), a commonly used data-driven approach for fMRI data analysis, has been effectively used
for functional network studies (Seifritz et al., 2002; Hermans et al., 2011; Freeman et al., 2014;
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Richiardi et al., 2015; Constantinescu et al., 2016; Glasser et al.,
2016; Rose et al., 2016; Tavor et al., 2016). However, there remains
significant variation in spatial characteristics of networks between
datasets and between ICA methods used to identify optimal
configuration of components.

Model order selection (MOS – choosing the number of
extracted components) in ICA is a significant methodological
concern that contributes to this variation in fMRI brain network
analysis (Abou-Elseoud et al., 2010; Beckmann, 2012; Kuang
et al., 2018). Allen and colleagues (Allen et al., 2012) found that
when the model order is too low, ICA distorts the estimation
of sources. However, increasing the model order beyond the
true dimensionality can result in certain sources being split
into multiple components. In fact, most conventional signal
processing applications used to estimate the number of source
signals cannot reliably model the exact spatial characteristics of
these signals, even when the true model order is known. This
remains a significant problem for neuroscience researchers.

Many solutions have been proposed to address this issue.
Information-theoretic criteria (ITC) have been used in numerous
signal processing applications to estimate model order, including
minimum code length based minimum description length
(MDL) criterion (Rissanen, 1978), Akaike information criterion
(AIC) (Akaike, 1998), and Bayesian information criterion (BIC)
(Rissanen, 1978). Combining ITC with a resampling method
was proposed for subsampling a set of effectively independent
and identically distributed (i.i.d.) samples from dependent
data samples (Li et al., 2007). The Laplace approximation
(LAP) algorithm (Minka, 2000) was improved based on the
empirical distribution function of the eigenvalues developed
in random matrix theory (Beckmann and Smith, 2004).
Entropy-rate-based order selection by finite memory length
model (ER-FM) and entropy-rate-based order selection by AR
model (ER-AR) are two likelihood estimators-based methods,
which use all available samples instead of down sampling
data (Fu et al., 2014). All of these methods attempt to
accurately estimate the number of intrinsic source signals,
which is then used as the optimal model order before ICA
decomposition is performed.

In the field of fMRI data processing, the Group ICA of fMRI
Toolbox(GIFT1; Calhoun et al., 2001a) and the Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components (MELODIC2; Beckmann and Smith, 2004) are
the two most popular software tools used for ICA. Both of
these tools implement a principal component analysis (PCA)-
based data reduction step prior to ICA. Moreover, for fMRI
data, ICA can be performed on single-subject fMRI data,
or on multi-subject data (by either stacking the fMRI data
across subjects or by temporally concatenating data across
subjects). For resting state fMRI, which is most commonly
used for network analysis, data are temporally concatenated
across subjects prior to the analysis. In GIFT, the default
option for data reduction of temporally concatenated multi-
subject data proceeds by first reducing data at the individual

1https://trendscenter.org/software/gift/
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC/

subject-level with PCA, then applying PCA to the group-level
(concatenated) reduced fMRI data for further data reduction
prior to ICA. As the number of subjects and the length of
the time series increases, in order to reduce required memory,
several dimension reduction methods have been proposed
(Calhoun et al., 2015). For example, multi power iteration
(MPOWIT) was designed to estimate a subspace larger than
the desired one (Rachakonda et al., 2016). In contrast, the
default in MELODIC utilizes an incremental approach called
Incremental Group PCA (MIGP) (Smith et al., 2014) to perform
data reduction (although this option can be turned off to
implement a two-stage group PCA-based data reduction). Even
though initial data reduction differs between these methods, the
model order is selected from the group PCA, and therefore
determined prior to the ICA decomposition. The order of steps
in the data reduction process may contribute to premature
removal of data as “noise,” when it in fact contributes
meaningful information.

In this article, we propose a new ICA strategy that does
not require MOS before ICA decomposition, the Snowball
ICA. This approach differs from traditional ICA algorithms
by iteratively collecting information about source signals from
the fMRI data. First, we demonstrate how conventional MOS
procedures contribute to inaccurate estimation of signal sources.
Our Snowball ICA will then be compared with standard
implementations using MELODIC and GIFT to determine the
accuracy of spatial quality estimation using simulated data and
in vivo fMRI data.

MATERIALS AND METHODS

Conventional Spatial Group ICA
For conventional multi-subject fMRI data analysis, both noise
free ICA (Calhoun et al., 2001b) and probabilistic ICA
(Beckmann and Smith, 2004) are widely used. Both of these
ICA models suffer the effect of MOS (Abou-Elseoud et al.,
2010; Beckmann, 2012). For simplicity, the spatial group
ICA algorithm (Calhoun et al., 2001a) implemented as in
GIFT is used to show how MOS will impact the extracted
components. First, data reduction is performed for each subject:

Xs = V−1
s Zs, (1)

where Zs ∈ RT×M represents the s-th subject’s fMRI data
after preprocessing, T is the number of volumes, M is the
number of voxels of each scan. V−1

s is the dimension reduction
matrix, which is usually obtained from eigen decomposition
of covariance matrix of Zs. At this stage, components that
explain 90% variance are typically used to construct the
reduced data. For group ICA, data from different subjects is
temporally concatenated after the data reduction, as follows:

D =

X1
...

XS

 =
V−1

1 Z1
...

V−1
S ZS

 . (2)
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Singular value decomposition of the aggregate data
is as follows:

D = G
∑

U, (3)

where D ∈ RN×M is the aggregate matrix of all subjects fMRI
data. G is a unitary N × N dimension reduction matrix.

∑
is

a diagonal N × N matrix. Each value δk on diagonal of
∑

is
the square root of variance of each component. U is an N ×M
matrix consisting of N unit row-vectors.

∑
U represents the

group PCA components.
Based on PCA theory, the dimensionality of the aggregate

matrix after concatenation is reduced again:

X =
(
G: , 1:R

)T D, (4)

where R is the model order. The formula in Eq. 4 is therefore
selecting the first R vectors of

∑
U. The information contained

in the N − R components is labeled as “noise” and removed as
shown in Figure 1. In this study, we investigate whether or not
these components are noise using simulated data.

Noise-free ICA is given by the following:

Y =WX, (5)

where X ∈ RR×M is the matrix to be fed into ICA unmixing
program. W ∈ RR×R represents the unmixing matrix. Y ∈ RR×M

is the independent component matrix that is used to estimate the
source matrix.

GW−1Y =

V−1
1 Z1
...

V−1
s Zs

 =
G1

...

Gs

W−1Y. (6)

Reconstruction of time courses is done as follows:

Zs = VsGsW−1Y. (7)

With
[
VmGmW−1], (m = 1, 2, · · · ,M), containing the time

course information of each component for each subject. Y
represents the estimation of the source signals, including
the spatial distribution of each component. The results from
temporal concatenated Group ICA result in shared spatial
distributions across subjects, with different temporal courses
for each subject.

Quantifying the Information Used in the
ICA at a Given Model Order
Information included in the ICA algorithm is represented by the
sum of the first R PCA components. When PCA is used as the
data reduction procedure, the ratio of information used for ICA
can be calculated with the following formula:

Ratio (R) =

∑R
r=1 δr∑K
k=1 δk

, (8)

where R is the model order and K is the dimensionality of the
latent data contained in the algorithm. This index is used to
describe the ratio of information included in the ICA procedure.

Pseudo-ICA for Simulations
In order to study the distribution of the meaningful source
information that may be contained in the PCA components
labeled “noise,” a “pseudo-ICA” approach is used. In these
simulations, the spatial correlation coefficient, C, between PCA
components U and the ground truth signal sources is calculated,
giving the following formula for pseudo-ICA:

Yp = C:,1:RU1:R,:, (9)

where Yp represents the components matrix estimated by
Pseudo-ICA. Each row of Yp represents one component
estimated by Pseudo-ICA. The order of the component matrix is
exactly same as that of sources matrix. R represents the results
calculated based on R PCA components. U1:R,: is exactly the
same with what would be fed into conventional ICA algorithms.
C:,1:R works as the unmixing matrix but without the limitation of
independent constrain. Pseudo-ICA is therefore able to examine
the effect of the number of PCA components on the accuracy
of estimated results, neglecting the restriction of independence
between components.

The correlation between the ground truth and PCA
components represents the information ratio for each source
signal for PCA components. Both the distribution of source
information throughout the PCA components labeled “noise”
and the accuracy of Pseudo-ICA components were used to
evaluate performance of the PCA.

Mutual Information Between Sources
and Noise
Mutual information is a criterion used to describe the
dependence between two variables. Under the independence
constraint of spatial ICA, components with high mutual
information will not be extracted appropriately. For two discrete
random variables Y1 and Y2, the mutual information is defined
as (Cover and Thomas, 2012):

I (Y1,Y2) =
∑
y1∈Y1

∑
y2∈Y2

p(Y1,Y2)

(
y1, y2

)
log

(
p(Y1,Y2)

(
y1, y2

)
pY1

(
y1
)
pY2

(
y2
)) .

(10)
Once the model order was selected for the conventional

ICA procedure, the PCA data reduction limits the resulting
information for each source that is fed into ICA. For example,
R PCA components will consist of information from N
signal sources and R-N noise sources. However, the mutual
information between different sources and the same noise will
be different, with more spatially distributed sources having
higher the mutual information with noise. This is demonstrated
in section “Results” for the Simulations. As the number
of PCA components increases, the number of noise signals
increases, and the existence of spatially distributed sources
sharing mutual information with noise also grows. In turn,
because of the spatial independence constraint of ICA, large-
scale sources may not be estimated. This effect is illustrated
with simulations.
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FIGURE 1 | Conventional ICA algorithm. In conventional ICA, the model order is determined and then data reduction is applied prior to ICA. The removal of this
information as “noise” may also result in removal of meaningful signals.

Snowball ICA
The overall workflow of Snowball ICA is illustrated in Figure 2.
In Snowball ICA, the purpose is exactly the same as using
conventional ICA to estimate independent component networks
from fMRI data that are linear combination of network signals
plus artifact (noise) signals. The aggregate fMRI data is denoted
by Z ∈ RT×M , which is organized with subjects’ fMRI data
temporally concatenated without data reduction. T represents
total number of scans across all subjects runs of fMRI data.
M denotes the number of voxels. T is larger than the number
of independent components R to be estimated, which means
the model is overdetermined. However, all widely used ICA
algorithms are determined (Bell and Sejnowski, 1995; Hyvarinen,
1999), made so by applying one of several dimension reduction
methods. This data reduction step results in a loss of information.
In contrast to conventional ICA, our proposed approach analyses
aggregate fMRI data separated into different blocks to make
the model determined. In order to combine blocks together,
the Snowball ICA is divided into two parts. The first stage is
seed creation, and the second stage is information collection.
Seed creation is used to make sure the estimation is stable and
information collection is then done to collect information from
all blocks of data.

Seed Creation
The first stage is seed creation, in which a randomly selected
individual subject’s fMRI data is selected from the group fMRI
dataset. Since the information about each component from
different subjects will be collected in the next stage (Information
Collection), the initial seed creation is not that critical. It can

be created only from a single subject, from large chunks of
randomly selected data, or from conventional spatial group
ICA results. In order to save time, we use a randomly selected
subject to create the seed in this study. Once the data have
been selected, ICA is repeated many times. The most stable
component from these ICAs is selected as the seed. ICASSO
(ICASSO-software package3) was used to evaluate component
stability. The algorithm was run for ICA repeatedly with the
same parameters and the same algorithm. Then hierarchical
clustering was implemented to cluster all of the extracted
components (Himberg et al., 2004; Zhang et al., 2018; Hu et al.,
2019). Hierarchical clustering has been widely applied for the
assessment of reproducibility of ICA components. The clustering
method is the process for transforming a proximity matrix into
a nested partition, which can be graphically represented by a
tree called dendrogram. In this study, the dendrogram is formed
from the bottom up. For this clustering method, at the first
iteration, the number of clusters is same as the number of total
independent components N. At the second iteration, the most
similar clusters will merge as a new cluster, so the number of
clusters will become N-1. At the third iteration, the number of
clusters will become N-2. As the clustering goes forward, at the
top level of the hierarchy, the number of clusters converges to a
single cluster. Using this approach, the hierarchical organization
of the data fed into the algorithm can be established. When
hierarchical clustering is applied for ICA algorithm stability
analysis, the cluster result is the dendrogram at the level of
number of independent components. So, once the independent

3http://www.cis.hut.fi/projects/ica/icasso/
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FIGURE 2 | Snowball ICA algorithm. In order to avoid the necessity of
specifying model order in conventional ICA, Snowball ICA estimates
components one by one (or a few at a time) until no stable components can
be further estimated from the data. After seed creation for a new
component(s) to be estimated via information collection, the estimated
snowball component(s) are removed from the multi-subject data and seed
creation is repeated to determine the next seed pattern(s). The Snowball ICA
will stop when there are no more stable components estimated during the
seed creation step.

components from multiple runs are computed, no matter how
many hierarchical clustering runs, the clustering results would be
exactly same. After clustering, the difference between the average
intra-class similarities and average inter-class similarities is used
as an index to evaluate the stability of the components:

Iq (r) = S̄ (r)int − S̄ (r)ext . (11)

In order to ensure the stability of results, the most stable
component was selected as the seed to feed into the information
collection stage. Yseed denotes the stable component estimated
from Seed Creation. The Snowball ICA algorithm stops once
stable components are no longer extracted.

Information Collection
In the second stage, information collection, the seed component
is concatenated with randomly selected new scans, and these new
aggregate data are then fed into the ICA unmixing algorithm.
The resulting ICA component that most closely matches the seed
is then used as the new seed to be concatenated with more of
the original data in the next iteration. Gradually, the seed will
collect all information about the signal it represents from each
scan, resulting in accurate ICA components.

First, the aggregate data Z is separated into K blocks:

Z =


Z1
Z2
...

ZK

 , (12)

where Zk ∈ RT/K×M . Then for the first block, Z1, ICA with
reference (ICA-R) (Lu and Rajapakse, 2005; Huang and Mi, 2007;
Lin et al., 2007; Du and Fan, 2013) is implemented, with Yseed
being selected as the most stable component after repeated ICAs.
Once the information belonging to the first block is collected, the
estimated component is designated Yseed. Then the next block of
data, Zk, goes through the same procedure to create an updated
Yseed_new as reference for the next block, with remaining blocks
going through the same procedure iteratively until all blocks are
used. The order of processing blocks may be random. Once all
blocks have been used, the resulting component is Y1, the first
extracted ICA spatial map (SM). This process then repeats, after
removing the estimated Y1 component from the original data,
to identify the next component Y2, and so on. For each Zk, the
implementation of ICA-R is as follow:

Yseed_new
Y1
...

YT/K

← Ak

[
Yseed
Zk

]
, (13)

where Ak is unmixing matrix estimated with independence
constraint. Yseed_new is updated seed that represents network
information collected about Yseed from Zk. It will replace Yseed
in the next block iteration. The seed component, Yseed, works
as a reference and the information belonging to this reference
network is gradually collected as more and more blocks are used.
Once K blocks are used, the final Yseed is the SM of estimated
component of Snowball ICA and is represented by Ssnowball.

Removal of Estimated Components
As shown in Figure 2, once a component is accurately estimated,
it is then removed from each subject’s fMRI data prior to
determining the next seed to feed into Stage 2, as follows:

Zs_new = Zs − Tsnowball × Ssnowball, (14)

where Ssnowball is the accurate component estimated via the
information collection stage of the Snowball ICA. There are
several ways to reconstruct subject components from group
ICA results (Erhardt et al., 2011; Du and Fan, 2013). Unlike
the conventional ICA procedure, the unmixing matrix for each
subject is difficult to obtain using Snowball ICA. However,
Allen et al. (2012) showed that without any PCA dimension
reduction prior to ICA (e.g., PCA is only used for rotation
and whitening), the difference between back-projection and
dual regression for reconstructing subject components is within
computational precision. Hence, Tsnowball represents time series
that is calculated with the first stage of dual regression (Nickerson
et al., 2017). Zs represents the s-th subject’s fMRI data. For
each subject, Zs_new replaces Zs in the next iteration of Snowball
ICA to identify subsequent components. With this method, the
information from components that has been estimated accurately
will not be considered during creation of the next seed for new
component estimation. Note that Zs_new is only used for seed
creation, whereas the original data are used for information
collection. This is done to account for the fact that different
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components may have some spatial overlap. In this case, the
information from estimated components is only removed for
seed creation, but not for information collection. Therefore,
even though the overlapping signals are not included in the
seed, the overlapping information will still be estimated during
Information Collection.

The steps of Snowball ICA are as follows:

Step (1) Identify the seeds Yseed as most stable ICA component
(Iq > 0.9) from a small amount of the total data.

Step (2) Aggregate Yseed with randomly selected scans chosen
from all scans of all subjects to form a new data matrix
and apply the ICA algorithm to decompose the new data
matrix. Each scan is selected only once.

Step (3) The most similar IC(s) to the seed(s) are selected as new
seed(s) Yseed.

Step (4) Repeat Steps 2 and 3 until all scans of all subjects have
been used and the components are estimated accurately.

Step (5) Remove the resulting snowball ICA components
(Ssnowball) from the multi-subject data and repeat to
determine the next seed pattern. The Snowball ICA
will stop when there are no more stable components
estimated in Step 1.

Evaluation of ICA Components
Visualization
The ICA SMs are thresholded using a Z-threshold criterion (|z| >
2.3) (McKeown and Sejnowski, 1998; Calhoun et al., 2001a).
These thresholded SMs are overlaid onto a transparent standard
brain template to visualize the results. The MATLAB scripts used
for this procedure can be downloaded from: https://github.com/
GHu-DUT/Show_3D_GlassBrain.

Assessing the Snowball Component Spatial Patterns
For processing of real data that lack ground truth, the pros and
cons of different algorithms can be compared as to whether they
meet the ICA assumption. In theory, the purpose of ICA is to
extract non-Gaussian signals. The stronger the non-Gaussianity
of the signals, the more this assumption of ICA is satisfied. The
standard measure of non-Gaussianity is kurtosis (Hyvärinen and
Oja, 2000). The kurtosis of signal y with mean value µ and
standard deviation σ is defined by:

Kurt
(
y
)
= E

[(
y− µ

σ

)4
]
=

µ4

σ4
. (15)

Independent component analysis spatial components are
estimated by maximizing non-Gaussianity, therefore we use Kurt
to evaluate the “goodness” of independence components. The
higher the index is, the easier a network is distinguished from
background (Gaussian) noise.

Simulations
Simulated phantom fMRI data experiment aims to explore the
reason that MOS effect the ICA decomposition. Simulated data
were generated with the MATLAB toolbox, SimTB (Erhardt
et al., 2012), which was developed to facilitate the testing of

different analytic methods for multi-subject data and is freely
available for download4. In SimTB, we adopt a data generation
model that is largely consistent with the assumption of spatial
ICA. In other words, data can be expressed as the product of
activation temporal courses (TCs) and non-Gaussian sources,
which we refer to as SMs. For subjects i = 1, · · · ,M, we created
n components, each consisting of an SM and corresponding
TC. In our simulation, there are M = 10 subjects and n =
29 components. SMs have V = 148× 148 voxels and TCs
are T = 150 time points in length with a repetition time
(TR) of 2s/sample. Rician noise with random contrast-to-noise
ratio (CNR), selected according to a uniform distribution, for
each subject was added for each time course (across subjects,
mean ± SD: 0.32 ± 0.23). The simulated sources are shown
in Figure 3. Voxels with values larger than 2.3 after standard
normalization are defined as the signal represented by the
component. The spatial extent of each network is defined as
the number of voxels in the thresholded regions. Readers are
pointed to (Erhardt et al., 2012) for more details of the spatial
and temporal properties of the simulated sources.

In the traditional ICA algorithm, it is generally true that the
first R PCA components will contain almost all of the information
about all of the signal sources (the rest will correspond to
noise/artifacts). PCA components are orthogonal, and the spatial
cross correlation between PCA components and the ground truth
signals can be used to identify the information about each signal
contained in a PCA component.

For the simulated data, Matlab FastICA (Hyvärinen and Oja,
2000) was used as a representative traditional approach with
model orders of 10, 29, 50, 100, 200, 400, 500, 800, and 1000, in
order to compare the results under different model orders. The
mutual information of sources with noise was also calculated. In
Snowball ICA, for seed creation the model order was chosen as 10
and ICA was run 10 times with ICASSO. The stable components
(Iq > 0.9) were used as seeds.

In order to test the performance of Snowball ICA, MELODIC,
and GIFT under different CNR levels, a range of CNR (0.1–20)
was also applied when subjects’ data generated. All the other
parameters were kept exactly same. All three methods were
then applied to the same dataset. In MELODIC and GIFT, the
number of independent components was set to equal the number
of sources (29 for the simulated data). Estimation accuracy is
calculated as the average over all components of the spatial
cross correlation between the independent components and their
corresponding ground truth signals.

Resting-State fMRI Data
Resting state fMRI for 50 healthy unrelated subjects were utilized
from the WU-Minn Human Connectome Project (HCP: Van
Essen et al., 2013) to demonstrate our new method. Each subject
completed resting state fMRI with the following scan parameters:
TE/TR/FA = 33.1 ms/720 ms/52◦, 72 slices, 2 mm isotropic, eyes
open fixation. The data was then temporally preprocessed and
de-noised using the FIX approach (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). The resulting images were then aligned

4https://trendscenter.org/software/
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FIGURE 3 | Ground truth spatiotemporal signal sources used in the simulations for simulated phantom fMRI data. (A) Spatial map showing the spatial configuration
of the 29 signal sources. (B) To mimic between-subject spatial variability, the sources for each subject were given a small amount of random rotation and some
sources were randomly excluded. (C) Temporal course of each signal source for a single subject. Straight lines with zero values indicate that the component is not
present in that subject’s simulated data.

using MSM registration (Robinson et al., 2014). Full details of
the HCP resting state data can be found in publications from the
project (Smith et al., 2013; Van Essen et al., 2013).

Independent component analysis components estimated
using the traditional ICA algorithm and the Snowball
ICA strategy were compared. To apply the FastICA
algorithm to the in vivo resting state fMRI data, FastICA
as implemented in GIFT and in FSL MELODIC were both
used with an empirical model order = 40. In Snowball
ICA, FastICA was used for seed creation with a model
order of 10 for Step 1. Stable components (Iq > 0.9) were
used as seeds. In information collection, 20 scans were
considered at the same time for Step 2. The estimated
components from GIFT, MELODIC, and Snowball
ICA were compared using visualization, kurtosis, and
representativeness of network TCs.

To assess how selection of the initial parameters affects
estimation, estimation consistency was tested across model
orders in seed creation and across block sizes of information
collection. For seed creation, model orders of 20, 40, and
60 were used to estimate seeds from randomly selected
single subject’s fMRI data or from conventional group ICA
SMs. The right frontoparietal network was then selected
as the seed. For information collection, the block size was
set to 20, 40, and 60. The consistency of the estimated
networks with these parameter combinations was then
assessed by visual inspection and similarity score, as shown
in Figure 12. The similarity score is defined as the average
Pearson correlation coefficient of SMs estimated with
different parameters.

RESULTS

Simulation Results
Ideally, the PCA data reduction procedure will be able to retain
all information related to signal sources while removing only
noise. Figure 4 shows that PCA data reduction is not effective for
this purpose. Even for approximately the 200th and 1250th PCA
components, they still contain meaningful information about
signal sources. If the model order is chosen to be 29, which is
exactly the number of sources in the simulated data, much of the
information from signal sources is removed.

The second simulated signal source was selected as an
example to show the Pseudo-ICA results under different
model orders (Figure 5). Figure 5 shows that without the
restriction of independence between components, when more
PCA components are retained, the estimated component
is more accurate.

The components estimated by Matlab FastICA under different
model orders are shown in Figure 6. For each component, as
model order increases, the accuracy of the estimated components
also increases. However, when the model order is higher than
200, even though some new components are estimated, other
components disappear. The disappearing components have
relatively large scales.

The disappeared component under each model order is
defined as the component that cannot be estimated under the
model order but can be estimated with lower model order.
This means that the disappearance is caused by independent
constraint but not information insufficient of the component.
As shown in Figure 7A, the mutual information of network

Frontiers in Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 569657

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-569657 September 17, 2020 Time: 14:57 # 8

Hu et al. Snowball ICA

FIGURE 4 | Correlation of PCA spatial maps with simulated signal source
maps. Group PCA was applied to the simulated group data (N = 10) with
1500 components extracted in order of most variance accounted for. Even
components extracted after approximately the first 200 and the first 1250
components still show a correlation with the simulated signal sources and
therefore contain meaningful information about signal sources. When PCA is
used for data reduction of group fMRI data, model orders may range from 20
to approximately 100–200, therefore this meaningful information will be lost
during data reduction.

is significant correlated with network size. As the network
size becomes larger, the mutual information between network
and noise also increases. The average of mutual information
with noise of estimated networks under different model order
are shown in Figure 7B. The result shows that the mutual
information with noise of estimated networks is decreasing
as the model order increases. When the change of model
order is relatively small, the mutual information with noise
does not change much such as model order from 10 to 100.
But when the change of model order value is relatively large,
mutual information with noise also drops sharply, such as
model order from 100 to 1000. The color dots represent the

mutual information with noise of disappeared components at
each model order. Almost all the disappeared components
have higher mutual information with noise. We draw the
conclusion that the scale of the estimated components is
different under different model order. Limited with mutual
information with noise, the higher the model order, the
smaller the scale.

The comparison of Snowball ICA and traditional FastICA
results are shown in Figure 6. For Snowball ICA, almost
every component shows accurate estimation of sources with
high correlation with ground truth. In order to compare
the performance of Snowball ICA and conventional ICA, the
number of extracted components that significant correlated
ground truth was counted, with the threshold of 0.4 of Pearson
correlation coefficient. In order to make sure the source was
not split as several components, the components with the
highest similarity correlated with ground truth are identified by
eyes. Compared with the traditional ICA algorithm, Snowball
ICA is able to estimate almost all signal sources (26/29) with
high spatial accuracy. The signal sources include both large-
scale networks (e.g., source #15, #16, #18, #21, #22) and
small-scale networks (e.g., source #11, #12, #13, #28) can
be estimated with Snowball ICA. For conventional ICA, a
model order of 400, results in the most components being
extracted (20/29). But this is still less than Snowball, and the
accuracy is also lower. Meanwhile, 400 is much higher than
the actual number of ground truth components. However,
when the model order = 29, which is exactly same with the
number of ground truth, the number of components obtained
with conventional ICA are still few and the accuracy is also
no better than the components that estimated with higher
model order. From the results of Pseudo-ICA, for each source,
when the PCA component contain more information of the
source signals, the accuracy of estimated components shows
significant improvement. For traditional ICA, limited by the
restriction of independence for extracted components and
influence of noise, the accuracy of its results is worse than
Pseudo-ICA results. The higher the model order, the more
pronounced the effect.

FIGURE 5 | Pseudo-ICA results with different model orders. Without limitations of the spatial independence constraint of spatial ICA, the ICA estimation would be
more accurate as more PCA components are retained with increasing model order (MO).
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FIGURE 6 | FastICA results under different model orders, MO (shown on the far left side of the figure). Snowball ICA results are shown in the row above the ground
truth signals (shown in the bottom row). As model order increases for FastICA, the accuracy of estimation of individual networks increases but some networks with
wide spatial distributions disappear at higher MO. In addition, FastICA only identifies a maximum of about 65% of the simulated sources, and only 9/29 at the true
MO of the simulated data. In contrast, Snowball ICA estimates 26/29 ground truth signal sources, including widely distributed and highly focal networks, with high
accuracy. Additional details on this figure can be found in the Supplementary Material.

The performance of Snowball ICA, MELODIC, and GIFT
under different CNR levels are compared in terms of spatial
estimation accuracy, as shown in Figure 8. Snowball ICA
demonstrates greater accuracy across the ranges of CNR that may
be observed in BOLD fMRI signals (Welvaert and Rosseel, 2013)
as GIFT and MELODIC.

Resting State fMRI Data Results
The model order was chosen from 25 to 50 for fMRI data
processing (Beckmann et al., 2005; Damoiseaux et al., 2006;
Luca et al., 2010). Figure 9 shows the information used
under different model orders. Even when model order is 100,
the information used is no more than 40%. That means
more than 60% of the information was removed, reducing
potential accuracy.

For the dataset, the estimated model order is found to be 16
using the MDL criteria, 648 using the LAP, 830 using ER_AR
and 806 using ER_FM. The wide range of estimated model
order when using different criteria makes MOS a big problem in
real-world applications. The explained information under model
order 16 is only 22.36%. Under the model order of 648, 830, or
806, based on simulation results, some components with large
scale could not be extracted. Even though model order 830 is very
high, the information used is only 71.34%.

The corresponding components estimated by Snowball ICA,
GIFT, and MELODIC were compared by visual inspection and
kurtosis. Visual inspection of components estimated by each
method suggests that Snowball ICA produces SMs with the
cleanest spatial distribution (Figure 10). Figure 11 shows that
components estimated by Snowball ICA exhibit the greatest
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FIGURE 7 | (A) The strong association between network size and shared mutual information with noise shows that more spatially extensive brain networks share
greater mutual information with background noise. (B) The average mutual information of estimated networks under each model order. The colored dots represent
the mutual information with noise of networks that disappear at higher MO with FastICA.

FIGURE 8 | Spatial estimation accuracy of Snowball, MELODIC, and GIFT across different levels of contrast-to-noise ratio (CNR). Snowball ICA demonstrates
greater accuracy across the ranges of CNR that may be observed in BOLD fMRI signals as GIFT and MELODIC.

kurtosis, e.g., non-Gaussianity. However, Snowball ICA is a time-
consuming strategy. MELODIC, GIFT, and Snowball were run on
a computing cluster with 5 Linux-X64 nodes. The configuration
of each node is: Intel(R) Xeon(R) Gold CPU 6130 2.10 GHz
and 187.5 GB of random-access memory (RAM). The time costs

of each method to estimate the same number of components
are as follows: GIFT: 17 min, MELODIC: 50 min, Snowball:
30 h and 11 min. Further optimization of Snowball will be
needed to reduce the computing time, however computing
clusters are becoming more widely available and balance the need

Frontiers in Neuroscience | www.frontiersin.org 10 September 2020 | Volume 14 | Article 569657

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-569657 September 17, 2020 Time: 14:57 # 11

Hu et al. Snowball ICA

FIGURE 9 | Real in vivo fMRI data result: variance retained under different model order. With model order equal to 30, only 27% of the variance is retained for the
ICA. Even with model order equal to 100, the variance retained for the ICA is no more than 40%.

FIGURE 10 | Real in vivo fMRI data results: assessing the Snowball component via visualization. Spatial maps of five networks extracted by FSL, GIFT, and
Snowball. The threshold is 2.3 for all spatial maps, after standardization of spatial maps. Spatial maps of all components estimated from each method are shown in
the Supplementary Material.

for improved methods for network estimation with intensive
computational needs for our method.

The results of different parameter choices are shown in
Figure 12. The seeds estimated with different model orders
in seed creation from different subjects vary greatly, with an
average similarity across three different seeds equal to 0.25.

However, the final estimates of the right frontoparietal network
after information collection are all highly similar, with an
average similarity equal to 0.82, even when different block sizes
are applied. As shown in Figure 12, after thresholding, the
visualized results are nearly identical. Our findings demonstrate
that different seeds constructed with different parameters in the
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FIGURE 11 | Real in vivo fMRI data results: assessing the Snowball
component via kurtosis. Kurtosis for the set of spatial maps extracted by FSL,
GIFT, and Snowball ICA. The results of Snowball ICA have the highest kurtosis
and are thus most consistent with the assumptions of the ICA model.

seed creation step, and information collection with different
parameters, will still converge to the same solution for a given
network. As such, initial parameter selection is not a crucial step
in implementing Snowball ICA.

DISCUSSION

The main findings of this study are that (1) traditional ICA
methods have significant limitations in estimation of signal
source number and spatial component quality, (2) information
is lost during data reduction, and (3) large and small scale
components cannot be accurately estimated with the same
model order due to independence constraints. Furthermore, our
proposed method, the Snowball ICA, addresses these limitations
and outperforms traditional ICA algorithms on a number
of metrics. We believe these findings are important for a
number of reasons.

Information is lost by data reduction. When the model
order is different, different numbers of PCA components are
used, and the information fed into ICA unmixing program
is markedly different. Therefore, the accuracy of components
varies based on model order. Traditional ICA presumes that
PCA data reduction reduces redundant information and only
leaves useful information. This is easy to implement when the
signal-to-noise ratio is high, such as mixed high-quality acoustic
signals. However, because fMRI data is much more complex than
acoustic signals, the removal of this information as “noise” may
be obscuring meaningful signals in the brain and contributing to
issues with reproducibility. While increasing the number of PCA
components used increases the accuracy of components and the
percentage of information used, traditional methods are unable
to include all of the meaningful information. Snowball ICA is
able to estimate these components accurately, represent higher

FIGURE 12 | Real in vivo fMRI data results: Snowball ICA parameter
selection. Comparison of the estimated right frontoparietal network obtained
using different parameters for seed creation and information collection shows
that although considerable differences exist between seeds estimated with
different model orders in seed creation and in block sizes, the final estimated
networks are highly similar.

proportions of information, and do so without increasing model
order to unreasonable levels. Even though PCA is also applied in
Snowball ICA seed creation part, the lost information would be
collected in the information collection stage.

The spatial scale of estimated components decreases as the
model order increases with conventional approaches. Based on
information theory with independence constraints, the mutual
information between components should be low (Hyvarinen,
1999; Hyvärinen and Oja, 2000). Each signal has intrinsic mutual
information with noise. Larger-scale network has higher mutual
information with noise. However, inevitably, once model order is
selected both source information and noise components will also
be extracted. Limited by mutual information with those noise,
some components with large shape may not be extracted. From
the simulations, when the model order is smaller, components
with a larger scale can be extracted, but this is less accurate
due to data reduction limitations. In contrast, Snowball ICA is
able to extract both large- and small-scale components. This is
especially important given the variation in network composition
in the brain. Snowball ICA is not limited to research questions
involving similarly scaled network interactions – it can be used
to simultaneously study the large- and small-scale networks that
coexist in the brain.

The information collection step of Snowball can be followed
with any kind of current ICA. There are two kinds of ICA
algorithms in fMRI data processing. The first is GIFT, based on
the ICASSO, the conventional method introduced in this article.
The other is probabilistic ICA (Beckmann and Smith, 2004),
also known as noise ICA, which attempts to generalize ICA to
include noise. The mechanism of model order effect of noise
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free ICA is explored in study. Probabilistic ICA leverages some
information from noise, which may improve the accuracy of
estimation to some extent. Further work is needed to investigate
the how model order affects probabilistic ICA. Both of these
two algorithms could be followed by Snowball ICA information
collection, to improve the accuracy of the components and
strengthen confidence of fMRI findings.

In addition to the application of ICA for fMRI data
analyses, ICA is also widely used in the analysis and processing
of electroencephalogram (EEG) and EEG-fMRI data fusion
(Calhoun et al., 2009; Lei et al., 2012; Dong et al., 2014, 2016).
For data fusion, spatial ICA of fMRI and temporal ICA of EEG
has been used to extract features that are matched across the
modalities. The number of independent components impacts
the final estimations for both spatial ICA and temporal ICA.
With Snowball ICA, the intrinsic embedded components can be
estimated more accurately without the need to specify the model
order for either EEG or fMRI, which may lead to improvements
in fusion of high spatial and temporal resolution information.

When Snowball ICA is applied for group wise fMRI
decomposition, there are several factors that may influence the
accuracy of estimation. First, differences in brain shapes of
different subjects may result in misalignment of the network SMs
across subjects. Second, it is logical to assume some components
are stronger in some subjects/scans. So, if iteration in information
collection is not stable, the order where these scans are fed into
Snowball may impact the estimation of components. Third, there
are a number of parameters that are important for snowball
ICA (seed model order, threshold Iq, block size of information
collection iterations). In this study, theses parameters are selected
based on our experience. The threshold Iq was also selected as
0.9 based on our experience and on previous published studies.
Abou-Elseoud et al. (2010) who found that when the value of Iq is
greater than 0.8, the results are repeatable. A study by Allen et al.
(2011) also demonstrated that the Iq of meaningful components
was typically larger than 0.9. In the present study, although
the choice of specific Iq may affect the number of extracted
components, use of a higher Iq ensures that the extracted
components are reliable. In addition, the specific choice of Iq
does not affect the accuracy of the estimated components. We
also observed that the slight change of the model order will not
have much influence on the estimated components (Figure 7B),
which is also demonstrated with parameter selection (Figure 12).
Hence, the selection of the seed model order and the block size of
information collection iterations is not fatal.

Model order selection is also a crucial step in temporal ICA.
Theoretically, Snowball ICA can also be applied for temporal
ICA. However, it is not clear if the improvements we observe
with spatial ICA will be realized with temporal ICA. In the case of
spatial ICA, Snowball is effective at estimating networks without
specifying a model order because it utilizes more information
in the data (e.g., it obviates loss of information during data
reduction with PCA) and is better able to identify networks
that share large degree of mutual information with the noise.
It is likely that temporal ICA will have different factors that
may impact whether improvements in estimation would be seen
with Snowball ICA.

While Snowball ICA is time-consuming due to the iterative
process, it will be important for researchers determine the
cost-benefit based on their hypothesized source signal scale.
Further research will be necessary to explore ways to decrease
computational costs for Snowball ICA. Besides, Snowball ICA
is an empirical strategy that combining the conventional ICA
and iteration of ICA with reference to solve the mode order
problem. New algorithm with overall theoretical principles to
solve the model order problem worth further investigation.
Due to the lack of acknowledge of ground truth in real-world
application, even though Snowball ICA can be identified with
better performance compared with conventional ICA in some
sense, more comparison of them in terms of neuroscience such as
assessing relative heritability, or behavioral prediction accuracy,
or split-half reproducibility is needed.

CONCLUSION

In this article, we present a novel strategy, called Snowball ICA,
to solve the MOS problem of ICA for applications to fMRI data
processing. Choice of model order for ICA, and the PCA data
reduction step prior to the ICA, directly impacts how much
variance in the data is utilized for ICA estimation. In addition,
shared mutual information between estimated sources and noise
varies with the network spatial scale, making optimization of
model order a challenging problem. Snowball ICA ultimately
utilizes much more information contained in the data for the
ICA decomposition, and is able to estimate signal sources that
share mutual information with noise, which results in improved
network estimation when compared with traditional ICA. The
effectiveness of the proposed method is demonstrated through
extensive simulations and by application to in vivo fMRI data.
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