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Interpersonal physiological synchrony (PS), or the similarity of physiological signals
between individuals over time, may be used to detect attentionally engaging moments
in time. We here investigated whether PS in the electroencephalogram (EEG),
electrodermal activity (EDA), heart rate and a multimodal metric signals the occurrence
of attentionally relevant events in time in two groups of participants. Both groups were
presented with the same auditory stimulus, but were instructed to attend either to the
narrative of an audiobook (audiobook-attending: AA group) or to interspersed emotional
sounds and beeps (stimulus-attending: SA group). We hypothesized that emotional
sounds could be detected in both groups as they are expected to draw attention
involuntarily, in a bottom-up fashion. Indeed, we found this to be the case for PS in EDA
or the multimodal metric. Beeps, that are expected to be only relevant due to specific
“top-down” attentional instructions, could indeed only be detected using PS among
SA participants, for EDA, EEG and the multimodal metric. We further hypothesized
that moments in the audiobook accompanied by high PS in either EEG, EDA, heart
rate or the multimodal metric for AA participants would be rated as more engaging
by an independent group of participants compared to moments corresponding to low
PS. This hypothesis was not supported. Our results show that PS can support the
detection of attentionally engaging events over time. Currently, the relation between PS
and engagement is only established for well-defined, interspersed stimuli, whereas the
relation between PS and a more abstract self-reported metric of engagement over time
has not been established. As the relation between PS and engagement is dependent
on event type and physiological measure, we suggest to choose a measure matching
with the stimulus of interest. When the stimulus type is unknown, a multimodal metric is
most robust.

Keywords: physiological synchrony, inter-subject correlations, interpersonal physiology, EEG, electrodermal
activity, heart rate, multimodal
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INTRODUCTION

Knowing what events in the external environment people attend
to, and how their shared attentional engagement to events
varies over time, can be useful in a range of settings, from
evaluating educational or entertaining material, to real time
adjustment of important instructions. Unlike explicit measures,
such as questionnaires in which people are asked to specify
their attentional engagement, physiological signals can provide
continuous and implicit information on mental state (Zander
and Kothe, 2011). However, the link between mental state
and physiological measures [e.g., electroencephalography (EEG),
electrodermal activity (EDA) or heart rate] is not straightforward
(Brouwer et al., 2015). A popular approach to uncover the
complex links between physiology and mental state is the use of
supervised learning algorithms. These algorithms predict mental
state based on a set of features extracted from physiological
variables (Hamadicharef et al., 2009; Hussain et al., 2011;
Fleureau et al., 2012; Liu et al., 2013; Aliakbaryhosseinabadi et al.,
2017). A disadvantage of these types of analyses is the need
for labeled training data, i.e., a set of physiological data that
are labeled with a known value for the mental state of interest.
Not only is it time consuming to obtain such a labeled dataset,
it is also very difficult to determine the ‘ground truth’ mental
state than can be used for data labeling (Brouwer et al., 2015).
A second drawback of these supervised learning approaches is
that classification is often limited to a small number of discrete
states. Attentional, emotional or cognitive state, however, cannot
realistically be represented by a small number of discrete states,
but are naturally of more continuous nature (Zehetleitner et al.,
2012; Rosenberg et al., 2013).

For monitoring attentional engagement, an approach that may
be suited to circumvent both of the abovementioned problems is
to monitor the physiological synchrony (PS) between individuals.
PS is the degree to which physiological measures of multiple
people uniformly change. Studies exploring PS in functional
magnetic resonance imaging data have revealed strong voxel-
wise inter-subject correlations across participants exposed to a
common narrative stimulus (Hasson et al., 2004, 2010; Hanson
et al., 2009). In the faster EEG signals, similar results were
found (Dmochowski et al., 2012, 2014). The fast-changing EEG
enabled the computation of a continuous measure of PS in
time and suggested that moments of high PS corresponded with
emotionally arousing scenes of the movie clips (Poulsen et al.,
2017). For instance, high PS was found when scenes were viewed
that involved the threat of a gun. Dmochowski et al. (2014)
further showed that moment-to-moment variation in the PS
predicted the general expressions of interest and attention of
the public as indicated by number of tweets during a popular
television series. Davidesco et al. (2019) found that PS over time
indicated what specific information was retained by students in
a lecture. Namely, PS was higher in lecture parts that provided
answers for questions that students answered incorrectly in the
pre-test and correctly in the delayed post-test than for questions
where students’ answers did not change. The relationship
between neural PS and attentional engagement was also found
to be less complex than most traditional physiological metrics.

Neural PS was found to be directly proportional to attentional
engagement, as strong correlations were found between PS
and performance on questionnaires reflective of paid attention
(Cohen and Parra, 2016; Cohen et al., 2018; Stuldreher et al.,
2020). This directly proportional relationship may thus be used
to circumvent supervised learning approaches and the problems
that come with such approaches, such as the dependency on
labeled training data.

In the current work, we aim to employ the relation between
PS and attentional engagement to detect the occurrence of
attentionally relevant events in time. Rather than limiting the
analyses to EEG, we also include PS measures of peripheral
nervous system activity (EDA and heart rate), and quantify
their comparative sensitivity of detecting relevant events.
Up to recently, PS in peripheral physiological measures has
been studied mainly as a metric of some form of affective
connectedness between individuals (reviewed by Palumbo et al.,
2017). Examples include peripheral PS in therapist-patient dyads
as a measure of psychotherapy success (Koole et al., 2020),
in couples in marital counseling as a measure of therapy
outcome (Tourunen et al., 2019) and as measure of collaborative
learning (Malmberg et al., 2019). Positive results found in these
contexts may (partly) be driven by shared attentional engagement
to external events, as connectedness between people may be
strongly associated with mutual attentiveness (Tickle-Degnen
and Rosenthal, 1990). Recently, it was found that PS in EDA and
heart rate can indeed reflect shared attention toward narrative
stimuli (Pérez et al., 2020; Stuldreher et al., 2020).

The advantage of peripheral physiological measures over EEG
is that they can be recorded more easily and less obtrusively. In
addition, EEG and peripheral measures may complement each
other since they likely reflect different mental processes. EEG
is, for example, sensitive to selective attention (Polich, 2007),
whereas EDA and heart rate are sensitive to (emotional) arousal
(Cacioppo et al., 2007; Boucsein, 2012).

As of yet, it is unknown whether PS in EEG, EDA and
heart rate can be used to detect relevant moments in time. For
EDA and heart rate, time-resolved dynamics of PS have not
been investigated at all in the context of attentional engagement.
For EEG, time-resolved dynamics have been explored (see for
instance Dmochowski et al., 2014; Poulsen et al., 2017), but
this has not been done systematically, using a-priori known
cognitively or emotionally engaging stimuli for which detection
performance can be evaluated. We here evaluate whether PS
in EEG, EDA and heart rate can be used to detect cognitively
or emotionally relevant moments in time. Our goal is not to
compare detection performance directly between the different
types of stimuli, but to evaluate PS for a range of events
differing in terms of total duration, sound onset, mental processes
addressed and more. Just as in real-world conditions, some
event may capture attention in a bottom-up fashion, related
to salience or emotional relevance, whereas others may only
capture attention due to top-down mechanisms related to task
instruction (Lang, 1995; Öhman et al., 2001; Schupp et al., 2003).
We invited participants to come to our lab and listen to an
audiobook that was interspersed with short auditory events, that
we expected to induce emotional and cognitive load. We divided
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the participants in two equal-sized groups. Participants in the
audiobook-attending group (AA) were instructed to focus their
attention on the audiobook and ignore the interspersed stimuli.
Participants in the stimulus-attending group (SA) were instructed
to focus their attention on the interspersed stimuli and ignore the
audiobook. In a previous paper on this experiment (Stuldreher
et al., 2020), we showed that PS can be used to correctly classify
a listener as being instructed to attend to the audiobook or to the
sounds. In the current paper, we use PS among individuals in the
same group to predict the occurrence of interspersed stimuli over
time, for each of the three physiological measures. In addition,
we investigated if the PS across AA participants was predictive of
the occurrence of engaging moments in the book. We aimed to
answer the following research questions:

Does PS in EEG and EDA, heart rate and a multimodal metric
predict the occurrence of attentionally engaging moments in
time? And does this depend on the attentional instruction, type
of stimuli and physiological measure?

We expect that interspersed stimulus detection performance
of PS measures depends on combinations of the attentional group
(AA or SA), the interspersed stimulus type (emotional sounds or
beeps) and the physiological measure (EEG and EDA, heart rate
or the multimodal metric). We hypothesized the following;

(1) Attentional instruction and stimulus type: (a) for the
SA group, detection performance based on PS is above chance
for all interspersed stimuli. (b) For the AA group, detection
performance based on PS is above chance for emotional sounds,
since these attract attention through bottom-up mechanisms
related to salience or emotional relevance (Lang, 1995; Öhman
et al., 2001; Schupp et al., 2003) irrespective of task instruction.
(c) For the AA group, detection performance based on PS is
not above chance for beeps, as these are expected to mainly
attract attention through top-down mechanisms related to task-
instructions.

(2) Physiological measure and stimulus type (a) PS based
on peripheral signals (EDA and heart rate) performs better on
the detection of emotional sounds than on beeps, because they
primarily reflect emotional state (Cacioppo et al., 2007; Boucsein,
2012). (b) PS based on EEG performs better on the detection of
beeps than on the detection of emotional sounds, because they
primarily reflect top-down selective attention or mental effort
(Hogervorst et al., 2014).

(3) Combining physiological measures: combining the
physiological measures into a single multimodal metric of
PS would result in relatively high detection accuracies when
disregarding the differences between stimulus types.

While for the SA group, the timing of short stimuli serve as
“ground truth” relevant events to compare to the moments of
high PS, we do not know a priori what constitutes relevant events
or engaging moments in the audiobook. We therefore investigate
ratings of post-hoc determined moments of high and low PS
in the audiobook by an independent group of participants. We
hypothesized that;

(4) Events in audiobook: moments of the audiobook that
were associated with high PS in the AA group are rated as
more engaging than moments of the audiobook that were
associated with low PS.

MATERIALS AND METHODS

Participants
Twenty-seven participants (17 female), between 18 and 48 years
old, with an average of 31.6 years and a standard deviation
of 9.8 years, were recruited through the institute’s participant
pool. Before performing the study, approval was obtained from
the TNO Institutional Review Board (IRB). The approval is
registered under the reference 2018–70. Prior to the experiment
all participants signed informed consent, in accordance with
the Declaration of Helsinki. After signing, all participants were
randomly assigned to either the AA group or the SA group.
After the experiment they received a small monetary reward for
their time and traveling costs. None of the participants indicated
problems in hearing or attention. Data of one participant were
discarded due to failed physiological recordings, resulting in two
equal-sized groups.

Materials
EEG, EDA, and electrocardiogram (ECG) were recorded at
1024 Hz using an ActiveTwo Mk II system (BioSemi, Amsterdam,
Netherlands). EEG was recorded with 32 active Ag-AgCl
electrodes, placed on the scalp according to the 10–20 system,
together with a common mode sense active electrode and
driven right leg passive electrode for referencing. The electrode
impedance threshold was maintained below 20 kOhm. For EDA,
two passive gelled Nihon Kohden electrodes were placed on the
ventral side of the distal phalanges of the middle and index finger.
For ECG, two active gelled Ag-AgCl electrodes were placed at the
right clavicle and lowest floating left rib. EDA and heart rate were
also recorded using wearable systems (Movisens EdaMove 4 and
Wahoo Tickr, respectively). These data are discussed elsewhere
(Borovac et al., 2020; Van Beers et al., 2020).

Stimuli and Design
Participants performed the experiment one by one. Each
participant was presented with the exact same audio file,
composed of a 66 min audiobook (a Dutch thriller “Zure koekjes,”
written by Corine Hartman) interspersed with other short,
auditory stimuli. Half of the participants were asked to focus
on the narrative of the audiobook and ignore all other stimuli
or instructions (AA group); and half of the participants were
asked to focus on the short, interspersed stimuli and perform
accompanying tasks, and ignore the narrative (SA group). The
auditory stimuli were 36 emotional sounds, 27 blocks of beeps
that SA participants had to keep track of, and an auditory
instruction to sing a song. The order of sounds and beeps was
randomly determined but was identical for each participant.
Inter-stimulus intervals varied between 35 and 55 s, with an
average of 45 s and a standard deviation of 6.1 s. We selected
these stimuli to evaluate PS for a broad range of events, differing
in e.g., audio profile and expected effect on mental processes as a
function of task instructions.

Emotional sounds were taken from the second version of the
International Affective Digitized Sounds (IADS) (Bradley and
Lang, 2007). The IADS is a collection of 6-s acoustic stimuli
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that have been normatively rated for valence (positive or negative
affect), arousal and dominance. Examples of stimuli are the sound
of a crying baby or a cheering sports crowd. We selected 12
neutral sounds (IADS number 246, 262, 373, 376, 382, 627, 698,
700, 708, 720, 723, 728), 12 pleasant sounds (110, 200, 201, 202,
311, 352, 353, 365, 366, 367, 415, 717) and 12 unpleasant sounds
(115, 255, 260, 276, 277, 278, 279, 285, 286, 290, 292, 422) based
on their normative ratings of valence and arousal. We expected
these sounds to attract attention of all participants, even those
instructed to ignore the interspersed sounds.

Beeps were presented in blocks of 30 s, with every 2 s a 100 ms
high (1 kHz) or low (250 Hz) pitched beep. SA participants
needed to separately count the number of high and low beeps
presented in a block, as in (De Dieuleveult et al., 2018). This
task was practiced with them beforehand. In total, 27 blocks of
beeps were presented. We expected these sounds to only attract
attention of participants clearly instructed to keep track of them.

Toward the end of the audiobook, the instruction was
presented to sing a song aloud after a subsequent auditory
countdown reached 0. This instruction had to be followed by the
SA group and was expected to induce stress and a strong increase
in EDA and heart rate (Brouwer and Hogervorst, 2014). For the
current analyses, data following the onset of this stimulus were
discarded, because some participants started singing before the
counter reached 0. This prohibited analysis of the data in terms
of mental processes due to confounding movement effects and
artifacts in the data recording.

In total, we consider 3,800 s of data in further analyses, out of
which 1,026 s involved concurrent presentation of the audiobook
and interspersed stimuli.

Analysis
Pre-processing
Data processing was done using MATLAB 2019a software
(Mathworks, Natick, MA, United States). For EEG pre-processing
we also used EEGLAB v14.1.2 for MATLAB (Delorme and
Makeig, 2004). To remove potentials not reflecting sources
of neural activity, but ocular or muscle-related artifacts,
logistic infomax independent component analysis (ICA) (Bell
and Sejnowski, 1995) was performed. EEG was first down
sampled to 256 Hz and high-pass filtered at 1 Hz. This
relatively high cut-off frequency has shown to work better
for ICA compared to lower cut-off frequencies (Winkler
et al., 2015). Data were then notch filtered at 50 Hz, using
the standard FIR-filter implemented in EEGLAB function
pop_eegfiltnew. ICA was performed and the Multiple Artifact
Rejection Algorithm (MARA) (Winkler et al., 2011) was used
to identify artifactual independent components, i.e., components
not reflecting sources of neural activity, but ocular or muscle-
related artifacts. These components were removed from re-
referenced, but uncleaned data. In these data, samples whose
squared amplitude magnitude exceeded the mean-squared
amplitude of that channel by more than four standard deviations
were marked as missing data (“NaN”) in an iterative way
with four repetitions. By doing so, 0.82 % of data were
marked as missing.

EDA was downsampled to 32 Hz. The fast changing phasic
and slowly varying tonic components of the signal were extracted
using Continuous Decomposition Analysis as implemented in
the Ledalab toolbox for MATLAB (Benedek and Kaernbach,
2010). In the further analyses we use the phasic component of
the signal as this component of the EDA signal is mainly related
to responses to external stimuli.

ECG measurements were processed to acquire the inter-
beat interval (IBI – inversely proportional to heart rate). After
downsampling to 256 Hz, ECG was high-pass filtered at 0.5 Hz.
Peaks were detected following Pan and Tompkins (1985). The
IBI semi-time series was transformed into a timeseries by
interpolating consecutive intervals and resampling at 32 Hz.

Computation of Inter-Subject Correlations as
Measure of Physiological Synchrony
We computed PS by measuring the inter-subject correlations
of the neurophysiological signals. For EEG, rather than treating
the signals from the 32 channels separately, we evaluated
the inter-subject correlations in the correlated components of
the EEG (Dmochowski et al., 2012, 2014). The goal of the
correlated component analysis is to find underlying neural
sources that are maximally correlated between participants,
based on linear combinations of electrodes. Components were
extracted separately from the AA group and SA group. EEG
data from each participant were projected on the component
vectors. Participant-to-group inter-subject correlations were then
computed as the sum of correlations in the first three component
projections, following (Dmochowski et al., 2012, 2014; Cohen
and Parra, 2016; Ki et al., 2016; Cohen et al., 2018). Even though
we used fewer participants in each attentional group than earlier
work on auditory PS (e.g., Cohen and Parra, 2016; Ki et al., 2016),
scalp projections of the components were very similar to those
obtained in these earlier works, and our EEG PS values were in
a similar range of 0.01 to 0.04. For the computation of time-
resolved inter-subject correlations, correlations were computed
in running 5 s windows at 1 s increments.

Inter-subject correlations in EDA and IBI were computed
following (Marci et al., 2007). We computed Pearson correlations
over successive, running 15 s windows at 1 s increments as
measure of time-resolved inter-subject correlations. Participant-
to-group correlations were computed by averaging over all
correlations with all other participants in a group.

Physiological Synchrony for the Detection of
Interspersed Stimuli
We designed a paradigm to detect relevant events using gradually
increasing thresholds to capture the gradual nature of attentional
engagement. Figure 1 provides a visual explanation of our
detection paradigm. Consider the EEG, EDA and IBI response
traces that were recorded during the experiment. The timestamps
of the data recordings can be separated in moments where
interspersed stimuli were presented and where an event detection
would thus be considered correct (True) and moments where no
interspersed stimuli were presented and where an event detection
would be considered incorrect (False). Rather than using the raw
physiological responses, the detection paradigm is based on the
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FIGURE 1 | Illustration of the event detection paradigm. (A) Consider the physiological response traces recorded from N participants who were presented with the
same external stimuli at the same time. The timestamps of the data recordings can be separated in moments where events were presented and where an event
detection would thus be correct (True) and moments where no events where presented and where an event detection would thus be incorrect (False). (B) Rather
than considering the raw physiological responses, the detection paradigm is based on the PS between the participants. (C) Now let us define a threshold t. The
moments in time where the synchrony is higher than t are marked as an event (Positive) and the moments in time where the synchrony is lower than t are marked as
a non-event (Negative). (D) Rather than using a single value for t, we consider a gradually changing threshold t0 to tn, so that at t0 all data are marked as Positive
and at tn all data are marked as Negative (E) For each iteration ti , we can now define the true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) and thus compute the true-positive rate (TPR) and false-positive rate (FPR). (F) Plotting the FPR versus the TPR – both as a function of t – results in
the receiver operating curve (ROC). Detection performance is defined as the standard metric of area under the ROC (AUC of ROC).

PS between the participants as a function of time. Now let us
define a threshold t. The moments in time where the synchrony is
higher than t are marked as an event (Positive) and the moments
in time where the synchrony is lower than t are marked as a
non-event (Negative). Rather than using a single value for t,
we consider a gradually changing threshold t, ranging from the
minimum inter-subject correlation value to the maximum inter-
subject correlation value. For each iteration of t, we can now
define the true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN). Using this, the true-positive rate
or sensitivity (TPR) is then computed as,

TPR =
TP

TP + FN

and the false-positive rate (FPR) or specificity as,

FPR =
FP

FP + TN

Plotting TPR against FPR provides the receiver operating curve
(ROC). Detection performance was assessed using the standard
metric of the area under the ROC (AUC of ROC).

Chance level performance was assessed using permutations
with randomized stimulus timing. In each permutation, the
timing of all interspersed stimuli was randomized between the
start and the end of the experiment. The same procedure as

above was then applied to obtain the AUC of ROC metric
of performance with random stimuli. This procedure was
performed on 1000 renditions of such randomized data.

The above-mentioned procedure was repeated 2 × 3 × 4
times, namely for:

(1) Two attentional groups; considering PS between AA
participants and PS between SA participants.

(2) Three stimulus types; considering as events (True) either
blocks of beeps, emotional sounds, or both of these.

(3) Four physiological measures in which PS is computed; EEG,
EDA, heart rate and a multimodal metric that is composed
of PS in EEG, EDA and heart rate. To compose this
multimodal metric, the PS in EEG, EDA and heart rate were
each z-scored. The multimodal PS value at each timestamp
was then computed as the average of the z-scored PS values
in EEG, EDA and heart rate at that timestamp, for all
timestamps ranging from zero to the end of the experiment.

In each condition, one-tailed two-sample t-tests were
conducted to test whether detection performance was higher than
chance level performance.

Correspondence Between Physiological Synchrony
and Reported Engagement With the Audiobook
While for the SA group, the timing of short stimuli served as
“ground truth” relevant events to compare to the moments of
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high PS, we did not know a priori what constituted relevant,
engaging moments in the audiobook. To systematically examine
whether moments of high PS were associated with moments
of high relevance in the audiobook, we performed a follow-
up test in which a second cohort of participants judged clips
of the audiobook that were found to be associated with either
high or low PS. We recruited 29 participants through the
Prolific online experiment environment. All participants signed
informed consent before participating. The participants received
a small monetary reward for the invested time. We only included
participants who indicated to be fluent in Dutch.

We selected clips based on continuous signals of PS among
AA participants. We detected the positive and negative peaks
in the signals using the ‘findpeaks’ function in MATLAB. For
each measure (EEG, EDA, heart rate and the multimodal metric),
the six peaks with highest positive peak-amplitude and six
peaks with largest negative peak-amplitude were selected. For
each detected peak, we created a 10 s sound clip, that was
composed of the 10 s of audio before the detected peak. For
four measures, this thus resulted in a total of 48 clips. Clips
associated with peaks that were within 10 s of each other
were considered to be overlapping, and were merged into
one clip by using only the latest of the two clips in time.
This resulted in a total of 38 clips that were presented to
the participants.

The procedure of the online test was similar to the initial
experiment. The participants were first presented with the
same audiostream that was presented to the initial cohort of
participants. The participants were instructed as participants
from the AA group, i.e., to focus their attention on the narrative
of the audiobook and ignore any interspersed stimuli as much
as possible. After listening to the book, the participants were
asked the same questions about the content of the narrative
as participants in the initial cohort. We then presented the
participants with the sound clips, each of them directly followed
by a rating scale. Participants were instructed to rate the
preceding clip using an 11-point Likert scale, ranging from 0 to
10. The lower the score, the more the participant’s experience
corresponded to the words on the left side of the scale (Dutch:
‘verveeld’, ‘kalm’, ‘ontspannen’; Translated to English: ‘bored’,
‘calm’, ‘relaxed’). The higher the score, the more the participant’s
experience corresponded to the words on the right side of
the scale (Dutch: ‘geïnteresseerd’, ‘geboeid’, ‘emotioneel’, ‘intens’;
Translated to English: ‘interested’, ‘fascinated’, ‘emotional’,
‘intense’). Using these words, we intended to capture mental
states that are expected to be associated with perceiving relevant
events, such as engagement, attention and arousal.

For each modality, we tested whether audio clips
corresponding to a positive peak in PS were rated as more
‘engaging’ than audio clips corresponding to a negative peak
in PS, using a Wilcoxon signed-rank test. Participants who
answered less than three out of ten questions correctly on
the questionnaire about the content of the audiobook were
considered as not having participated seriously (AA participants
in the main experiment answered 5.8 ± 2.0 questions correctly).
This concerned three participants. Removing their data left us
with data of 26 participants.

RESULTS

Detection of Interspersed Stimuli Using
Physiological Synchrony
Figure 2 and Table 1 show our measure of interspersed stimuli
detection performance, the AUC of ROC as described in the
methods. It is presented separately for AA and SA participants; in
EEG, EDA, heart rate, and the multimodal metric; and for blocks
of beeps, emotional sounds or both of these stimuli together
as to-be identified events. Figure 2 and Table 1 also show the
mean and standard deviation AUC of ROC of permutations with
randomized event timing as a chance level baseline. Detection
performance was largely in line with hypotheses 1 - 3. For the
AA group, we found that, as expected, only the occurrence
of emotional sounds could be predicted, using PS in EDA
(p < 0.001) or the multimodal metric

(
p = 0.003

)
. For the

SA group, occurrences of beep blocks could be detected well
above chance level by PS in EEG, EDA and the multimodal
metric (p < 0.001, p = 0.002 and p < 0.001, respectively). The
occurrence of emotional sounds could be detected significantly
better than chance using PS in EDA, heart rate and the
multimodal combination (p = 0.043, p = 0.023, and p = 0.011 ,
respectively). When stimuli were not differentiated according to
stimulus type, detection performance was well above chance level
for PS in EEG (p < 0.001), EDA (p < 0.001) and the multimodal
metric (p < 0.001), but not for PS in heart rate.

Correspondence Between Physiological
Synchrony and Reported Engagement
Figure 3 shows engagement ratings of audio clips corresponding
to positive peaks and ratings of audio clips corresponding to
negative peaks for PS in EEG, EDA, heart rate and the multimodal
metric. Results did not follow our hypothesis that audio clips
corresponding to positive peaks were rated as more engaging than
audio clips corresponding to negative peaks. In fact, in EEG and
EDA the opposite effect was found (Wilcoxon test statistic: W =
−3.06, p = .002; W = −3.44, p < .001, respectively). In heart
rate and the multimodal metric no significant difference between
ratings corresponding to either positive or negative peaks was
found (W = 0.70, p = 0.486, W = 0.87, p = 0.385).

DISCUSSION

In the sections below, the hypotheses as stated in the Introduction
are discussed separately.

Hypothesis 1: Attentional Instruction and
Stimulus Type
We hypothesized that interspersed stimulus detection
performance would depend on the attentional group (AA
or SA) and the interspersed stimulus type (emotional sounds or
beeps), due to bottom-up and top-down mechanisms of attention
(Lang, 1995; Öhman et al., 2001; Schupp et al., 2003). For the SA
group, we hypothesized that detection performance based on PS
would be above chance for all interspersed stimuli, whereas for
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FIGURE 2 | AUC of ROC metric of stimulus detection performance using PS in EEG, EDA, IBI and a multi-modal combination of the three (MM). Performance is
shown for the AA and SA groups, when considering only beep blocks or emotional sounds as true positives and when considering both types of stimuli as true
positives. In addition, the mean and standard deviation chance level detection performance based on 1,000 renditions with randomized stimulus timing is shown
with test results comparing detection performance to chance level (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Note that for the AA group, the emotional sounds but not
the beeps are expected to draw (bottom-up) attention, i.e., for the AA group we expect high AUC for emotional sounds only. For the SA group, both beep
sequences and emotional sounds are relevant and expected to draw attention.

the AA group we hypothesized that detection performance would
be above chance only for emotional sounds, but not for beeps.
Results were largely in line with this hypothesis: for the AA group
only the emotional sounds were detected with an accuracy above
chance level, whereas for the SA group both stimulus types could
be detected with above chance level accuracy. Note again that
detection performance cannot be directly compared between the
different stimulus conditions. There were differences in detection
performance between the used physiological measures, these are
discussed in the next section.

Hypothesis 2: Physiological Measure and
Stimulus Type
Besides the dependency of detection performance on the
attentional group and interspersed stimulus type, we expected
that detection performance would depend on the used
physiological measure and stimulus type. As hypothesized,
EEG worked best for the detection of blocks of beeps, while it
did not work well for the detection of emotional sounds. We
also found EDA to perform well for detecting blocks of beeps.
For the detection of emotional sounds, we hypothesized that
the peripheral measures (EDA and heart rate) would perform
well relative to EEG. Indeed, for both attentional groups, PS in
EDA and heart rate perform relatively well for the detection
of emotional sounds. Detection performance was significantly
above chance using EDA in both groups and using heart rate
in the SA group, and near significance (p = 0.055) using heart
rate in the AA group, whereas detection performance using

PS in EEG was far from significant for emotional sounds in
both groups. We think that the observed EEG PS differences
between the types of stimuli are the result of both the difference
in mental processing (top-down, effortful attention for beeps,
versus bottom-up, affective processing for emotional sounds)
and low level stimulus features. The beep blocks consisted of
precisely-timed, repeated beep occurrences, with constant sound
levels, while our emotional stimuli consisted of sounds with
irregular sound profiles. The positive results obtained with
peripheral measures provide further insight in the mechanisms
underlying PS. Whereas previous findings on peripheral PS
have been viewed in terms of social relation (Palumbo et al.,
2017), we here show that PS in peripheral measures can also be
explained by shared attentional engagement. It may be the case
that shared attention also underlies results found in contexts of
social relation.

Hypothesis 3: Combining Physiological
Measures
As the three used physiological measures vary with respect to
their ability to reflect different mental states, we hypothesized that
combining the physiological measures into a single multimodal
metric of PS would result in relatively high detection performance
when differences between stimulus types are disregarded. Indeed,
the multimodal metric performs best when considering both
emotional sounds and beeps as relevant events. Detection
accuracies are slightly higher than for the best performing
unimodal measure when considering emotional sounds or
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both types of stimuli but not when considering blocks of
beeps. We expect that sensor fusion is not beneficial when
variables are highly correlated (Hogervorst et al., 2014) –
for example for physiological variables all reflecting mental
effort – but that sensor fusion can benefit from tasks involving
emotional processing besides effortful attentional processing.
Besides potentially higher detection performance, the main
advantage of multimodal PS seems to be the robustness regarding
different types of stimuli, i.e., detection performance varies less
between different types of stimuli than for single physiological
metrics. In previous work similar effects have been found.
For example, when using sensor fusion on machine learning
models to distinguish between 13 emotional states, maximum
performance was not higher for the multimodal metric, but
performance was more robust across the range of emotional
states (Verma and Tiwary, 2014). In the end, although adding
sensors does not lead to much higher performance compared to
the most suitable unimodal recording, a multimodal approach
seems to enable detection of relevant events when it is unknown
what the best measure for certain stimulus types is. Also
note that it is not always known whether certain stimuli will
induce mostly effortful cognitive or emotional processing; in
many practical cases such processes can co-occur and vary
between individuals.

Hypothesis 4: Events in Audiobook
We hypothesized that audio clips corresponding to moments
of highest PS would be post-hoc scored as more engaging than
audio clips corresponding to moments of lowest PS, but our
findings indicated rather the opposite. These findings may be
caused by a mismatch between our index of PS and the rating
scale of experienced engagement. Post-hoc qualitative analysis
of the selected audio-clips revealed that part of the audio clips
corresponding to very high PS in EEG coincided with short-
term moments of tension or engagement, as expressed through
keywords (e.g., swear words) and salient intonation (e.g., a
phrase spoken in a very indignant manner). This is in line with
earlier work, where moments of high PS in EEG were found
to correspond to moments in video clips marked by a high
level of short-term suspense, tension or surprise, such as the
sight of a gun (Poulsen et al., 2017). Indeed, emotional images
and sounds that are rated as highly arousing induce responses
in peripheral and central physiological measures (Bradley and
Lang, 2000; Lang and Bradley, 2007), which in term may lead
to strong PS. In our used audiobook, the keywords that may
have driven the particularly high PS contained relatively little
important information about the narrative of the story. It seems
that this could have been the aspect rated by participants using
our engagement scale, leading to a mismatch between self-
reported engagement and PS. However, this speculation would
need to be investigated further, preferably without having to
rely on varying engagement judgements after the fact, but for
instance with systematic sentiment analysis (Wöllmer et al.,
2013). It is important to further specify what types of attentional
engagement can and cannot be captured by PS and how that
is dependent on the psychological measure used. Attentional
engagement to well-timed events will be better reflected in
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FIGURE 3 | Self-reported engagement scores for audio clips corresponding to moments in the audiobook with high PS (closed markers) or low PS (open markers) in
EEG, EDA, IBI and the multimodal metric (MM) (∗∗p < 0.01, ∗∗∗p < 0.001).

PS than attentional engagement to less well-timed event on a
more abstract level.

Limitations
It should be noted that the stimulus detection performance when
not taking stimulus type into consideration (‘both stimuli’) were
mainly driven by detection performance of beep blocks. These
beep blocks were interspersed for a total of 810 s, whereas the
emotional sounds were only interspersed for a total of 216 s.
The stimuli also differed on other aspects. For instance, the
beep blocks consisted of precisely timed beeps with immediate
stimulus onset equal across trials, whereas the emotional sounds
all differed in sound profile. For the AUC of ROC metrics
when considering detection of both types of stimuli, beep
blocks thus influence the performance metric more than the
emotional sounds. While this can be seen as a limitation, this
is exemplary for real life situations, where one is interested in
detecting relevant, attentionally engaging events, without further
specifying or knowing the different types of stimuli, and the
proportion of in which they occur; i.e., in such a situation, the
‘both stimuli’ situation is the default.

We must also note that our simple multimodal approach
is certainly not the optimal approach to combine data. In
particular, we expect that detection performance can be enhanced
by compensating for differences in response latencies across
measures. To illustrate the difference in response latency, in
response to the same set of emotional sounds, response peak
latency ranges from a few 100 ms for EEG to multiple seconds in
EDA heart rate (Bradley and Lang, 2000; Hettich et al., 2016). In
this paper we simply averaged over response traces in a point-wise
fashion, meaning that response-induced peaks may be spread
out and their amplitude reduced. Our current results should

therefore be interpreted as a first confirmation that multimodal
sensor fusion can be of added value, but we expect that other
approaches can greatly enhance performance. In future work
we would like to explore other methods for the combination of
physiological measures into a multimodal metric of PS.

CONCLUSION

We determined PS in EEG and EDA, heart rate and a multimodal
fusion of these three sensors in two groups of participants, that
were instructed to attend either to the narrative of an audiobook
or to interspersed auditory events. We found that PS could
detect the relevant interspersed stimuli with accuracies well above
chance level, but also found that moments in the audiobook
corresponding to high PS were not rated as more engaging
than moments corresponding to low PS. Our results support the
notion that PS can be valuable when interested in the course
of attentional engagement over time. Currently the relation
between PS and engagement is only established for well-defined,
interspersed emotional or effortful cognitive stimuli, whereas the
relation between PS and a more abstract self-reported metric of
engagement is not yet established. We further note that obtained
results vary between the used physiological measures. Interesting
from a user perspective, EDA worked best overall. These results
should enable researchers to monitor PS in situations where
intrusive EEG measurements are not suited. However, we also
note that the optimal physiological metric may be dependent on
the goal of a study and suggest to choose a measure matching
with the stimulus of interest. EEG works especially well for well-
timed effortful cognitive stimuli, heart rate works especially well
for emotional stimuli and EDA works quite well on both types
of stimuli. When the stimulus type is unknown, a multimodal
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metric may work best as it seems most robust across a broad
range of stimuli.
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