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Group cognitive behavioral therapy (GCBT) is a successful psychotherapy for asthma.
However, response varies considerably among individuals, and identifying biomarkers of
GCBT has been challenging. Thus, the aim of this study was to predict an individual’s
potential response by using machine learning algorithms and functional connectivity
(FC) and to improve the personalized treatment of GCBT. We use the lasso method
to make the feature selection in the functional connections between brain regions, and
we utilize t-test method to test the significant difference of these selected features.
The feature selections are performed between controls (size = 20) and pre-GCBT
patients (size = 20), pre-GCBT patients (size = 10) and post-GCBT patients (size = 10),
and post-GCBT patients (size = 10) and controls (size = 10). Depending on these
features, support vector classification was used to classify controls and pre- and post-
GCBT patients. Pearson correlation analysis was employed to analyze the associations
between clinical symptoms and the selected discriminated FCs in post-GCBT patients.
At last, linear support vector regression was applied to predict the therapeutic
effect of GCBT. After feature selection and significant analysis, five discriminated FC
regarding neuroimaging biomarkers of GCBT were discovered, which are also correlated
with clinical symptoms. Using these discriminated functional connections, we could
accurately classify the patients before and after GCBT (classification accuracy, 80%)
and predict the therapeutic effect of GCBT in asthma (predicted accuracy, 67.8%). The
findings in this study would provide a novel sight toward GCBT response prediction
and further confirm neural underpinnings of asthma. Moreover, our findings had clinical
implications for personalized treatment by identifying asthmatic patients who will be
appropriate for GCBT.

Clinical Trial Registration: The brain mechanisms of group cognitive behavioral
therapy to improve the symptoms of asthma (Registration number: Chi-CTR-15007442,
http://www.chictr.org.cn/index.aspx).

Keywords: asthma, group cognitive behavioral therapy, machine learning, support vector machine, therapeutic
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INTRODUCTION

Asthma is a common respiratory disease with the clinical
symptom of reversible airflow restriction, which is associated
with significantly higher comorbidities including psychiatric
diseases (Su et al., 2016; Shen et al., 2017). Meantime,
psychiatric comorbidities have impacts on asthma management
and prognosis, as they are involved in inadequate disease control
and poor quality of life (Adeyeye et al., 2017; Gonzalez-Freire
and Vazquez, 2017; Hekking et al., 2018). Thus, in order to
clarify the underlying neural mechanisms of asthma, as well as
better understand the mechanisms of psychiatric comorbidities
in asthma, clinical scientists have paid more attention to asthma
by using various methods (Wang et al., 2014; Xiong et al., 2016).

Cognitive behavioral therapy (CBT) is a widely used
psychotherapy of exploring individuals’ perceptions and how the
behavior influences their feelings and thoughts. CBT is aimed
at empowering a person to change previous unhelpful thinking
and behavior patterns and at developing a more positive way
of thinking to acquire a more helpful behavioral response (Kew
et al., 2016). Previous studies consistently demonstrated that CBT
could be utilized to encourage asthmatic patients to keep control
of their symptoms, accept their problems, and alleviate asthma-
related negative emotions (Parry et al., 2012; Feldman et al., 2016;
Kew et al., 2016). Regarding CBT in asthma including individual
and group models, group CBT (GCBT) may cost less as well
as acquire more social support offered by group compared with
individual therapy (Yorke et al., 2017). Therefore, we applied
GCBT to our study.

In recent decades, magnetic resonance imaging (MRI) shows
the advancement and provides the opportunities to investigate
the neural underpinnings of GCBT non-invasively, such as
GCBT in depression (Sosic-Vasic et al., 2017; Sambataro et al.,
2018) and anxiety (Whitfield-Gabrieli et al., 2016; Klumpp
et al., 2017; MinlanYuan, Meng et al., 2017). Meanwhile, some
neurophysiological mechanisms underlying GCBT for asthma
have been detected in our previous studies (Zhang et al.,
2017a,b), and we found that abnormal spontaneous activity
and insula functional connectivity (FC) would be reversed after
treatment. Emotional disorder-related studies suggested that
neuroimaging biomarkers could be used in predicting response
to GCBT (Doehrmann et al., 2013; Whitfield-Gabrieli et al.,
2016). However, despite the significance of GCBT, no effective
biomarkers have been developed. In addition, although the
above neuroimaging findings have made substantial progress in
demonstrating the neural mechanisms of GCBT, they are based
on conventional group analyses (Hahn et al., 2015). A useful
neuroimaging biomarker with sufficient sensitivity and specificity
on the individual level is deficient.

Actually, neurocircuits seem to play an important underlying
role in asthma. Rosenkranz et al. (2005, 2012) and Rosenkranz
and Davidson (2009) reported that neural circuitry underlying
the interaction between emotion and asthma symptoms, and
the abnormal brain functions related to emotions, may be the
neurophenotypes of asthma. Moreover, they also used PET to
explore the neural mechanisms of asthma, and they found
that greater activity in the mid-insula and perigenual anterior

cingulate seems to reflect greater reactivity and was associated
with greater airway inflammation and a more robust alpha
amylase response (Rosenkranz et al., 2016). In addition, another
author in their team summarized the linkages between brain
and asthma, suggesting that specific circuits in the brain [e.g.,
anterior cingulate cortex (ACC) and insula] are activated in the
relationship and intensity to the development of a late-phase
response to inhaled antigen (Busse, 2012). And thus, these brain
signals are predictive and associated with the development of
airway inflammation as measured by sputum eosinophils. Thus,
exploring the biomarkers of GCBT on the basis of abnormal brain
functions in asthma would provide a novel inspiration.

It is worth noting that the novel approach based on machine
learning (ML) brings prospect for the personalized treatment.
According to the neuroimaging features based on ML analysis,
physicians can directly make clinical decisions (Hahn et al., 2015).
Moreover, ML has been widely used to predict CBT response
in psychiatric disorders, particularly the combination with FC
(Hahn et al., 2015; Mansson et al., 2015; Juarascio et al., 2018;
Reggente et al., 2018). For example, in Reggente et al. (2018), FC
was used to predict individual’s symptom severity of obsessive-
compulsive disorder (OCD) after treatment with the method
of ML. They found that FC within visual and default mode
network before treatment significantly predicted post-treatment
OCD severity. To our knowledge, no study has documented
biomarkers and predicted response of GCBT in asthma on the
basis of data-driven ML approach.

To address these issues, we aimed to discover brain
FC associated with GCBT, which could be regarded as the
discriminated biomarkers. These biomarkers could effectively
classify normal controls and asthmatic patients using ML
methods. In addition to classification, we also expected that
these neuroimaging biomarkers could help us predict individual
response to GCBT in asthmatic patients, thereby providing more
clinical-related information.

MATERIALS AND METHODS

Participants
Forty-two patients with a diagnosis of bronchial asthma without
acute attacks and 42 healthy controls (HCs) were recruited.
All participants underwent a functional MRI (fMRI) scan at
baseline. In addition, 17 out of 42 patients completed GCBT
treatment, and they received clinical assessments and fMRI scan
again after 8-week treatment. One of them was eliminated due
to data quality. The contents of GCBT were reported in our
previous study, which consisted of eight sessions (Zhang et al.,
2017a). This study was approved by the recommendations of
the ethics committee (Zhongda Hospital, Southeast University,
Nanjing, China, No. 2016ZDSYLL004.0) with written informed
consent from all subjects. All procedures performed in studies
involving human participants were in accordance with the ethical
standards of the institutional research committee and with the
1964 Declaration of Helsinki and its later amendments. The
clinical trial registration number is Chi-CTR-15007442.
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Participants were all right-handed with education of more
than 6 years. Their age ranged from 18 to 65 years. There are
no electronic and metal equipment in their body (such as stent,
defibrillator, and cardiac pacemaker). Participants were excluded
if they (1) suffered from other respiratory diseases; (2) had a
history of organic cardio, hepatic, renal, and brain disorders
and abnormality; (3) have mental disorders, or drug and alcohol
dependence; and (4) are pregnant or lactating.

Clinical Assessments
Patients also received a series of clinical assessments, including
17-item Hamilton depression rating scale (HAMD) (Hamilton,
1960), Chinese version of Short Health Anxiety Inventory
(CSHAI) (Zhang et al., 2015), and asthma control test (ACT)
(Larsson et al., 2018). HAMD is used to assess the depressive
severity at baseline and after treatment. ACT is a five-item self-
rating scale, and it is used to assess the asthma control level. The
cutoff score of ACT is 20, and uncontrolled asthma is recognized
while the total score is less than 20. CSHAI is also a self-rating
scale associated with health anxiety, and it has 18 items; 15 is the
cutoff score in Chinese population.

fMRI Data Acquisition and Preprocessing
MRI studies were performed on a 3-Tesla Scanner (Siemens,
Erlangen, Germany) using a homogeneous birdcage head coil.
The resting images were obtained using a gradient-recalled echo-
planar imaging (EPI) pulse sequence. For each data volume,
we acquire 36 continuous axial slices in descending order with
3.75-mm × 3.75-mm in-plane resolution parallel to the anterior
commissure–posterior commissure line, 3-mm slice thickness,
and a 0-mm gap using resting-state imaging [repetition time
(TR) = 2,000 ms, echo time (TE) = 25 ms, flip angle = 90◦,
acquisition matrix = 64 × 64, field of view = 240 × 240 mm].
Participants lay supine with the head snugly fixed by a belt and
foam pads to minimize head motion, and they were required to
keep their eyes closed, to be awake, and to not think of specific
things during scanning. The fMRI data were acquired over a
period of 8 min 6 s.

DPABI was used to preprocess the resting-state fMRI data
(Yan et al., 2016). After the first 10 time points were removed,
the remaining 230 times points were corrected for timing
differences between slices and for motion effects (six-parameter
rigid body) using a reference volume in the center of the run.
The resulting images were spatially normalized into a standard
stereotaxic space using a 12-parameter affine approach and an
EPI template image that was resampled to 3-mm × 3-mm × 3-
mm voxels. Afterward, Friston 24 motion parameters, white
matter (WM), and cerebrospinal fluid signals were regressed. The
images were smoothed with a 4-mm full-width half-maximum
Gaussian kernel and filtered from 0.01 to 0.08 Hz. All frames
of all participants had less head motion of more than 2.0 mm
of maximum displacement in any direction (x, y, or z) or
2.0◦ of angular motion. The data that have been used are
confidential. We have modified the manuscript, please see the
revised manuscript.

Construction of Brain FC Network
The gray matter consists of 116 regions according to AAL atlas
(Zhuo et al., 2018). Pearson correlation was calculated between
regional mean time series of paired connectivity to acquire
function brain networks, in which each region is regarded as a
node and the connectivity of paired regions is seen as an edge
(Rubinov and Sporns, 2010).

Feature Selection
In function brain networks, there are 116 × 116 functional
connectional values, which is a high-dimensional problem.
Hence, the feature selection must be used in these functional
connections in order to find which brain regions could be affected
by asthma. Finding which brain regions or brain FC affected by
asthma is more meaningful in doing classifications between the
asthma patients and HCs and detecting the disease mechanisms.
The embedding feature selection method that embeds the feature
selection model into a classification model is a good surrogate of
traditional feature selection method, such as wrapper and chi-
square test (Satorra and Bentler, 2010). It can select a feature
subset in a single optimization and take full advantages of the
label information. Lasso (Bien et al., 2013) is a supervised model
composed of a least-squared loss and L1-norm regularization
term, which can obtain a sparse coefficient vector with each
entry corresponding to the importance of a certain feature to the
classification task, and thus, this coefficient vector can be used
for feature selection. The formulation of lasso model is stated
as follows:

w = argmin
w

N∑
i=1

‖yi − wTxi‖
2
+λ‖w‖1 (1)

Where ‖w‖1 denotes the L1-norm, and ‖w1‖ =|w1|+|w2|+· · ·
+|wN |. In our research, we focus on the classification task. The
linear regression could not be directly used for classification. We
need to use the logistic regression to replace the linear regression.
Then, we get the following formula:

w = argmin
N∑

i=1

‖yi − y‖2
+λ‖w‖1 (2)

Where y= y
1+e−WT xi

. The xi are the FCs (i.e., the edges in brain
network). yi are the labels (i.e., yi =0 or 1) of patients and
normal controls. W is the parameter that needs to be learned in
feature selection.

In the feature selection between patients and controls, we used
20 patients and 20 controls. We divided these 40 subjects into
training set and test set with leave-one-out cross-validation (39
subjects entered into training test and 1 subject entered into
test). In training set, the feature selection method is exhibited
in formula (2). We tested the model learned from the training
set in test data. After all, subjects have been used for test set.
The FCs that always existed in each cross-validation were picked
out. We applied these FCs to pick out in feature selection
between 20 pre-GCBT patients and 20 controls to the statistical
analysis. Furthermore, feature selection between pre- and post-
GCBT patients was conducted similarly to the above method.
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We employed 10 pre-GCBT patients and 10 post-GCBT patients
to select FC features. After related discriminated features with
lasso method were acquired, we utilized the statistical (t-test)
and correlation (Pearson correlation) analysis to detect the
clinical and neural significance in these discriminated features
between 20 pre-GCBT patients and 20 controls. Therefore, we
can discover more representative biomarkers in brain regions
and functional connections. The analysis process could be seen
in Figure 1.

Validation of Classification
In this experimental setting, we used the FCs picked out with
statistical analysis to classify pre- and post-GCBT patients, as
well as controls. We adopt non-linear classification method
based on support vector classification (SVC) with radial
basis function (RBF) kernel to classify the other 22 patients
without GCBT and 22 controls. We trained the mode on
the discriminated features from statistical analysis among 40
subjects including 20 pre-GCBT patients and 20 controls.
We test the discriminated features on the other 44 subjects
including 22 patients without GCBT and 22 controls. The
discriminated FCs are also used to predict clinical information.
In the feature selection between pre- and post-GCBT patients,
we used 10 pre- and post-patients, respectively. Moreover,
feature selection between controls and post-GCBT patients
was made with 10 controls and 10 post-GCBT patients.
Then, t-test is used to investigate the statistical differences
and pick out the discriminated FCs. Depending on these
discriminated features, SVC was used to classify pre- and
post-GCBT patients. In the classification between pre- and
post-GCBT, six pre- and post-GCBT patients were employed,
respectively. Moreover, six post-GCBT patients and six controls
were entered into the classification between post-GCBT
patients and controls.

The parameters C (parameter of slack variable) and g
(parameter of RBF kernel) in SVC were tuned from 10−3

to 103. These parameters are tuned within training data by
leave-one-out cross-validation. We choose the features that
frequently occur in each cross-validation process for the
statistical analysis. For example, FC between the right medial
superior frontal gyrus (SFGmed) and right superior cerebellum

always occurs in each cross-validation. This FC is applied to
statistical analysis.

The classifier adopted in our experiments was SVC, which is
the most popular classification model for its stability and power
(Wang et al., 2016). SVC is formulated as follows:

min
w,b

1
2

w2
+ C

N∑
i=1

ξi (3)

s.t. yi

(
wTxi + b

)
≥ 1− ξi, ξ i ≥ 0, i = 1, 2, · · · ,N

where w denotes the coefficient vector that corresponds
to a discriminative hyperplane with a bias b. xi denotes
the feature of one sample (patient or health control) with
its label yi. C denotes the trading-off parameter for slack
variableξi. By maximizing the minimum margin between two
classes, SVC can obtain comparable performance in accuracy,
generalization, and robustness.

Regression Prediction and Correlation
Analysis
We adopted the support vector regression (SVR) to predict
individual response to GCBT in asthmatic patients. GCBT
patients (size = 16) are divided into train sets (size = 10) and test
sets (size = 6). SVR is formulated as follows:

min
w,b

1
2

w2
+ C

N∑
i=1

(ξi + ξ̂i) (4)

s.t. f(xi)− yi ≤ + ξi,

yi − f(xi) ≤ + ξi,

ξi ≥ 0, ξ̂i ≥ 0 i = 1, 2, · · · ,N

where w denotes the coefficient vector that corresponds to a
discriminative hyperplane with a bias b. xi denotes the feature of
one sample (patient with GCBT) with its label yi. C denotes the
trading-off parameter for slack variable ξi and ξ̂ i.

FIGURE 1 | Data analysis process.
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The R2 between the predicted clinical symptoms and the actual
clinical symptoms was calculated. The Pearson correlation was
applied to calculate the relationships between scale scores and the
discriminated functional connections in patients after treatment.
And we also used correlation analysis to find the relationships
between the changes of functional connections and the changes
of clinical scale scores from pre- and post-treatment patients.

Statistical Analysis
We employed Predictive Analytic Software (PASW) Statistics
18 (IBM Corporation, Armonk, NY, United States) to complete
the statistical analyses. Comparisons of continuous variables
(e.g., age, education, and clinical symptoms) were analyzed with
two-sample t-test and paired t-test. Chi-square test was used
to compare the classified variable (e.g., gender). P < 0.05 was
considered to indicate statistical significance. The discriminated
functional connections were compared between controls and
patients at baseline with multiple comparisons (Bonferroni
correction), as well as between controls and post-GCBT patients
(uncorrected) based on two-sample t-test. Paired t-test was used
to compare the connections between pre-GCBT and post-GCBT
patients (uncorrected).

RESULTS

Demographic and Clinical Data
Table 1 shows the detailed demographic and clinical information.
No significant differences between asthmatic patients and HCs
in age, gender, and education level were found in this study.
Compared with controls, patients have significantly higher
HAMD scores (P < 0.001). After GCBT, the CSHAI scores
(P < 0.05) and HAMD scores (P < 0.001) of patients were
lower than before. Although there were no statistical differences

between the pre- and post-GCBT groups, the ACT scores had a
trend of increase after treatment (P = 0.073).

Discriminated Functional Connections
We used the lasso method to make the feature selection in
the functional connections between brain regions, and then
the t-test was utilized to test the significant difference of these
selected features. We find out five discriminated FCs that were
abnormal in asthma, but there were no statistical differences
between HCs and post-GCBT patients (Table 2). They are the FCs
between the right SFGmed and right superior cerebellum, right
middle temporal gyrus (MTG) and left superior cerebellum, left
supplementary motor area (SMA) and left superior cerebellum,
left insula and left superior cerebellum, and left triangle of inferior
frontal gyrus (IFG) and left thalamus. Figure 2 shows that the FC
values of patients after treatment were reversed and more close to
the values of HCs.

FC as GCBT’s Biomarkers
In order to further verify whether these discriminant features
would be regarded as neuroimaging biomarkers of GCBT to
discriminate the pre- and post-GCBT patients, we utilized the ML
method based on SVC to classify these patients. The classification
accuracy was 80%, and the area under the receiver operating
characteristic (ROC) curve was 0.85 (specificity = 80.1%,
sensitivity = 79.3%) depending on these discriminant features
(see Figure 3).

Correlations Between Connections and
Clinical Symptoms
To investigate the correlations between the FC and clinical
symptoms of patients after GCBT, Pearson correlation analysis
were used to detect the correlations between the FCs and clinical
symptoms of post-GCBT patients. Both FCs between the right
SFGmed and right superior cerebellum (r = 0.679, P = 0.0038,

TABLE 1 | The demographics and scale scores of subjects.

Characteristics Asthma (N = 42) HCs (N = 42) P-value

Age (years) 51.88 ± 9.96 50.31 ± 11.75 0.51

Gender (male) 18 17 0.825a

Education (years) 11.81 ± 2.58 11.31 ± 3.40 0.50

Duration of asthma (years) 22.04 ± 19.44 NA

ACT 17.62 ± 4.86 NA

CSHAI Total scores 13.26 ± 6.51 NA

IL 10.26 ± 5.49 NA

NC 2.81 ± 2.29 NA

HAMD 6.00 ± 5.37 1.05 ± 1.43 <0.001

Pre-GCBT (N = 16) Post-GCBT (N = 16) P-value

ACT 16.375 ± 4.40 20.88 ± 4.35 0.073

CSHAI Total scores 13.88 ± 7.77 12.56 ± 5.63 0.030

IL 11.38 ± 6.02 10.44 ± 4.83 0.049

NC 2.50 ± 2.50 2.13 ± 1.63 0.025

HAMD 5.94 ± 5.37 1.94 ± 2.38 <0.001

Data are expressed as mean ± standard deviation.HCs, healthy controls; ACT, asthma control test; CSHAI, Chinese version of Short Health Anxiety Inventory; IL, illness
likelihood (a factor of CSHAI); NC, negative consequence (a factor of CSHAI); HAMD, Hamilton depression rating scale. aChi-square test.
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TABLE 2 | Five discriminated functional connections.

Number Regions Regions P

1 Right medial superior frontal gyrus Right superior cerebellum 0.023

2 Right middle temporal gyrus Left superior cerebellum 0.042

3 Left supplementary motor area Left superior cerebellum 0.001

4 Left insula Left cerebellum 0.034

5 Left triangle of inferior frontal gyrus Left thalamus 0.021

Figure 4A), right MTG, and left superior cerebellum (r =−0.531,
P = 0.0342, Figure 4B) showed significant correlations with
ACT scores. And both FCs between the left SMA and left
superior cerebellum (r = −0.528, P = 0.0356, Figure 4C), left
insula, and left superior cerebellum (r = 0.572, P = 0.0205,
Figure 4D) showed significant correlations with HAMD scores.
Moreover, FC between the left triangle of IFG and left thalamus
was negatively associated with both CSHAI scores (r = −0.571,
P = 0.0208, Figure 4E) and IL scores (r = −0.568, P = 0.0218,
Figure 4F).

In addition, the changes of FC values between the left
SMA and left superior cerebellum were negatively correlated
with the changes of ACT scores before and after GCBT
(r = −0.509, P = 0.044, Figure 5A). Meanwhile, one factor
of CSHAI, the changes of NC scores, also showed negatively
correlations with the changes of FC values between the right
MTG and left superior cerebellum (r = −0.505, P = 0.046,
Figure 5B).

Therapeutic Effect Prediction
In the current study, the therapeutic effect of GCBT was also
predicted with linear SVR. We used the five discriminant
connections of post-GCBT patients to predict their asthma
control level, depression, and health anxiety. We found that
our regression model using these five discriminant connections
could predict the asthma control level after GCBT (R2 = 0.678,
P < 0.001, Figure 6A). Moreover, they would also be used to
predict the depression severity (R2 = 0.514, P< 0.001, Figure 6B)
and health anxiety severity (R2 = 0.395, P < 0.001, Figure 6C).

DISCUSSION

It is the first study to identify therapeutic mechanism of GCBT
in asthma using brain functional connections derived from
resting-state fMRI. The current study further supported our
previous findings that GCBT would play the therapeutic role by
regulating abnormal brain activities (Zhang et al., 2017a,b). In
the current study, we discovered discriminant FC patterns with
the data-driven method including lasso, SVC, and t-test. These
features would be the neuroimaging biomarkers of GCBT in
asthma, which showed significant correlations with the clinical
symptoms after treatment. And the improvement of asthma
control level reduced by GCBT was significantly correlated with
the changes of the FC between the left SMA and left superior
cerebellum. Furthermore, these discriminant connections could
predict individual patients’ asthma control level, and depressive
and health anxiety symptoms after 8 weeks of GCBT. Thus,

FIGURE 2 | Discriminated functional connections. These five discriminated functional connections would be regarded as neuroimaging biomarkers of GCBT
(*P < 0.05, Bonferroni correction; #P < 0.05, uncorrected). (A) The comparisons of FC values between right SFGmed and right superior cerebellum among three
groups. This FC value of asthmatic patients was significantly lower than that of HCs. After GCBT, this FC value was increased compared with that pre-GCBT and has
no statistical difference compared with that of HCs. (B–E) Similar to (A); they all showed the same variation tendency. HCs, healthy controls; GCBT, group cognitive
behavioral therapy; SFGmed, medial superior frontal gyrus; MTG, middle temporal gyrus; SMA, supplementary motor area; IFG, inferior frontal gyrus.
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FIGURE 3 | The average ROC curve under leave-one-out cross-validation. The black line was the ROC of five discriminated functional connections, the red line was
first FC, the green line was second FC, the blue line was third FC, the yellow was fourth FC, and the cyan line was fifth FC (five FCs are shown in Table 2). ROC
analysis differentiate post-GCBT patients from those pre-treatment patients by using five connections. The area under ROC curve was 0.85 (P < 0.01). ROC,
receiver operating characteristic; FC, functional connectivity.

this discriminant brain connectivity presented advantages in its
prognostic value for treatment response. Furthermore, they have
high implications for understanding the therapeutic mechanisms
of GCBT in asthma, as well as for identifying who will
benefit most from GCBT.

Previous studies showed decreased regional cerebral blood
flow and abnormal degree centrality in the right cerebellum
of asthmatic patients compared with controls, which were
consistent with our current findings (Li et al., 2018; Zhang
et al., 2018). However, the relationships between abnormal brain
activity and clinical symptoms were not found in those studies.
The role of cerebellum in asthma has been further validated in
the current study. We found that FC between superior cerebellum
and other brain regions was associated with asthma, as well
as associated with the improvement of emotional symptoms
reduced by GCBT. Previous experiments demonstrate that the
cerebellum can control several vegetative functions because it
is connected with the limbic system (Strata, 2015). Meanwhile,
the vegetative nervous system is associated with the maintenance
of life, including breathing (Strata, 2015). It is thus plausible
that GCBT would regulate breathing through autonomic nervous
system to improve the asthma-related symptoms and then
improve the asthma control level. Indeed, one prospective study
has found that GCBT alleviated the chronic hyperventilation
of patients with panic disorder (Beria et al., 2018). In the
current study, both the right SFGmed and right MTG showed
connection with the superior cerebellum. And these connections
were increased after treatment close to the values of controls, as
well as correlated with the asthma control level. These findings

are consistent with those in patients with asthma (Zhang et al.,
2017a; Li et al., 2018; Ritz et al., 2019) and chronic obstructive
pulmonary disease (Zhang et al., 2013), which reported that
the abnormal activity in the SFG and FC between right MTG
and insula were both associated with lower asthma control
level and stronger airway inflammation or arterial blood PO2.
However, GCBT reversed the abnormal FC patterns between
the superior cerebellum and SFG and MTG. It is thus plausible
that our results may reflect the potential therapeutic mechanisms
of GCBT in asthma.

Post-treatment connectivity between the superior cerebellum
and SMA was also associated with depressive severity. This could
reflect the potential link between emotion processing and motor
circuitry in asthma. For example, a study in conversion disorder
found increased FC in patients between the left amygdala and
SMA (Hassa et al., 2017). Actually, breath is a complex motor
function that needs the cooperation of neural activation and the
skeletal muscles (Fogarty et al., 2018). The movement onset was
often time locked to the frequent activity in SMA (Matsuzaka
et al., 1992). The above findings seem likely to explain the FC
changes induced by GCBT for asthma. Therefore, we speculated
that GCBT might regulate the activity in SMA to improve
breathing of asthmatic patients.

Cerebellar activation was revealed to be associated with the
emotional processing (Stoodley and Schmahmann, 2009; Van
Overwalle et al., 2014). Specifically, distinct sub-regions of the
cerebellum are selectively involved in different primary emotions,
including positive and negative emotions (Adamaszek et al.,
2017). In addition, as a cortical hub, the insula carries the
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FIGURE 4 | The correlations between five discriminant features and clinical symptoms in patients after treatment. (A) The FC between the right SFGmed and right
superior cerebellum was positively correlated with ACT scores (r = 0.679, P = 0.0038). (B) The FC between the right MTG and left superior cerebellum was
negatively correlated with ACT scores (r = –0.531, P = 0.0342). (C) The FC between the left SMA and left superior cerebellum was negatively correlated with HAMD
scores (r = –0.528, P = 0.0356). (D) The FC between the left insula and left superior cerebellum was positively correlated with HAMD scores (r = 0.572, P = 0.0205).
(E) The FC between the left IFGmed and left thalamus was negatively correlated with CSHAI scores (r = –0.571, P = 0.0208). (F). The FC between the left IFGmed
and left thalamus was negatively correlated with IL scores (r = –0.568, P = 0.0218). ACT, asthma control test; SFGmed, medial superior frontal gyrus; MTG, middle
temporal gyrus; IFG, inferior frontal gyrus; HAMD, Hamilton depression rating scale; SMA, supplementary motor area; CSHAI, Chinese version of Short Health
Anxiety Inventory; IL, illness likelihood (a factor of CSHAI).
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FIGURE 5 | The correlations between the changes of discriminate FC features and changes of clinical symptoms. (A) The changes of FC between the left SMA and
left superior cerebellum were negatively correlated with the changes of ACT scores (r = –0.509, P = 0.044). (B) The changes of FC between the right MTG and left
superior cerebellum were negatively correlated with the changes of NC scores (r = –0.505, P = 0.046). ACT, asthma control test; SMA, supplementary motor area;
NC, negative consequences (a factor of CSHAI); MTG, middle temporal gyrus.

FIGURE 6 | GCBT response prediction of asthma. (A) Five discriminant FC could accurately predict ACT (R2 = 0.678, P < 0.001). (B) Five discriminant FCs predict
the 51.4% of HAMD (R2 = 0.395, P < 0.001). (C) Five discriminant FCs predict the 39.5% of CSHAI (R2 = 0.395, P < 0.001). ACT, asthma control test; HAMD,
Hamilton depression rating scale; CSHAI, Chinese version of Short Health Anxiety Inventory.

information of dyspnea and emotions (Borsook et al., 2016), and
FC between the cerebellum and insula could play an important
role in depression in asthmatic patients (Zhong et al., 2017;
Samara et al., 2018). Specifically, in our study, this FC pattern
was reversed by GCBT and positively correlated with depressive
severity in patients who received treatment. Consistent with
previous studies that abnormal FC would be recovered by GCBT
in psychosis (Reggente et al., 2018; Tolmeijer et al., 2018), the
current investigation also provided us a new insight to determine
if the FC would be a neuroimaging biomarker of GCBT in
improving depression in asthmatic patients.

Both the IFG and thalamus are associated with anxiety. For
example, in patients with general anxiety disorder, FC between
the IFG and precentral cortex were found to be significantly
increased than in controls (Ma et al., 2019). It would be explained
that IFG is one of vital structures involved in the processing of
anxiety, and it intimately connects with the amygdala (Etkin et al.,
2011). Thereby, it plays a critical role in emotional regulation.
Moreover, the thalamus is a critical region involved in sensory
information (Wijesinghe et al., 2015). Asthmatic patients pay
more attention to their somatosensation, and they exaggerate
their worry and panic, which may lead to different behaviors
(Kew et al., 2016). So we speculated that the aberrant activity
in thalamus was associated with anxiety induced by excessive

attention to body sensation. The significant correlation between
the FC and health anxiety in the current study just confirmed
our speculation. Because GCBT can encourage individuals to
challenge their unhelpful thoughts and form more realistic
asthma-related sensation (Kew et al., 2016), the improvement of
health anxiety may be associated with the recovery of FC values
between the IFG and thalamus after GCBT.

For psychiatric disorders, classification accuracies based on
fMRI data have been reported in range of 73–78.6% for first-
episode drug-naïve schizophrenia (Mikolas et al., 2016; Cao
et al., 2018), from 85 to 59% in adult autism spectrum disorder
(Retico et al., 2016; Yahata et al., 2016), or 79% in panic disorder
(Lueken et al., 2015). Compared with the studies of disease
classification, almost all focus on psychiatric disease. Our finding
provided the evidence that fMRI character could be a promising
biomarker to differentiate asthmatic patients before and after
GCBT. Beyond that, our findings could predict response of GCBT
on the individual level. Notably, it is highly desirable to identify
potential non-responders of GCBT before treatment. Additional
treatment options could be provided for the patients who are not
likely to respond (Hahn et al., 2015). Using ML, we demonstrated
that pretreatment connections were most predictive of endpoint
asthma control level. And the current study adds to the evidence
of the role of connectivity in GCBT response across disorders.
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This could reflect the potential of certain individuals’ brain
functional characteristics to reorganize and to provide a neural
instantiation for emotional recognition and modified behaviors
taught during GCBT. In the study on treatment response to CBT,
Reggente et al. (2018) observed an accuracy of 67% for predicting
response in OCD patients. In a similar vein, Coughlin et al.
(2018) found that fMRI characteristic could predict the treatment
response to GCBT in cigarette smokers. Our finding with an
accuracy rate of 67.8% is in the range of previous reports.

There were several limitations in our study. One limitation
of the current study is the small sample size. It will influence
the correlation coefficient. Therefore, the complexity of GCBT in
asthma warrants larger sample sizes to explain the underpinnings
more fully. Furthermore, a new method such as deep learning can
be used to find the biomarkers involved in therapeutic effect of
GCBT for asthma based on large sample size. Another limitation
is that only 17 patients completed the GCBT treatment; future
work is required to control expulsion rate preferably.

This study marks a success in detecting neural underpinnings
of GCBT as well as in predicting response to GCBT for asthma
on the individual level. We applied a data-driven method to
search the neuroimaging biomarkers of GCBT for asthma, and we
demonstrated the efficacy of FC in assessing psychotherapy. This
work substantially facilitates personalized treatment strategy of
GCBT for asthma; meanwhile, it helps to improve response rates
by selecting appropriate treatment.
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