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The assessment of a method for removing artifacts from electroencephalography
(EEG) datasets often disregard verifying that global brain dynamics is preserved.
In this study, we verified that the recently introduced optimized fingerprint method
and the automatic removal of cardiac interference (ARCI) approach not only remove
physiological artifacts from EEG recordings but also preserve global brain dynamics, as
assessed with a new approach based on microstate analysis. We recorded EEG activity
with a high-resolution EEG system during two resting-state conditions (eyes open, 25
volunteers, and eyes closed, 26 volunteers) known to exhibit different brain dynamics.
After signal decomposition by independent component analysis (ICA), the independent
components (ICs) related to eyeblinks, eye movements, myogenic interference, and
cardiac electromechanical activity were identified with the optimized fingerprint method
and ARCI approach and statistically compared with the outcome of the expert
classification of the ICs by visual inspection. Brain dynamics in two different groups of
denoised EEG signals, reconstructed after having removed the artifactual ICs identified
by either visual inspection or the automated methods, was assessed by calculating
microstate topographies, microstate metrics (duration, occurrence, and coverage), and
directional predominance (based on transition probabilities). No statistically significant
differences between the expert and the automated classification of the artifactual ICs
were found (p > 0.05). Cronbach’s α values assessed the high test–retest reliability
of microstate parameters for EEG datasets denoised by the automated procedure. The
total EEG signal variance explained by the sets of global microstate templates was about
80% for all denoised EEG datasets, with no significant differences between groups. For
the differently denoised EEG datasets in the two recording conditions, we found that the
global microstate templates and the sequences of global microstates were very similar
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(p < 0.01). Descriptive statistics and Cronbach’s α of microstate metrics highlighted
no significant differences and excellent consistency between groups (p > 0.5). These
results confirm the ability of the optimized fingerprint method and the ARCI approach
to effectively remove physiological artifacts from EEG recordings while preserving global
brain dynamics. They also suggest that microstate analysis could represent a novel
approach for assessing the ability of an EEG denoising method to remove artifacts
without altering brain dynamics.

Keywords: EEG, artifact removal, ICA, optimized fingerprint method, ARCI approach, microstate analysis

INTRODUCTION

The investigation of the human brain function largely relies on
electroencephalography (EEG), a technique characterized by an
excellent temporal resolution (Niedermeyer and da Silva, 2005)
that has recently undergone several technological advances in the
electronics and sensor components to enable continuous, out-of-
the-lab, and mobile EEG acquisitions (Thompson et al., 2008; Del
Percio et al., 2011; De Vos et al., 2011; Lance et al., 2012; Askamp
and van Putten, 2014; Liao et al., 2014; Lopez-Gordo et al., 2014;
Comani et al., 2015; Fiedler et al., 2015; Michel et al., 2015; di
Fronso et al., 2016, 2019; Filho et al., 2016). A drawback of these
latest advancements is that they have also enhanced the EEG
sensitivity to severe contamination by electrical activity generated
outside of cerebral sources, which can seriously affect the analysis
and interpretation of EEG signals.

Interference affecting EEG recordings can be of physiological
origin, such as eyeblinks, eye movements, myogenic interference
due to head or neck muscle contractions, and artifacts related
to the electromechanical activity of the heart, but it can also be
due to unstable electrode contact or electrical and mechanical
interference from nearby instrumentation and power sources
(Croft and Barry, 2000, 2002; Lopez-Gordo et al., 2014; Urigüen
and Garcia-Zapirain, 2015). Given that visual inspection of
EEG data with manual rejection of artifactual data epochs is a
subjective method that depends on the expertise of the researcher,
is time-consuming, and generally results in a considerable loss
of information on brain function, several methods have been
proposed to automatically identify and remove artifacts from
EEG recordings (see Islam et al., 2016 for a review). Some
methods are based on the regression in the time or frequency
domain or on adaptive filtering using simultaneously recorded
signals of artifactual activity, such as electro-oculogram (EOG)
or electrocardiogram (ECG) (Jafarifarmand and Badamchizadeh,
2013; Kumar and Reddy, 2016). The main disadvantage of these
methods is that reference signals can still contain information
on brain activity (as in the case of EOG); thus, regressing out
artifactual activity inevitably involves also the subtraction of a
portion of the relevant brain activity from the EEG signals.
Another common drawback of regression methods and adaptive
filtering is that the recorded artifactual signals are generally
suboptimal for describing the artifactual activity because they
generally share frequency content with the genuine brain signals
(as in the case of ECG), so that these methods are unable to
efficiently remove artifacts from EEG recordings while preserving

the information on the brain activity (Goncharova et al., 2003).
Moreover, clear reference signals cannot be used for some
sources of noise such as myogenic activity or noise from external
instrumentation, whereas in some newer applications of EEG,
such as in sports sciences applications (Stone et al., 2019), the
acquisition of reference signals simultaneously with EEG is often
problematic. In these cases, to use regression methods or adaptive
filtering for artifact removal could become impossible.

Blind source separation (BSS) methods like independent
component analysis (ICA) have been successfully applied to
identify and remove artifacts from EEG recordings (Jung
et al., 2000; Delorme et al., 2007). These approaches are
based on the assumption that signals from artifactual sources
which are linearly mixed with true brain activity in EEG
recordings are statistically independent of neuronal activity.
Therefore, the original raw EEG data can be decomposed into
a set of statistically independent source signals (independent
components—ICs): some ICs contain signals of artifactual origin,
whereas the other ICs contain signals originating from brain
activity and can be used to reconstruct EEG signals related
to brain activity without being affected by interferences of
physiological and non-physiological origin. The most common
practice for denoising EEG recordings with ICA is that a skilled
operator classifies the ICs by visual inspection, rejects the ICs
containing artifactual signals, and retains the ICs related to brain
activity to reconstruct artifact-free EEG signals. However, visual
inspection is a time-consuming process undoubtedly affected
by subjective interpretation of the inspected ICs. Therefore,
automated procedures for the IC classification are required
to overcome these limitations and achieve a more rapid and
reliable denoising of EEG recordings. Several methods have been
introduced during the last 15 years to address a feasible model-
based artifact identification (Barbati et al., 2004; LeVan et al.,
2006; Halder et al., 2007; Mantini et al., 2008; Viola et al.,
2009; Nolan et al., 2010; Mognon et al., 2011; Winkler et al.,
2011; Chaumon et al., 2015; Daly et al., 2015; Frølich et al.,
2015; Radüntz et al., 2015, 2017; Chang et al., 2016; Hou et al.,
2016; Kilicarslan et al., 2016; Zou et al., 2016; Sreeja et al.,
2018; Croce et al., 2019; Guttmann-Flury et al., 2019). However,
none of these methods succeeded to combine all desirable
properties for a fully automated artifact rejection method: good
performance (i.e., high accuracy, sensitivity, and specificity) on
major classes of biological artifacts, good generalizability (across
sessions, subjects, recording equipment, and sensor layouts),
efficiency (low computational cost, potential for online artifact
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rejection), and transparency (use of explicit and physiologically
meaningful EEG features).

Recently, our group developed the fingerprint method for
the automated classification and removal of the most ubiquitous
physiological artifacts: eyeblinks, eye movements, myogenic
interference, and cardiac artifacts (Tamburro et al., 2018). The
concept of the fingerprint method was to use a set of 14 spatial,
temporal, spectral, and statistical features—which compose the
“fingerprint”—to characterize and automatically classify with a
machine leaning approach the ICs of artifactual origin separated
from an EEG dataset. The original fingerprint method was
subsequently optimized to obtain a more efficient and reliable
classification of ICs containing eyeblinks, eye movements, and
myogenic interference by means of smaller number of features
(Stone et al., 2018). Given the poor performance of the fingerprint
method in identifying ICs containing cardiac interference, we
developed another method, the automatic removal of cardiac
interference (ARCI) approach (Tamburro et al., 2019), where
new features were introduced to specifically detect and remove
the ICs containing cardiac-related artifacts, including pulse-
related interferences.

The optimized fingerprint method and the ARCI approach
are independent of reference signals (such as EOG or ECG)
and use a specific set of features for each artifact type to
maximize classification efficiency. A model built for each type
of artifact was used to automatically separate artifactual ICs
from all other ICs. Both the optimized fingerprint method and
the ARCI approach proved to successfully detect ICs related
to physiological artifacts with accuracies comparable or even
superior to those of other classification methods, independently
of the type of EEG system used for the acquisition, the number
and layout of electrodes, and the number of separated ICs.
Therefore, the optimized fingerprint method and the ARCI
approach satisfy the requirements of good performance, good
generalizability, efficiency, and transparency. However, an open
issue remains whether these methods preserve the original time–
frequency content of genuine EEG dynamics without distortions.

Microstate analysis aims at representing the global dynamics
of brain activity recorded in the EEG time course as a sequence of
a few scalp potential topographies generated by distributed neural
pools that are synchronously active and remain stable for short
time intervals of approximately 60–120 ms duration (Michel and
Koenig, 2018). Such intervals of topographic stability have been
referred to as “microstates” (Lehmann et al., 1987, 1998; Pascual-
Marqui et al., 1995). Therefore, the brain dynamics included in
a given EEG time course can be represented by a non-casual
sequence of microstates without any type of a priori hypothesis,
for example the a priori choice of electrodes of interest or
specific time intervals or frequency bands (Murray et al., 2008).
From this perspective, the ability of microstates to represent
the global brain dynamics is higher with respect to classical
spectral methods, because microstate analysis preserves the time
information that is conversely lost with spectral approaches. In
particular, it has been demonstrated that, in healthy adult resting-
state studies, most of the variance (about 75–80%) of the EEG
signals is explained by sequences of four specific topographies
with fixed polarities, arbitrarily labeled as A, B, C, D (Michel

and Koenig, 2018). Global descriptors of the time sequence
of these four microstates can be obtained by specific metrics,
such as mean duration of each microstate, mean number of
microstates per second (occurrence), and percentage of coverage
of total dynamics, as well as by the transition probabilities among
microstates (Michel and Koenig, 2018).

In the present study, we aimed at demonstrating that the
removal of physiological artifacts by means of the optimized
fingerprint method and the ARCI approach provided artifact-
free EEG signals where the retained global brain dynamics
was comparable to that retained in the EEG signals where the
artifactual components were removed after visual inspection.
To this aim, we assessed brain dynamics in the EEG signals
denoised with either one of the two approaches by means of
microstate analysis. High-density EEG datasets recorded in a
group of healthy subjects at rest in eyes open and eyes closed
conditions were used for this study. Each EEG dataset was
decomposed by means of ICA, and the optimized fingerprint
method and the ARCI approach were applied to the separated ICs
to classify the ICs containing physiological artifacts. The outcome
of the automated ICs classification was compared with the expert
classification of the same ICs based on visual inspection. Then,
global brain dynamics was assessed in the two types of denoised
EEG datasets by means of microstate topographies, metrics, and
directional predominance (based on transition probabilities). The
outcomes of microstate analysis in the two types of denoised
EEG datasets and in the two experimental conditions (eyes
open and eyes closed) were compared to assess the efficiency
and reliability of the optimized fingerprint method and the
ARCI approach to automatically remove physiological artifacts
from EEG recordings while preserving the electrophysiological
information on brain activity.

MATERIALS AND METHODS

Participants and EEG Recordings
Fifty-one volunteers (39 males, 12 females; mean± SD: 23.8± 4.8
years) participated in the study. None of them was under any
pharmacological treatment at the time of recordings. The study
was approved by the local ethics committee and complied with
the ethical standards outlined in the Declaration of Helsinki.
Prior to study participation, all volunteers gave their written
informed consent.

EEG activity was recorded by a 128-channel system (Electrical
Geodesic) with 250 Hz sampling frequency. Impedances were
kept below 50 k�. EEG acquisitions lasted for 10 min while
participants sat on a comfortable armchair at rest. Each volunteer
participated in either one of two rest conditions: eyes open (25
volunteers) or eyes closed (26 volunteers).

Data Analysis
EEG Data Preprocessing
Each EEG dataset was filtered with a Butterworth bandpass filter
with cutoff frequencies at 0.3 and 70 Hz; a notch filter at 50 Hz
was applied to minimize power line interferences. EEG data were
visually inspected to exclude EEG channels exhibiting isoelectric
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saturation or poor scalp-surface contact or excessive noise from
further analysis (McMenamin et al., 2010). The EEG segments,
where more than 50% of the electrodes exhibited excessive noise
during short time intervals, were trimmed from the data. Datasets
were then prewhitened by principal components analysis (PCA;
Delorme et al., 2007) and decomposed into 50 ICs using the
extended Infomax algorithm, which has been proven to better
separate signal sources that may exhibit super-Gaussian and
sub-Gaussian distributions (Bell and Sejnowski, 1995; Lee et al.,
1999). We decided to decompose all datasets into 50 ICs
instead of adopting a square decomposition approach because a
variable number of bad channels was removed in the individual
EEG datasets during the first preprocessing steps. Therefore, a
different number of channels was retained for different EEG
datasets. To have comparable results across all datasets, we
decided to decompose all datasets into an equal number of ICs.
Given that the number of retained EEG channels was always
greater than 50 and that we had demonstrated in a previous
study that artifactual ICs can be successfully identified with
the fingerprint method regardless of the decomposition level
applied to the analyzed EEG datasets (Tamburro et al., 2018),
we decided to decompose each EEG dataset in 50 ICs, which is
a decomposition level that can be applied successfully to EEG
datasets with 64 channels or more. By doing so, the results
obtained in the present study can be considered applicable to a
large number of different EEG setups.

All EEG data preprocessing and decomposition were
performed using the EEGLAB toolbox (v. 13.6.5b, Delorme and
Makeig, 2004).

Classification of Artifactual ICs
To assess the effectiveness of the optimized fingerprint method
and ARCI approach in removing physiological artifacts without
altering the electrophysiological information on the brain
activity, the 50 ICs separated from each EEG dataset (both
experimental groups: eyes open and eyes closed) were classified
with two different approaches: (1) by visual inspection performed
by two independent experienced investigators and (2) by means
of the optimized fingerprint method and the ARCI approach.

Expert classification of artifactual ics by visual inspection
For each EEG dataset, an experienced investigator inspected the
time course, topological plot, and power spectrum of each IC
of the set of 50 ICs in which the dataset was decomposed. ICs
containing eyeblinks or eye movements were labeled as “eye,” ICs
containing myogenic interference due to head or neck muscle
contractions were labeled as “myogenic,” ICs containing cardiac-
related artifacts were labeled as “cardiac,” and ICs related to
non-physiological artifacts were labeled as “artifact.” All labels
were independently verified by another experienced investigator.

Automated classification of artifactual ICs
In the automated classification of artifactual ICs, we applied the
fingerprint method optimized for detecting and removing ICs
containing eyeblinks, eye movements, and myogenic artifacts
(Stone et al., 2018), whereas the ARCI approach (Tamburro et al.,
2019) was used to classify the ICs containing cardiac-related
artifacts, including pulse interference.

In the optimized fingerprint method, we implemented an
optimization procedure that, by means of a genetic algorithm,
identified, for each physiological artifact (i.e., eyeblinks, eye
movements, and myogenic artifacts), the optimal set of features to
obtain an automated non-linear binary support vector machine
(SVM) classifier that satisfies three criteria: generalizability,
performance, and efficiency (Stone et al., 2018). The three SVM
classifiers selected from the optimization procedure (one for
each artifact type) were retrained using all available artifactual
EEG datasets and composed the final model of the optimized
fingerprint method. In this model, the classifier for eyeblinks
comprises only four features, the classifier for eye movements
comprises 10 features, whereas the classifier for myogenic
artifacts comprises all the 14 features originally introduced in
the fingerprint method (Tamburro et al., 2018). By sequentially
applying these three classifiers to the ICs in which each
EEG dataset was decomposed, we classified ICs containing
eyeblinks as “eyeblinks,” ICs containing eye movements as
“eye movements,” and ICs containing interference from muscle
activity as “myogenic.”

The ARCI approach evaluates time and frequency features of
the separated ICs to identify ICs that contain electrical cardiac
artifacts and/or interference due to the pulsatile activity of the
heart (Tamburro et al., 2019). The ARCI approach was applied
to the same sets of ICs to classify ICs containing electrical
cardiac and cardiovascular artifacts. The ICs classified by ARCI
as artifactual contained cardiac-related interference and were
labeled as “cardiac.”

Removal of Artifactual ICs and Reconstruction of
Noise-Free EEG Recordings
The denoising of the EEG datasets (both experimental groups:
eyes open and eyes closed) was performed separately for the two
approaches used to classify the artifactual ICs.

Artifact removal based on visual inspection of the ICs
For each EEG dataset, the ICs labeled by visual inspection as
“eye,” “myogenic,” “cardiac,” and “artifact” were disregarded, and
the retained ICs, which supposedly contained only signals related
to brain activity, were reprojected onto the sensor space to
reconstruct noise-free EEG signals. The ensemble of all noise-
free EEG datasets reconstructed with this approach composed the
reference group of denoised EEG datasets (DNEEG1).

Artifact removal based on the automated classification of the
ICs
For each EEG dataset, the ICs classified as artifactual by the
optimized fingerprint method and the ARCI approach, hence
those related to physiological artifacts, were disregarded. Given
that the automated denoising methods were not designed to
remove non-physiological artifacts, we also removed the ICs
labeled as “artifact” by visual inspection (i.e., those ICs containing
non-physiological artifacts) in order to make the results of the
microstate analysis performed on the differently denoised EEG
datasets comparable. Otherwise, the EEG datasets denoised with
the automated methods would have retained non-physiological
noise that would have altered the results of microstate analysis
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and therefore hindered a reliable comparison of the ability of the
two denoising approaches in preserving global brain dynamics.

For each EEG dataset, the retained ICs were reprojected
onto the sensor space to reconstruct noise-free EEG signals.
The ensemble of all noise-free EEG datasets reconstructed
with this approach composed the test group of denoised EEG
datasets (DNEEG2).

Validation of the Automated Classification of
Artifactual ICs by Means of Microstate Analysis
To assess whether the time–frequency content of genuine brain
dynamics was preserved in the noise-free EEG datasets
reconstructed after artifact removal with the optimized
fingerprint method and the ARCI approach (DNEEG2), we
calculated and compared microstates metrics on the DNEEG1
and DNEEG2 datasets (each dataset including both eyes open
and eyes closed groups).

Microstate analysis
Microstate analysis aims at identifying the dominant
topographical configurations (global templates or microstates)
that alternate during the EEG time course to depict the ongoing
brain dynamics. Through quantitative metrics, it is possible
to calculate parameters characterizing the specific sequence of
microstates, such as mean duration, coverage, and occurrence
frequency of each microstate, and the transition probability from
one microstate to another.

The sequence of steps necessary to perform microstate
analysis is illustrated in Figure 1. Step 1: The intervals of stable
topographical configurations are identified in the noise-free EEG
recordings (Figures 1A,B). Step 2: The global templates of the
dominant microstates are calculated for the identified intervals of
brain functional stability (Figures 1C–E). Step 3: The identified
global templates are backfitted to each noise-free EEG dataset to
find the specific sequence of microstates on which metrics are
calculated (Figure 1F).

Step 1: Identification of the Intervals of Stable Topographical
Configurations. Each noise-free multichannel EEG dataset from
DNEEG1 and DNEEG2 can be viewed as a sequence of
instantaneous electric potential distributions over the scalp. To
identify intervals of stable topographical configurations (i.e., of
stable brain dynamics), we calculated, for each time instant of the
EEG time course, the global field power (GFP). GFP is defined
as the standard deviation of the EEG signal amplitude across
all electrodes at a given time instant and is a descriptor of the
potential field strength. In general, a high GFP value is associated
with periods of similar potential field distributions, whereas
during periods between GFP peaks, the topographic patterns
of successive field distributions change rapidly. Therefore, GFP
peaks can be considered as corresponding to intervals of highest
topographic stability, when the probability to observe a transition
to a different (stable) topographical configuration is higher
(Murray et al., 2008). For this reason, for each noise-free
multichannel EEG dataset from DNEEG1 and DNEEG2, the
sequence of instants when GFP peaks occurred were considered
the intervals of stable topographical configurations and the

corresponding scalp potential distributions were retained for the
subsequent steps necessary to identify the microstate templates.

Step 2: Identification of the Global Templates of the Dominant
Microstates. To identify the global templates representative of
the dominant microstates in a group of multichannel EEG
recordings, two subsequent clustering procedures were used.
The first clustering procedure was applied to individual EEG
datasets to identify the optimal number of microstate templates,
i.e., the number of microstate templates that explain most of
the variance of the EEG signals in individual datasets. The
second clustering procedure was applied to all sets of individual
microstate templates to identify, by means of a spatial correlation
algorithm, the global microstate templates.

This two-step procedure for the identification of the global
templates of the dominant microstates was applied to four
groups of denoised EEG signals pooled according to the
following scheme: (1) EEG signals recorded during eyes
open and denoised after expert classification of artifactual
ICs (DNEEG1-EO); (2) EEG signals recorded during eyes
closed and denoised after expert classification of artifactual ICs
(DNEEG1-EC); (3) EEG signals recorded during eyes open
and denoised after automated classification of artifactual ICs
(DNEEG2-EO); and (4) EEG signals recorded during eyes
closed and denoised after automated classification of artifactual
ICs (DNEEG2-EC).

Identification of the optimal number of microstate templates
The modified version of the clustering k-means algorithm,
introduced by Pascual-Marqui et al. (1995), was applied to the
scalp potential distributions at the instants of GFP peaks obtained
for each noise-free multichannel EEG dataset belonging to one
of the four groups defined above. For each dataset, the k-means
algorithm was repeated varying the number of clusters (k) from
1 to 12. The optimal number of k was identified by applying
the Krzanowski–Lai (KL) criterion (see Murray et al., 2008 for
details). For each dataset, the centroids of the k clusters were
then considered the specific set of microstate templates for
the given dataset.

Identification of the global microstate templates
A set of global microstate templates had to be defined for
each of the groups of denoised EEG signals defined above
(DNEEG1-EO, DNEEG1-EC, DNEEG2-EO, DNEEG2-EC). For
each group, the sets of microstate templates were pooled and
an iterative procedure was applied to compose a group of
global microstate templates (see Koenig et al., 1999 for details).
With this procedure, four sets of k global microstate templates
were obtained, one for each group of the reconstructed noise-
free EEG datasets.

Step 3: Backfitting of the Global Templates and Microstate
Metrics. For each reconstructed noise-free EEG dataset of each
group, the corresponding global microstate templates were
backfitted to the EEG signals by calculating the spatial correlation
between each global template and the scalp potential distributions
at each GFP peak. With this procedure, each EEG time course was
represented as a unique sequence of global microstate templates.
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FIGURE 1 | Schematic representation of the sequence of steps taken for the microstate analysis. In clockwise order: samples of 1 s of noise-free EEG signals (A).
Intervals of stable topographical configurations (B). Identification of the number of dominant microstate templates (C). Clustering procedure for the definition of the
global microstate templates (D). Identified global templates (E). Backfitting of the global microstate templates to the noise-free EEG signals (F).

For each of these sequences, the following metrics were calculated
(Lehmann et al., 1987; Brunet et al., 2011):

1. Mean microstate duration (ms): The average duration of
each global microstate was calculated as the average time
interval during which this microstate remained stable
whenever it appeared (Lehmann et al., 1998); the mean
microstate duration can be interpreted as an index of
stability of the underlying brain dynamics.

2. Mean microstate occurrence (Hz): The frequency with
which each global microstate occurred, calculated as the
average number of times per second that this microstate
became dominant during the EEG time course (Lehmann
et al., 1998); the microstate occurrence provides an
indication of the tendency of the underlying neural
generators to be activated and become dominant.

3. Mean microstate coverage (%): For each global microstate,
this metric was calculated as the fraction of the total
recording time during which this microstate was dominant
(Lehmann et al., 1987).

4. Transition probabilities (%): The probability of transition
from one brain state (represented by a global microstate
template) to another (represented by another global
microstate template) was calculated by counting, for
each sequence of global microstates (representing the
time course of a noise-free multichannel EEG dataset),
the number of transitions from each global microstate
template to any other. The occurrences of each transition
were then normalized to all microstate template transitions
(called transition percentages).

5. Directional predominance between microstates (%): The
directional predominance between two global microstate
templates A and B was defined as the difference between

the probability of transition from A to B and the
probability of transition from B to A (Lehmann et al.,
2005). The directional predominance then quantifies
directional asymmetries in the transitions between two
global microstate templates. For any given pair of
global microstate templates A and B, the directional
predominance A↔B can be positive (indicating that there
is a higher probability to transit from A to B than from B to
A) or negative (indicating that there is a higher probability
to transit from B to A than from A to B).

Statistical Analysis
Classification of Artifactual ICs
The similarity between the IC classifications performed by visual
inspection and with the optimized fingerprint method and the
ARCI approach was assessed with the non-parametric McNemar
test for each artifact type and separately for the eyes open
and eyes closed conditions. Given that each EEG dataset was
decomposed in 50 ICs, the IC classification for each artifact
type resulted, for each EEG dataset, in a vector of 50 labels
that could be either 1 or 0: 1 identified an artifactual IC
and 0 identified a non-artifactual IC. For each artifact type,
the vectors of IC labels obtained with the two classification
methods (expert and automated) from all decomposed EEG
datasets in the two rest conditions were concatenated, resulting
in four concatenated label vectors: two vectors for the expert
classification (one for eyes open and one for eyes closed) and
other two vectors for the automated classification (one for
eyes open and one for eyes closed). Given that the expert
classification did not differentiate between eyeblinks and eye
movements, the label vectors obtained with the automated
classification for these two artifacts were merged before building
the concatenated label vector.
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The non-parametric McNemar test with a correction for
continuity was then performed for each rest condition (eyes
open and eyes closed) and for each artifact type (i.e., “eye,”
“myogenic,” and “cardiac”) on paired concatenated label vectors
obtained from the two differently denoised EEG dataset groups.
Each concatenated label vector of the eyes open condition
contained 1,250 observations (25 eyes open decomposed EEG
datasets × 50 ICs), whereas each concatenated label vector of
the eyes closed condition contained 1,300 observations (26 eyes
closed decomposed EEG datasets × 50 ICs). The null hypothesis
of the test was that there was no difference between paired
concatenated label vectors. The significance level was set at 0.05.

Similarity of Global Microstate Templates Across
Groups
First, we quantified the total EEG signal variance explained by
the four sets of global microstate templates, and then verified, by
means of a two-tailed paired t-test, that no significant differences
existed between groups (DNEEG1-EO vs. DNEEG2-EO and
DNEEG1-EC vs. DNEEG2-EC).

Second, the similarity between the sets of global microstate
templates extracted from the EEG datasets denoised by
expert classification and by automated classification (DNEEG1
and DNEEG2) was statistically assessed by means of the
topographical analysis of variance (TANOVA, Koenig et al.,
2014) separately for the two rest conditions (eyes open and
eyes closed): Comparisons were performed between the sets of
global microstate templates of DNEEG1-EO and DNEEG2-EO
and between the sets of global microstate templates of DNEEG1-
EC and DNEEG2-EC.

TANOVA is based on the evaluation of an effect size between
groups. We quantified the effect size by computing the global
dissimilarity (GD) between two global microstate templates as:

GDu,v =

√√√√ 1
N

N∑
i=1

(
ui

GFPu
−

vi

GFPv
)2

where ui and vi are the electric potentials of the ith electrode in
the microstate templates u and v, respectively; GFPu and GFPv
are the global field powers of the microstate templates (u and v);
and N is the number of electrodes (hence of electric potential
values in each microstate template). GDu,v can vary between 0
and 2: 0 indicates that the compared microstate templates are
identical, whereas 2 indicates that these two microstate templates
are opposite (i.e., have reversed polarity).

Given that we are interested in assessing the similarity between
global microstate templates of the same type, we calculated the
statistical significance of the GDu,v values obtained for pairs of
global microstate templates of the same type from DNEEG1-EO
and DNEEG2-EO and for pairs of global microstate templates
of the same type from DNEEG1-EC and DNEEG2-EC. To do
so, the GDu,v value obtained for a pair of global microstate
templates was compared with a reference random distribution
of GD values between microstate templates of individual noise-
free EEG datasets from DNEEG1-EO and DNEEG2-EO (or from
DNEEG1-EC and DNEEG2-EC) under the null hypothesis that
microstate templates with the same label were different. To build

this random distribution (simulated effect size distribution),
GD was computed for pairs of microstate templates after
randomly shuffling individual microstate templates between
groups for a sufficient number of times (we used 10,000 random
permutations) (Koenig and IVIeIle-Garcia, 2009). Then, the
percentage of GDu,v values in the random distribution that were
greater than the GDu,v value obtained for the corresponding pair
of global microstate templates gave us the p-value associated with
that specific GDu,v value. The significance level was set at 0.01.
Therefore, p-values lower than 0.01 indicated that we should
accept the null hypothesis and that the two compared microstate
templates could be considered statistically identical.

Statistical Assessment of Microstate Metrics
The metrics calculated on the sequences of global microstate
templates obtained for each noise-free multichannel EEG dataset
after backfitting the global microstate templates to the EEG
signals (mean microstate duration, mean microstate occurrence,
mean microstate coverage, and directional predominance
between pairs of microstate templates) were statistically
compared between groups (DNEEG1-EO vs. DNEEG2-EO and
DNEEG1-EC vs. DNEEG2-EC) by means of a two-tailed paired
sample t-test with the significance level set at 0.05.

To assess the level of consistency between the microstate
parameters extracted from EEG datasets denoised by means
of the two approaches (visual inspection and automated
classification), we calculated Cronbach’s α between the microstate
parameters (i.e., duration, occurrence, coverage, directional
predominance) obtained from the differently denoised datasets
in both eyes closed and eyes open conditions (DNEEG1-EO vs.
DNEEG2-EO and DNEEG1-EC vs. DNEEG2-EC). Cronbach’s α

is a relative measure of test–retest reliability, hence a measure
of between-subject variance relative to within-subject variance.
Values greater than 0.70 indicate high reliability.

Test–Retest on Microstate Metrics to Validate
Automated Denoising
To determine the test–retest reliability of the automated
denoising procedure (optimized fingerprint method and ARCI
approach), both eyes closed and eyes open EEG datasets were split
in two subsets (first and second half), each consisting of 5 min
of recording. The whole analysis pipeline (ICA decomposition,
automated classification by means of the optimized fingerprint
method and ARCI approach, denoising, microstate extraction,
backfitting, microstate parameter calculation) was applied to
each data subset. Then, Cronbach’s α between the microstate
parameters obtained for the two subsets was calculated.

RESULTS

Classification of Artifactual ICs
The non-parametric McNemar test performed to assess
differences between the two classification methods yielded
non-significant differences in the two rest conditions for all
types of artifact (i.e., “eye” and “cardiac”). It is worth noting
that both the expert classification and the optimized fingerprint
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method did not identify any “myogenic” artifactual IC; thus, no
statistical assessment of these classifications was performed. The
results of the non-parametric tests on the “eye” and “cardiac”
artifactual ICs are reported in Table 1. The p-values were
always much greater than 0.05, indicating that no significant
differences between the expert IC classification performed
by visual inspection and the IC classification performed with
the optimized fingerprint method and the ARCI approach
could be observed.

Microstate Analysis
Microstate Clustering Results
For each group of denoised EEG datasets (DNEEG1-EO,
DNEEG1-EC, DNEEG2-EO, and DNEEG2-EC), the KL criterion
identified four as the optimal number of cluster centroids.
Therefore, for each of these groups, we retained four global
microstate templates (labeled A, B, C, and D) for further analysis.
For all groups, the global microstate A exhibits a left–right
orientation of the scalp potential field, the global microstate B
exhibits a right–left orientation of the scalp potential field, the
global microstate C exhibits an anterior–posterior orientation of
the scalp potential field, and the global microstate D exhibits
a maximum of the scalp potential field in the central frontal
region. The total EEG signal variance explained by the four sets of
global microstate templates is as follows: 80 ± 1% for DNEEG1-
EO, 81 ± 1% for DNEEG1-EC, 81 ± 1% for DNEEG2-EO,
and 79 ± 1.5% for DNEEG2-EC. The two-tailed paired t-test
assessed no significant differences between groups (DNEEG1-EO
vs. DNEEG2-EO and DNEEG1-EC vs. DNEEG2-EC; significance
level set at 0.5; p = 0.69 for DNEEG1-EO vs. DNEEG2-EO;
p = 0.62 for DNEEG1-EC vs. DNEEG2-EC).

Similarity of Global Microstate Templates Across
Groups
The similarity between pairs of global microstate templates
from the EEG datasets denoised by expert classification and
by automated classification was assessed by means of global
dissimilarity (GD) separately for the two rest conditions
(DNEEG1-EO vs. DNEEG2-EO and DNEEG1-EC vs. DNEEG2-
EC). The results obtained are summarized in Figure 2A refers
to the eyes open condition, whereas Figure 2B refers to the
eyes closed condition. The GD values in the diagonal of each
matrix in Figure 2 correspond to the GD values between
two global microstate templates of the same type obtained
from either DNEEG1-EO and DNEEG2-EO or DNEEG1-EC
and DNEEG2-EC. These GD values permit to assess whether
the global microstate templates obtained from DNEEG2-EO
(DNEEG2-EC) were similar to the global microstate templates
obtained from DNEEG1-EO (DNEEG1-EC). The GD values in
the diagonals were the lowest among all GD values in both
matrices: They ranged from 0.22 to 0.96 for the eyes open
condition and from 0.18 to 0.74 for the eyes closed condition,
hence suggesting that the global microstate templates of the same
type were very similar in the two groups. The p-values associated
with these GD values were always lower than 0.01, indicating that
the four global microstate templates obtained for DNEEG1-EO

and DNEEG2-EO and for DNEEG1-EC and DNEEG2-EC did
not significantly differ from each other.

Backfitting of Global Microstate Templates and
Statistical Assessment of Microstate Metrics
For each noise-free multichannel EEG dataset of DNEEG1-
EO, DNEEG2-EO, DNEEG1-EC, and DNEEG2-EC, the four
global microstate templates were backfitted to the EEG signals
to obtain a sequence of global microstates representative of the
dominant stable brain states. For all multichannel EEG datasets,
the sequences of global microstates were very similar for the
same EEG dataset denoised after the expert classifications of the
ICs and after the automated classifications of the ICs. Examples
of sequences of global microstate templates are provided in
Figure 3.

The descriptive statistics of the microstate metrics on
the sequences of global microstate templates between groups
(DNEEG1-EO vs. DNEEG2-EO and DNEEG1-EC vs. DNEEG2-
EC) are given in Figures 4, 5. Given that we retained four
global microstate templates, 12 different transitions could occur
between global microstate templates (i.e., A→B, A→C, A→D,
B→A, B→C, B→D, C→A, C→B, C→D, D→A, D→B, D→C,
Figure 5A), from which six types of directional predominance
could be identified (A↔B, A↔C, A↔D, B↔C, B↔D, C↔D,
Figure 5B). The two-tailed paired sample t-test performed for
each metric (i.e., mean microstate duration, mean microstate
occurrence, mean microstate coverage, transition probabilities,
and directional predominance) between groups (DNEEG1-EO
vs. DNEEG2-EO and DNEEG1-EC vs. DNEEG2-EC) gave no
significant differences between groups: p-values were always
greater than 0.5.

Consistency between the microstate parameters extracted
from the multichannel EEG datasets denoised by means of
the two methods (expert classification of ICs vs. automated
classification of ICs) is shown in Table 2. Very high levels
of Cronbach’s α, always higher than 0.99, were obtained
for all microstate parameters in both eyes closed and eyes
open conditions.

A high test–retest reliability was obtained between microstate
parameters of the EEG datasets denoised by the automated
procedure (ARCI and the optimized fingerprint method).
The consistency between the microstate parameters extracted
from the first half and the second half of the multichannel
EEG dataset denoised by means of the automated procedure
is shown in Table 3. Mean Cronbach’s α values across
microstate templates and conditions are 0.882, 0.894, 0.894,
and 0.824, for duration, occurrence, coverage, and directional
predominance, respectively.

DISCUSSION

The availability of a fully automated method that, by means of
sets of specific features, is able to identify artifactual ICs and,
therefore, remove physiological artifacts from EEG recordings
of various types results in the possibility to apply EEG in a
variety of acquisition conditions and in a great simplification
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TABLE 1 | Comparison of the outcome of the two IC classification approaches.

Rest condition Artifact type Expert classification Automated classification χ 2 p

Non-art. ICs (%) Art. ICs (%) Non-art. ICs (%) Art. ICs (%)

Eyes open Eye 93.8 6.2 94.6 5.4 2.25 0.134

Cardiac 98.2 1.8 98.4 1.6 0.07 0.789

Eyes closed Eye 95.2 4.8 95.2 4.1 1.16 0.281

Cardiac 98.0 2.0 97.8 2.2 0.05 0.823

For each rest condition (eyes open and eyes closed) and for each artifact type (“eye” and “cardiac”), we provide the following information: Percentages of ICs classified
as non-artifactual and artifactual for the EEG datasets denoised by visual inspection (expert classification of ICs) and by means of the optimized fingerprint method and
the ARCI approach (automated classification of ICs); McNemar test value (χ2); significance level (p).

FIGURE 2 | GD values obtained for paired global microstate templates in the eyes open condition (A) and in the eyes closed condition (B). Diagonal values
correspond to the GD between global microstate templates of the same type obtained from DNEEG1-EO and DNEEG2-EO (A) and from DNEEG1-EC and
DNEEG2-EC (B). The asterisk indicates GD values for which p < 0.01.

of both the EEG recording setting and the subsequent analysis
(Melissant et al., 2005; De Vos et al., 2011; Daly et al., 2015; di
Fronso et al., 2018; Stone et al., 2019). The availability of such
a method would also guarantee a standardization of the EEG
preprocessing step, independent from the operator. In this study,
we demonstrated the ability of the optimized fingerprint method
and the ARCI approach to identify and remove physiological
artifacts while preserving brain dynamics, assessed by means of
microstate analysis.

Our results highlighted two main aspects. The first aspect
regards the confirmation of our previous results (Stone et al.,
2018; Tamburro et al., 2018, 2019) on the suitability and
efficacy of the optimized fingerprint method and the ARCI
approach in identifying physiological artifactual ICs. Indeed,
in a sample of healthy adults at rest in the two physiological
conditions of eyes open and eyes closed, we did not find any
significant differences between the IC classifications performed
by expert visual inspection and by the automated methods. When
comparing the outcome of the ARCI approach and the optimized
fingerprint method with the classifications made by experienced
investigators (see Table 1), the differences of percentages of ICs

classified as artifactual ICs related to cardiac interference and
to ocular activity were below 0.4 and 1.4%, respectively. Other
studies addressed the issue of the use of features based on spectral,
spatial, temporal, and statistical characteristics of artifactual
signals to identify artifactual ICs and remove non-cerebral
activity from EEG datasets (for a review, see Urigüen and Garcia-
Zapirain, 2015). With respect to prior methods, the added value
of the optimized fingerprint method and the ARCI approach
relies on their ability of combining multiple signal features and
selecting their best combination to detect specific artifacts based
on actual performance (Stone et al., 2018; Tamburro et al., 2019).
In other words, the combination of a specific set of the most
relevant features for each type of physiological artifact facilitates
the identification of these artifacts and their subsequent removal
while reducing their computational cost.

The second main aspect of our study regards the use of
microstate analysis to assess the performance—and demonstrate
the suitability and reliability—of the tested denoising methods
in removing physiological artifacts while preserving global
brain dynamics. To our knowledge, this is an absolute novelty
and a step forward in the assessment of automated methods
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FIGURE 3 | Examples of sequences of global microstate templates for a representative EEG dataset (subject 1 for each condition) denoised after expert and
automated classification of the ICs. The X-axis represents the time (s) and the Y-axis represents the GFP values of the EEG signal. Each GFP sample is assigned to
one global microstate template, thus resulting in a sequence of four different colors: orange indicates the global microstate template A, purple indicates the global
microstate template B, yellow indicates the global microstate template C, and blue indicates the global microstate template D.

FIGURE 4 | Descriptive statistics of microstate metrics (mean values with standard errors). The labels of the global microstate templates are given in the X-axes of
(A–F).
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FIGURE 5 | Matrices of transition probabilities in the eyes open and eyes closed conditions (A). The ij element of the matrix corresponds to the probability to transit
from microstate i to microstate j. In (B), the descriptive statistics of absolute values of directional predominance (mean values with standard errors) are shown. The
labels of the directional predominance types are given in the X-axis.

designed to eliminate physiological interference from EEG
recordings. Usually, the validation of an artifact removal method
is performed by comparing the denoised signal (i.e., the original
raw signal minus the estimated artifactual activity) with the
original noiseless signal (i.e., the signal of brain origin). This
approach implies that the original brain signal should be known
a priori, which is of course not possible, and this a priori
knowledge is usually achieved by means of simulated data.
Nevertheless, it would be important to assess the reliability of
denoising methods also with real EEG data (Urigüen and Garcia-
Zapirain, 2015). The calculation of the correlation between
the corrected EEG data and the reference artifactual signal(s)
(Croft et al., 2005; Pham et al., 2011; Sweeney et al., 2012) in
both the time and frequency domains is an indirect way to
quantitatively evaluate the performance of an artifact removal
method. However, this approach has two main limitations: one
regards the need to monitor the artifactual activity by recording
the reference signal(s) (EOG, EMG, ECG, etc.) together with
the EEG signals; the other limitation is related to the use of
a global measure (i.e., the correlation between time series) to
assess the performance of the denoising method: in fact, the
correlation does not account for the dynamics of cerebral activity
and is not suitable to quantify possible loss of electrophysiological
information during the artifact removal process. Other global
metrics, such as mean power or maximum amplitude, kurtosis,
and skewness of the amplitude of resting-state background
rhythms, have been proposed to characterize the behavior of
brain EEG signals and artifactual activity in order to evaluate
the performance of methods designed to remove artifactual ICs
(Daly et al., 2015; Mannan et al., 2018). In some studies, statistical
features characterizing the artifactual ICs were quantified and
used to check whether the cleaned EEG signals resembled

noise-free EEG signals (Delorme et al., 2007; Mognon et al.,
2011). Further validation approaches compared the brain activity
or EEG topography before and after artifact removal by means
of visual inspection of one or more time intervals or frequency
bands in one or more channels grouped in regions of interest (De
Clercq et al., 2006; Crespo-Garcia et al., 2008; Romero et al., 2008,
2009; De Vos et al., 2010; Kirkove et al., 2014; Santillán-Guzmán
et al., 2017). However, all these approaches did not consider the
dynamics of brain activity and were thus prone to possible loss of
time information in the reconstructed brain signals.

Conversely, the validation approach used in the present
study considers both the global information coming from the
topography of the EEG signals and the temporal dynamics of
sequences of neural activity. By means of microstate analysis,
the ongoing EEG time course was represented by a non-
casual sequence of semistable scalp potential topographies,
and specific characteristics of this sequence were assessed
by global metrics that are good global descriptors of brain
dynamics. Therefore, microstate analysis is an optimal approach
to demonstrate whether a denoising method can identify and
remove physiological artifacts from EEG recordings without
distorting brain dynamics. By applying this validation approach,
we firstly confirmed that the automated approaches (ARCI
and optimized fingerprint methods) have high test–retest
reliability, in agreement with the results on validation of these
methods previously obtained by means of other approaches
(Stone et al., 2018; Tamburro et al., 2019). Moreover, we verified
that there were no statistical differences between the outcome of
microstate analysis in the EEG datasets denoised by means of the
optimized fingerprint method and the ARCI approach and by
means of visual inspection. We also demonstrated an excellent
consistency between the two denoising approaches, since the
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TABLE 2 | Consistency between microstate parameters extracted from
multichannel EEG dataset denoised by means of the visual inspection approach
and the automated approach.

A B C D

Duration

EC 0.996 0.996 0.998 0.999

EO 0.996 0.999 0.998 0.999

Occurrence

EC 0.998 0.998 0.997 0.999

EO 0.997 0.999 0.999 0.998

Coverage

EC 0.997 0.995 0.998 0.998

EO 0.997 0.999 0.999 0.999

Directional predominance

A↔B A↔C A↔D B↔C B↔D C↔D

EC 0.995 0.998 0.996 0.997 0.996 0.998

EO 0.998 0.993 0.997 0.999 0.998 0.996

For each rest condition (eyes open: EO and eyes closed: EC), we indicate the
Cronbach’s α between microstate parameters obtained from the two datasets.

TABLE 3 | Test–retest reliability of microstate parameters extracted from the
multichannel EEG dataset denoised by means of the automated approach (ARCI
and optimized fingerprint method).

A B l D

Duration

EC 0.801 0.938 0.984 0.939

EO 0.915 0.894 0.868 0.727

Occurrence

EC 0.898 0.868 0.926 0.911

EO 0.824 0.900 0.884 0.937

Coverage

EC 0.875 0.889 0.972 0.901

EO 0.861 0.894 0.878 0.882

Directional predominance

A↔B A↔C A↔D B↔C B↔D C↔D

EC 0.860 0.953 0.750 0.847 0.876 0.957

EO 0.703 0.813 0.744 0.756 0.825 0.799

For each rest condition (eyes open: EO and eyes closed: EC), we indicate
Cronbach’s α between microstate parameters of the first half and the second half
of the EEG recordings.

values of Cronbach’s α between the microstate parameters
obtained by the two denoised EEG datasets are always above 0.90
(see Table 2). Furthermore, we verified that the two denoising
approaches (the approach based on the expert classification of the
artifactual ICs and the one based on the automated classification
of the artifactual ICs) had equivalent performances in rest EEG

datasets recorded with eyes closed and with eyes open, which
are very different physiological conditions for which it is known
that differences in spectral content and brain dynamics exist
(Niedermeyer and da Silva, 2005). Another important aspect of
the use of microstate analysis to validate a denoising method
is that the outcome of microstate analysis provides information
on the efficiency and reliability of the denoising method at
different levels. First, dominant scalp potential distributions are
represented by the global microstate template topographies. We
verified that the global microstate templates of the same type
were statistically identical in the two groups of denoised EEG
data and that they were very similar to those found in resting-
state EEG activity in healthy adults and labeled A, B, C, and
D (Lehmann et al., 1987; Michel and Koenig, 2018). Second,
we found that when these four topographies were backfitted to
the denoised EEG data, they accounted for about 80% of the
variance in both cases, without differences. This result indicates
the ability of the optimized fingerprint method and the ARCI
approach to effectively identify and remove all physiological
artifacts without altering the information on brain dynamics.
Moreover, the sequences of global microstates were very similar
for the same EEG datasets denoised after the expert and the
automated classifications of the ICs, highlighting a lack of
distortion of the EEG dynamics after the application of the
automated denoising methods. Third, the metrics describing
the microstate dynamics (duration, occurrence, coverage, and
directional predominance) were equivalent in the EEG datasets
denoised after the expert and the automated classification of
the ICs, thus confirming that the information on the neural
activity dynamics was not altered. In particular, the microstate
duration quantifies the interval of stability of neural activity
patterns underlying specific microstates and, thus, reflects the
stability of the activity of these neural assemblies (Michel and
Koenig, 2018). The occurrence, i.e., the average number of times
per second that a given microstate occurs, quantifies the tendency
of its underlying neural generators to be activated (Khanna
et al., 2015). The percentage of total time that a microstate is
dominant indicates the relative presence of this microstate, thus
the relative presence of the corresponding pool of active neural
generators with respect to the others (Michel and Koenig, 2018).
Finally, the directional predominance quantifies the probability
of transition between microstates, thus the probability associated
with a specific evolution of brain dynamics. The fact that we
found high consistency and no statistically significant differences
in the microstate duration, occurrence, coverage, and directional
predominance when comparing the microstate metrics obtained
for the EEG datasets denoised after the expert and the automated
classification of the ICs demonstrates that the application of the
optimized fingerprint method and the ARCI approach to rest
EEG recordings succeeded to remove the physiological artifacts
without altering the brain dynamics contained in the EEG signals.

The importance of removing artifacts from EEG recordings to
obtain reliable information on brain activity and brain dynamics
in various experimental and clinical conditions does not need
to be demonstrated. What still needs to be assessed is the
reliability of the denoising methods proposed during the last
decade and their ability to preserve brain dynamics. With the
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study described herein, we believe to have made a step
forward in the general effort to validate a denoising method
(or a group of denoising methods) not only with respect to
its (their) ability in identifying and removing physiological
artifacts from EEG recordings but mainly in verifying that
they do not alter the global brain dynamics contained in
the EEG signals. Microstate analysis, by its ability to quantify
the state and evolution of brain activity, is a powerful
means of verification that brain dynamics has not been
altered by the application of denoising methods. We think
that the results reported herein allow us to conclude that
the global brain dynamics retained in EEG signals after
removing physiological artifacts with the optimized fingerprint
method and the ARCI approach is comparable to the global
brain dynamics retained in EEG signals denoised by visual
inspection. Furthermore, we think that we have outlined a
new approach based on microstate analysis that is suitable to
assess whether automated denoising methods are effective not
only in removing artifacts from EEG recordings but also in
preserving brain dynamics.
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