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Kolmer–Agduhr (KA) cells are a subgroup of interneurons positioned adjacent to the
neurocoele with cilia on the apical surface protruding into the central canal of the
spinal cord. Although KA cells were identified almost a century ago, their development
and functions are only beginning to be unfolded. Recent studies have revealed
the characteristics of KA cells in greater detail, including their spatial distribution,
the timing of their differentiation, and their specification via extrinsic signaling and
a unique combination of transcription factors in zebrafish and mouse. Cell lineage-
tracing experiments have demonstrated that two subsets of KA cells, named KA’
and KA” cells, differentiate from motoneuronal progenitors and floor-plate precursors,
respectively, in both zebrafish and mouse. Although KA’ and KA” cells originate from
different progenitors/precursors, they each share a common set of transcription factors.
Intriguingly, the combination of transcription factors that promote the acquisition of KA’
cell characteristics differs from those that promote a KA” cell identity. In addition, KA’
and KA” cells exhibit separable neuronal targets and differential responses to bending of
the spinal cord. In this review, we summarize what is currently known about the genetic
programs defining the identities of KA’ and KA” cell identities. We then discuss how
these two subgroups of KA cells are genetically specified.

Keywords: Kolmer–Agduhr cells, cerebrospinal fluid-contacting neurons, transcription factors, transcriptional
regulatory network, GABAergic interneuron

INTRODUCTION

Kolmer–Agduhr (KA) cells are a group of cerebrospinal fluid (CSF)-contacting neurons (CSF-
cNs). The term KA cell was first proposed by N. Dale et al. in 1987 (Dale et al., 1987b) to name
a class of neurons that lie in the ventrolateral spinal cord and contact the cerebrospinal fluid in frog
embryos (Roberts and Clarke, 1982); even earlier observations of cells with KA cell morphologies
were made by Kolmer and Agduhr, who observed and described them in the spinal cords of
most classes of vertebrates (Kolmer, 1921, 1925, 1931; Agduhr, 1922; Vigh-Teichmann and Vigh,
1983). Using antibodies against the neurotransmitter γ-aminobutyric acid (GABA) and an enzyme
glutamic acid decarboxylase (GAD), numerous studies have reported the anatomy of KA cells in
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greater detail, including their axonal projection patterns, their
appearance during development, and their distribution and
organization in frogs (Dale et al., 1987a,b; Binor and Heathcote,
2001) and zebrafish (Bernhardt et al., 1992). For example, in
frog (Xenopus laevis) embryos, KA cell have a pear-shaped
soma (Roberts and Clarke, 1982). These GABA-positive KA cells
distribute in the ventral part of the spinal cord in two orderly
rows adjacent to the neurocoele (Dale et al., 1987b). There are
numerous microvilli and one or two cilia on the apical surface
of KA cells that project into the central canal of the spinal
cord (Roberts and Clarke, 1982; Binor and Heathcote, 2001).
Differentiated KA cells first appear at stage 25, and then one cell
is continuously generated every 12 min on each side of the spinal
cord (Dale et al., 1987b).

According to the location and origin of KA cells in zebrafish,
two subsets of KA cells termed KA’ and KA” have been
distinguished. KA” cells are distributed in the lateral floor
plate (LFP), while the relatively dorsal KA’ cells localize in
the motoneuron progenitor (pMN) domain (Park, 2004; Shin
et al., 2007; Yang et al., 2010). Cell fate-mapping experiments
showed that all KA’ cells are derived from Olig2+ precursors
in the pMN domain (Park, 2004), while KA” cells differentiate
from nkx2.2a+/nkx2.2b+/nkx2.9+ progenitors in the lateral
floor plate (LFP). Most KA cells are born around 16.5 h
postfertilization (hpf) in zebrafish (Schäfer et al., 2007; Yang et al.,
2010; Huang et al., 2012).

Similar subsets of KA cells are observed in the mouse
spinal cord, where these cells are named CSF-cN’ and
CSF-cN” (Petracca et al., 2016). CSF-cN’ cells are derived
from Nkx6+/Pax6+ progenitors positioned in the p2 neural
progenitor domain and in the dorsal part of the oligodendrogenic
(pOL) domain. In contrast, CSF-cN” cells originate from
Nkx2.2+/Foxa2+ precursors in the boundary between the p3
neural progenitor domain and the floor plate. Most CSF-
cN cells are born around embryonic days 13–14 (E13–E14)
(Petracca et al., 2016).

Neurons with somata that have similar characteristics to those
of KA cells in terms of shape, position, and/or expression of
GABA have been reported in the lancelet (Vígh et al., 2004),
lamprey (Meléndez-Ferro et al., 2003; Jalalvand et al., 2014),
dogfish (Sueiro et al., 2004), eel and trout (Roberts et al.,
1995), newt (Harper and Roberts, 1993), and macaque (Macaca
fascicularis) (Djenoune et al., 2014). Based on these comparative
histological data, vertebrate KA cells are thought to be derived
from an ancient epithelial neuron-like ectodermal cell (Vígh et al.,
2004). This notion was further supported by a recent discovery of
KA cells in the marine annelid (Platynereis dumerilii) (Vergara
et al., 2017). Notably, compared with KA cells in the lamprey
(Jalalvand et al., 2014) and zebrafish (Djenoune et al., 2017),
mouse KA cells do not produce somatostatin (Petracca et al.,
2016). There are thus important differences in the molecular
identities of KA cells that have evolved over time.

The functions of KA cells have puzzled researchers for
almost a century. According to the location and morphology
of KA cells; the suggested physiological roles of these cells are
mechanosensory or chemosensory (Kolmer, 1921; Agduhr, 1922;
Vigh-Teichmann and Vigh, 1983). One recent in vivo experiment

has demonstrated that KA cells have a direct mechanosensory
function to sense CSF flow via polycystic kidney disease 2-like 1
(Pkd2l1) channels in the zebrafish spinal cord (Sternberg et al.,
2018). In addition, there is evidence that KA cells may play
a role as mechanoreceptors and chemoreceptors due to their
expression of an acid-sensing ion channel (ASIC3) in lampreys
(Jalalvand et al., 2016).

Knowledge of the shared expression of transcription factors
and GABA neurotransmitter in KA’/CSF-cN’ and KA”/CSF-
cN” cells allows one to ask how their common identities are
genetically programmed. In this review, we will describe the gene
expression patterns of KA/CSF-cN cells and summarize progress
in the quest to understand how KA cell fates are specified. Finally,
we will discuss possible future directions to provide additional
details of the genetic programs that define a KA/CSF-cN cell fate.

KA/CSF-CN CELLS ARE GABAERGIC
INTERNEURONS

Several characteristics of KA cells are provided in Figure 1
and Table 1. Cells with similar characteristics to those of KA
cells, such as expressing the genes encoding Gad2 (formerly
Gad65)/Gad1 (formerly Gad67) enzymes for the synthesis of
GABA from glutamate, as well as releasing GABA have been
identified in the lamprey (Jalalvand et al., 2014, 2016), dogfish
(Sueiro et al., 2004), zebrafish (Bernhardt et al., 1992; Yang et al.,
2010), frog (Dale et al., 1987b), mouse (Djenoune et al., 2014;
Orts-Del’Immagine et al., 2014; Petracca et al., 2016), rat (Kútna
et al., 2014), and macaque (Macaca fascicularis) spinal cords
(Djenoune et al., 2014). Collectively, these findings demonstrate
that KA cells are GABAergic interneurons that exhibit a long
ascending ipsilateral axon. Of note, expressions of genes encoding
somatostatin (sst), urotensin II-related peptides 1 (urp1) and 2
(urp2), and serotonin (5-hydroxytryptamine, 5-TH) are observed
in lamprey (Jalalvand et al., 2014), dogfish (Sueiro et al., 2004)
and zebrafish KA cells (Quan et al., 2015) (Djenoune et al., 2017),
suggesting that KA/CSF-cN cells may play a role in exerting
neuroendocrine activities.

SUBSETS OF KA/CSF-CN CELLS ARE
DIFFERENTIATED FROM DIFFERENT
DEVELOPMENTAL ORIGINS

KA cells are subdivided into the KA”/CSF-cNs” ventral subgroup
and KA’/CSF-cNs’ dorsal subgroup in zebrafish (Yang et al.,
2010), dogfish (Sueiro et al., 2004), mouse (Petracca et al., 2016),
and rat (Kútna et al., 2014). Considering the distinct locations
of each of these KA cells subtypes, it is hypothesized that
KA’ and KA” cells are generated from different developmental
origins. Based on cell fate mapping and clonal analysis, indeed,
KA’ cells are distinguished as a subgroup of interneurons
expressing olig2:EGFP+/GABA+ in zebrafish embryos, whereas
KA” cells are found to be generated from LFP nkx2.2+/nkx2.9+
progenitors. Evidence supports that KA’ cells are differentiated
from olig2+ progenitors. First, cell fate-mapping experiments
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FIGURE 1 | Outline of Kolmer–Agduhr (KA)/cerebrospinal fluid (CSF)-contacting neuron (cN) cells in different species. (A) sox1a+ KA” cell at 24-hpf-labeled
transiently by injection of a GFP reporter cassette [TgBAC (sox1a:eGFP)] in zebrafish embryos at one-to-two cell stage. (B,C) Lateral view (B) and cross-section
(C) of a 24-hpf zebrafish embryo hybridized with a tal2 probe. (D) A scheme of a transverse section through the spinal cord of a frog embryo (stages 37–38). (E) A
scheme of mouse CSF-cN cells (E14.5). N, notochord; CC, central canal. Scale bars: 25 µm in (A); 50 µm in (B,C).

have shown that in zebrafish, all KA’ cells are derived from the
olig2+ precursors in the pMN domain, which also produces
motoneurons (Park, 2004). Second, morpholino knockdown
of olig2 abolishes cells expressing KA’ markers including
tal2 and gad65/67 (Yang et al., 2010). In contrast, current
evidence supports that KA” cells are differentiated from LFP
nkx2.2+/nkx2.9+ progenitors. Specifically, nkx2.2+/nkx2.9+
progenitors divide both symmetrically and asymmetrically and
form KA” cells in zebrafish embryos (Huang et al., 2012).
In addition, morpholino knockdown of nkx2.2a, nkx2.2b, and
nkx2.9 completely eliminates KA” cells expressing the markers
gata2a, gata3, sox1a, sox1b, tal2, and gad65/67 in the LFP (Yang
et al., 2010; Gerber et al., 2019). Furthermore, a subset of KA” cells
expressing tal2+/nkx2.2b+ differentiates into sim1+/huC/D+
V3 interneurons, and thus, tal2+/nkx2.2b+ cells are postulated
to be p3 neural progenitor cells (Schäfer et al., 2007). This notion
has been further supported by a recent report that shows that in
gata2a mutants, KA” cells lose their identities, and that there is a
concomitant increase in the number of cells expressing the V3-
specific gene, single-minded homolog 1a (sim1a), which encodes
a leucine zipper/PAS transcription factor gene single-minded
homolog 1a (Andrzejczuk et al., 2018).

To determine the developmental origins of KA cells in mouse,
newly born Pkd2l1-expressing CSF-cN cells have been mapped in
relation to the domains marked by transcription factors including
Nkx6.1, Pax6, Nkx2.2, and Olig2. These experiments have shown
that 70% of CSF-cN’s arise from the Nkx6.1+/Pax6+ progenitors
located dorsal to Olig2+ ventricular cells, (which marks the
p2 neural progenitor domain), whereas the other 30% of these
cells are differentiated from the dorsal half of the Olig2+ pOL
domain; in contrast, CSF-cN”s were found to originate from the
Nkx2.2+/Foxa2+ cells positioned in the floor plate (Petracca
et al., 2016). Taken together, the current evidence supports that
at least two subgroups of KA/CSF-cN cells develop from distinct
progenitors in zebrafish and mouse. Of note, regardless of the
different origins of CSF-cN’ and CSF-cN” cells in Ascl1-deficient
mice, both of these CSF-cN subtypes fail to differentiate, and
CSF-cN precursors are instead converted into non-neuronal

ependymocytes (Di Bella et al., 2019), suggesting that Ascl1 may
play a role as a selector for controlling the fate of CSF-cN cells
and ependymocytes in mouse.

TRANSCRIPTION FACTORS DRIVING
THE IDENTITIES OF KA/CSF-CN CELLS

To better understand how KA/CSF-cN cells are generated,
several studies have made progress by investigating the genetic
programs that regulate KA cell development. Currently, at least
10 transcription factors have been identified to be involved in
specifying KA/CSF-cN cells in zebrafish and/or mouse.

Nkx2.2 and nkx2.9 each contain highly conserved homeobox
and NK2-specific domains and belong to the family of class II
transcription factors. Zebrafish have two nkx2.2 genes, namely,
nkx2.2a and nkx2.2b (Schäfer et al., 2005). The spatial expressions
of nkx2.2a, nkx2.2b, and nkx2.9 are restricted to the LFP
(Schäfer et al., 2005) (Yang et al., 2010). In the zebrafish
LFP, there are at least three different cell groups positioned
along the anteroposterior axis. One of these subgroups has
been identified as KA” cells and expresses nkx2.2a, nkx2.2b,
nkx2.9, and tal2. The functions of Nkx2.2a, Nkx2.2b, and
Nkx2.9 are necessary for guiding the identity of gad65/67
expressing KA” cells in a functionally redundant manner
(Yang et al., 2010). The second subgroup of cells expressing
nkx2.2a and nkx2.9 are thought to be undifferentiated LFP
progenitor cells. Differentiated KA” cells downregulate the
expressions of nkx2.2a and nkx2.9 (Huang et al., 2012). The
third subgroup of tal2+/nkx2.2b+ cells differentiates into
sim1+ V3 postmitotic interneurons (Schäfer et al., 2007).
Morpholino knockdown experiments have revealed that nkx2.2a
and nkx2.2b are required for the formation of LFP cells, but
are not essential for defining tal2+/nkx2.2b+ cells. Furthermore,
cells expressing foxa2 and nkx2.2b represent the non-neuronal
floor plate cells and proliferate during early neurogenesis
(Schäfer et al., 2007).
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TABLE 1 | The characteristics of Kolmer–Agduhr (KA)/cerebrospinal fluid (CSF)-contacting neuron (cN) cells.

Organisms KA cells Birthdate of KA cells Expressing genes Proposed function in
locomotion

References

Lamprey KA E10 GABA+, somatostatin+ (sst+) These cells respond to both
mechanical stimulation and
to lowered pH, and may
affect the locomotor-related
sensory feedback

Meléndez-Ferro et al.,
2003; Jalalvand et al.,
2014; Jalalvand et al.,
2016

Dogfish CSF-cN’/KA’ arises from
the lateral plate and locates
in the most ventral region of
the lateral walls.

Stages 25 GAD+, GABA+ Sueiro et al., 2004

CSF-cN”/KA” arises from
the floor plate

Stages 26 GAD+, GABA+, 5-TH+

Zebrafish KA’ originates from olig2+
P2 domain progenitors and
locates more dorsally

10–15 hpf Gata2+, gata3+, tal2+, tal1+,
sox1a+, sox1b+, olig2+,
gad65/67+, pkd2l1+, sst1.1+

Form projections onto V0v
and commissural primary
ascending (CoPA) sensory
interneurons. Respond to
lateral bending of the spinal
cord. Project onto slow
swimming circuits

Schäfer et al., 2007;
Park, 2004; Yang et al.,
2010; Huang et al.,
2012; Yeo and Chitnis,
2007; Shin et al., 2007;
Djenoune et al., 2014;
Djenoune and Wyart,
2017; Quan et al.,
2015; England et al.,
2017; Higashijima
et al., 2004

KA” originates from
progenitors of the lateral
floor plate

Around 10 hpf Pkd2l1+, nkx2.2a+, nkx2.2b+,
nkx2.9+, gad65/67+, gata2+,
gata3+, tal2+, tal1+, sox1a+,
sox1b+, urp1+, urp2+, 5-HT+

Form projections onto
caudal primary (CaP) motor
neurons and commissural
primary ascending (CoPA)
sensory interneurons.
Respond to longitudinal
contractions. Trigger an
activation of the locomotor
network. Project onto fast
swimming circuits

Frog KA Stage 25 GAD+, GABA+ Roberts and Clarke,
1982; Roberts et al.,
1987; Dale et al., 1987a

Chick KA or SCF-cN Stage 32 Pkd2l1 Petracca et al., 2016

Mouse SCF-cN’ originates from P2
domain and dorsal half of
pOL

E13–E14 Ascl1, Pax6+, Nkx6.1+,
Gata2+, Sox2+, Pkd2l1+,
Pkd1l2+, GAD+, vGAT+,
β-III-tubulin+, Dcx+

Produce the repetitive
spiking in 80% cells

Petracca et al., 2016;
Djenoune et al., 2014;
Kútna et al., 2014;
Orts-Del’Immagine
et al., 2014; Di Bella
et al., 2019

SCF-cN” originates from
progenitors adjacent to the
floor plate

Ascl1, Nkx6.1+, Nkx2.2+,
Foxa2+, Sox2+, Pkd2l1+,
Pkd1l2+, GAD+, vGAT+,
β-III-tubulin+, Dcx+,

Produce a single spike

Rat SCF-cN positions in the
lateral part of the central
canal

E13 DCX+, GABA+, GAD65+ Kútna et al., 2014

SCF-cN positions in the
ventral part of the central
canal

E12 DCX+, GABA+, GAD65+

Macaque CSF-cN cells GAD65/67+, PKD2L1+ Djenoune et al., 2017

In mouse, CSF-cN” cells express Nkx2.2 and Foxa2; however,
they do not express Lmx1b, a marker of the non-neurogenic
floor plate, or Pax6, suggesting that Pkd2l1+ CSF-cN” neurons
developed from the boundary between the p3 ventricular zone
and the floor plate (Petracca et al., 2016). Nkx2.2 is expressed
in CSF-cN” cells, but it is not essential for the differentiation of
Pkd2l1+ CSF-cN” cells because no difference is observed in the
number of Pkd2l1+ KA” cells in Nkx2.2 mutants compared to
that in controls (Petracca et al., 2016). One possible explanation
for this result is that there is functional redundancy of Nkx2.2

and Nkx2.9 for specification of Pkd2l1+ CSF-cN” cells, as found
in zebrafish. However, whether these different cell types exist in
the mouse LFP remains unclear.

There are two nkx6 homologs in zebrafish, named nkx6.1
and nkx6.2. They are each expressed in the ventral spinal cord,
including within the floor plate and pMN domain. In the absence
of Nkx6.1 and Nkx6.2 proteins, middle primary motoneurons
(MiPs) develop a hybrid phenotype consisting of morphological
characteristics of both motoneurons and interneurons; however,
the number of GABA-positive cells produced from the pMN
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domain and LFP do not change (Cheesman, 2004; Hutchinson
et al., 2007). In mouse, Nkx6.1 is expressed by both CSF-cN’
and CSF-cN” cell progenitors. CSF-cN’ and CSF-cN” cells are
derived from Nkx6.1+/Pax6+ and Nkx6.1+/Nkx2.2+/Foxa2+
progenitors, respectively, but the functions of Nkx6.1 in the
specification of CSF-cN subtypes have not yet been reported.

Gata2a and gata3 belong to the C4 zinc-finger family
and are expressed by the V2b, V2s, KA”, and KA’ cells in
zebrafish (Batista et al., 2008; Gerber et al., 2019; Yang et al.,
2010). Morpholino knockdown of gata3 eliminates KA’ cell
formation (Yang et al., 2010). Consistent with this finding, several
KA’ markers, including tal2, gad65/67, pkd2l1, and sst1.1 are
completely abolished in gata3 mutants (Andrzejczuk et al., 2018),
suggesting that Gata3 is required for specifying KA’ cells. While
knockdown of gata2a dramatically reduces gad65/67-expressing
KA” cells, the expressions of several KA” markers, including gata3,
tal1, sox1a, gad65/67, pkd2l1, and urp1 are eliminated in gata2a
mutants (Yang et al., 2010) (Andrzejczuk et al., 2018). These data
suggest that gata2a and gata3 denote distinct regulatory networks
for specifying KA” and KA’ cells, respectively, despite gata2a and
gata3 being expressed in both KA” and KA’ cells. In mouse, CSF-
cN cells are identified as late born neurons appearing at E14.5 and
express Gata2, Gata3, Pkd2l1, and Pkd1l2; however, the functions
of Gata3 and Gata2 in CSF-cN cells have not yet been reported
(Petracca et al., 2016).

Olig2, a basic helix–loop–helix (bHLH) transcription
factor, plays a pivotal role in oligodendrocytic and
motoneuronal differentiation. Olig2 is expressed in proliferative
ventral neuronal precursors, primary motoneurons, and
oligodendrocytic progenitors in zebrafish (Park, 2004). Cell
tracking experiments have suggested that all KA’ cells are
differentiated from the Olig2+ progenitors in zebrafish and that
the function of Olig2 is required for the production of KA’ cells
from progenitors in the pMN domain (Park, 2004; Yang et al.,
2010). In mouse, nearly 70% of CSF-cN’ cells are produced from
progenitors with a p2 identity, whereas only 30% originate from
the Olig2+ cells. One possible explanation is that Olig2 may
be transiently expressed by p2 progenitors, but that CSF-cN’
cells differentiate several days later. Hence, it remains to be
determined whether Olig2 plays a role in the development of
mouse CSF-cN’ cells.

Tal1 and tal2 belong to the family of bHLH transcription
factors. Both of tal1 and tal2 share 50% identical amino acids
and are expressed by KA,” KA,’ and V2b cells in zebrafish
(Andrzejczuk et al., 2018; Pinheiro et al., 2004; Yang et al.,
2010). Genetic inhibition of tal1 in homozygous tal1 mutants
abolishes the expressions of gata3, gata2a, tal2, sox1a, sox1b,
gad65/67, pkd2l1, and sst1.1 in KA’ cells, whereas knockdown of
tal2 causes a reduction in the KA” markers, gad65/67 expression
(Andrzejczuk et al., 2018; Yang et al., 2010), even though tal1 and
tal2 are expressed in both KA” and KA’ cells. This suggests that
tal1 and tal2 may combine with different transcription factors
and form a distinct regulatory network to differentially specify
KA” and KA’ cells.

Sox1a and sox1b belong to group B of the Sox gene family and
share 86% amino acid sequence identity. Sox1a and sox1b are
expressed by KA,” KA,’ V2b, and V2s interneurons in zebrafish

(Andrzejczuk et al., 2018) (Gerber et al., 2019). Knockdown of
sox1a and sox1b results in a significant increase in the expression
levels of V2b markers, including tal2, gata2a, gata3, and gad65/67
in the V2 domain, whereas markers for KA cells are unaffected.
In agreement with this finding, sox1a and sox1b mutants only
affect the expression levels of V2b markers (Gerber et al., 2019),
indicating that sox1a and sox1b are expressed by KA cells, but
that they are dispensable for KA cell specification. In mouse,
Sox1, the ortholog of zebrafish sox1a and sox1b, is expressed
in the ventricular progenitor zone in the spinal cord and in
V2c interneurons. In the absence of Sox1, V2c interneurons
become reprogrammed toward the V2b cell fate, suggesting that
Sox1 is essential for the specification of the V2c interneuronal
fate (Panayi et al., 2010). However, it remains to be determined
whether the function of Sox1 plays a role in specifying CSF-
cN cells in mouse.

Ascl1, a bHLH transcription factor, is expressed by the CSF-cN
lineage and plays an important role in CSF-cN development (Di
Bella et al., 2019). In mice lacking Ascl1, expressions of Gata2,
Gata3, Pkd2l1, and Pkd1l2 in CSF-cN cells are abolished, and
prospective CSF-cN progenitors instead adopt the morphology
of central canal ependymocytes. Remarkably, simultaneous
knockdown of ascl1a and ascl1b in zebrafish results in a reduction
(∼40%) of pkd2l1+ KA cells without eliminating either KA’ or
KA” cells, suggesting that the activity of Ascl1 in defining the
identities of KA/CSF-cN cell identity in zebrafish differs from that
in mouse, the latter of which is fully dependent on Ascl1.

Pax6 is a member of transcription factors containing a paired
box. In mouse, Pax6 is expressed by most dorsal subgroups of
Pkd2l1+ CSF-cN’ cells, and the expression of Pax6 is sharply
downregulated during CSF-cN’ neurogenesis (Petracca et al.,
2016). In the absence of Pax6, the number of Pkd2l1+ CSF-
cN’ cells is almost entirely diminished, whereas the number of
CSF-cN” cells positive for Pkd2l1, Nkx2.2, and Foxa2 remain
unchanged, suggesting that Pax6 is only required for specifying
Pkd2l1-expressing CSF-cN’ cells (Petracca et al., 2016). Despite
these findings in mouse, it remains unclear whether Pax6 plays a
similar role in specifying KA’ cells in zebrafish.

TRANSCRIPTION FACTORS THAT ARE
NOT EXPRESSED IN KA CELLS BUT ARE
INVOLVED IN THEIR SPECIFYING

Islet1 is a member of the subfamily of LIM homeobox
genes, a class of genes that control cell-fate programs in
vertebrates. Zebrafish islet1 is expressed by motoneurons
and plays a prominent role in motoneuronal development
(Hutchinson, 2006). Dorsally projecting MiPs express islet1.
KA’ cells do not express islet1; however, knockdown of
islet1 significantly increases the number of GABA-expressing
ventrolateral descending (VeLD) interneurons and KA’ cells,
without disrupting the number of GABA-expressing cells at the
location in which KA” cells are normally located (Hutchinson,
2006). Consistent with this finding, misexpression of Islet1
significantly reduces the number of GABA-expressing VeLD
(V2b) interneurons and KA’ cells, whereas the number of cells
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in the KA” position is not changed compared with that in
the control (Hutchinson, 2006). A possible explanation for this
phenomenon is that zebrafish Iselt1 may function to promote
the formation of primary motoneuron formation and mediate
a switch between motoneuronal and interneuronal fates in the
pMN domain. Although this study only determined the number
of GABA-expressing KA and VeLD cells in the absence or
misexpression of Iselt1, several other lines of evidence support
the idea that KA’ cells, but not the VeLD interneurons, may
be the target of iselt1-mediated patterning. First, KA’ cells
are derived from Olig2+ progenitors positioned in the pMN
domain, and the activity of Olig2 is required for KA’ cell
specification (Park, 2004; Yang et al., 2010). Second, the effects
of misexpression of islet1 is limited to a subset of interneurons
produced from the pMN domain (Hutchinson, 2006). Third,
VeLD/V2b interneurons express lhx3 but not islet1 (Appel, 1995).
Fourth, the number of V2b is unchanged in the absence of Olig2,
whereas a lack of Olig2 abolishes nearly all primary motoneurons
expressing islet2, as well as nearly all KA’ cells (Park, 2004;
Yang et al., 2010).

Lhx3 and lhx4 genes belong to the family of LIM
homeodomain transcription factor and play pivotal roles in
motoneuronal and interneuronal differentiation. In the absence
of lhx3 and lhx4, primary motoneurons develop a hybrid identity
in which islet-expressing neurons coexpress GABA and gad,
and form ipsilateral ascending axons, a characteristic property
of the KA’ cells (Seredick et al., 2014). Evidence supports the
idea that Lhx3 and Lhx4 may regulate Notch signaling, which in
turn promotes the expression of gad in primary motoneurons.
Forced-expression experiments have demonstrated that Lhx3
promotes the specification of circumferential descending (CiD)
interneurons, (also known as V2a interneurons) at the expense
of KA’ cells. Although lhx3 and lhx4 are not expressed in KA’
cells, Lhx proteins can regulate the expression levels of gad
and GABA in primary motoneurons and influence axonal
projections to acquire the phenotype of ipsilaterally ascending
axons (Seredick et al., 2014).

POTENTIAL MARKERS OF KA/CSF-CN
CELLS

Pkd1l2a and Pkd2l1
The polycystic kidney disease (PKD) gene family encodes
transmembrane proteins that share a conserved polycystin-
cation-channel domain. Several lines of evidence support that
genes encoding PKD 1-like 2a (pkd1l2a) and pkd2l1 are expressed
by all KA” and KA’ cells in zebrafish embryos (Djenoune et al.,
2014; England et al., 2017), while Pkd2l1 is also expressed
in mouse and macaque KA cells (Djenoune et al., 2014).
Approximately 15% of PKD2L1+ KA cells are GABA/GAD67
negative in the adult mouse spinal cord. PKD2L1+ KA cells
are not serotonergic (5-HT) or catecholaminergic [marked by
tyrosine hydroxylase (TH) expression] (Djenoune et al., 2014).
A potential explanation for this discrepancy may be due to
differences in embryonic and adult tissues. In vivo experiments
suggest that pkd2l1 is required for KA cells to detect CSF flow in

zebrafish embryos; however, Pkd2l1 is not required for KA cell
differentiation (Sternberg et al., 2018).

KA’/CSF-CN’ AND KA”/CSF-CN” CELLS
SHARE COMMON TRANSCRIPTION
FACTORS BUT DIFFER IN TERMS OF
THEIR REGULATORY NETWORKS

We and others have shown that KA’ and KA” cells share a group
of transcription factors including gata2a, gata3, tal1, tal2, sox1a,
and sox1b in zebrafish embryos (Yang et al., 2010; Andrzejczuk
et al., 2018; Gerber et al., 2019). However, the genetic programs
regulating KA’ and KA” development are distinct from one
another. Morpholino knockdown analyses have indicated that
gata3 is required for KA,’ but not KA” cell specification, whereas
gata2a and tal2 are indispensable for specification of KA” but
not KA’ cells (Yang et al., 2010). Consistent with these results,
analyses of tal1, gata2a, and gata3 mutant have demonstrated that
Gata2a is required for specifying KA” cell identity, and that Gata3
and Tal1 are required for defining KA’ cell fate (Andrzejczuk
et al., 2018). Deficiency of gata2a results in a loss of cells in
the LFP (where KA” cells are generated) that expresses gata3,
tal2, tal1, sox1a, sox1b, gad65/67, urp1, and pkd2l1, but not
a loss of such cells in the dorsal spinal cord where KA’ cells
normally form (Yang et al., 2010; Andrzejczuk et al., 2018; Gerber
et al., 2019) (Yang et al., unpublished observations). In addition,
a significant increase in the number of slc17a6a/b and sim1a-
expressing cells is observed in gata2a mutant (Andrzejczuk et al.,
2018), suggesting that at least some KA” cells shift to become V3
interneurons or adopt a hybrid V3/KA” fate in the absence of
gata2a. Further investigation has revealed that knockdown of tal2
eliminates the expression of gad65/67 in KA” cells, whereas the
expressions of gata2a and gata3 in KA” cells are unchanged. Taken
together, current evidence suggests that gata2a acts upstream of
tal2 and sox1a in KA” cells, which in turn drive the expressions of
gad65/67, urp1, and pkd2l1 in KA” cells.

In the absence of Gata3 protein, KA’ cells that express gata2a,
tal1, tal2, sox1a, sox1b, gad65/67, sst1.1, and pkd2l1 are abolished,
whereas there is no change in the number of KA” cells expressing
gata2a, tal1, tal2, sox1a, sox1b, gad65/67, sst1.1, and pkd2l1
(Yang et al., 2010; Andrzejczuk et al., 2018; Gerber et al., 2019)
(Yang et al. unpublished observations). Similarly, in tal1 mutants,
expressions of gata2a, tal2, sox1b, gad65/67, sst1.1, and pkd2l1
in KA’ cells are completely abolished, and gata3 and sox1a-
expressing KA’ cells are dramatically reduced. In contrast, there
is no effect on the number of KA” cells (Andrzejczuk et al.,
2018). Furthermore, an increase in the number of phosphor-
histone H3-positive/olig2-positive cells positioned in the pMN
domain (where KA’ cells are generated) is observed in both
gata3 and tal1 mutants, suggesting that loss of the function of
Gata3 and/or Tal1 may promote cells to become mitotically active
precursors, which in turn block/delay KA’ cell differentiation.
Similarly, Gata2/3 are expressed in mouse CSF-cN’ and CSF-
cN” cells, although expressions of Tal1 and Tal2 were not
examined in this study (Petracca et al., 2016). Gene function
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analysis demonstrates that Pax6 is exclusively required for the
production of CSF-cN’ cells from progenitors in the p2-pOL
domain. In contrast, Nkx2.2 is dispensable for the production of
CSF-cN” cells despite CSF-cN” cells expressing Nkx2.2. Despite
these recent findings, further studies are needed to elucidate
the functions of Gata2, Gata3, Tal1, and Tal2 in regulating the
CSF-cN cell differentiation in mouse.

SPECIFICATIONS OF KA’/CSF-CN’ AND
KA”/CSF-CN” CELLS ARE DIFFERENTLY
REGULATED BY HEDGEHOG AND
DELTA-NOTCH SIGNALING

Hedgehog signaling plays a pivotal role in defining the KA” cell
fate in a concentration- and duration-dependent manner (Strähle
et al., 2004; Schäfer et al., 2007; Huang et al., 2012). Loss of
sonic hedgehog (Shh) signaling in homozygous mutants of the
ligand Shh (sonic-you, syu), the signal transducer smoothened
(slow-muscle-omitted, smo), and the transcription factors Gli1
(detour, dtr) and Gli2 (you-too, yot) completely eliminates
expressions of several markers, namely, nkx2.2a, nkx2.2b, nkx2.9,
and tal2 in the LFP and in KA” cells (Yang et al., 2010) and
Yang et al., unpublished observations) (Schäfer et al., 2007).
In contrast, the expression of tal2 in KA” cells is normal
in heterozygous dtr and yot mutants (Schäfer et al., 2007),
suggesting that compared with those in nkx2.2b+/foxa2+ LFP
cells, relatively lower levels of hedgehog activity are required
for forming KA” cells (Nkx2.2b+/Tal2+) and Sim1-positive V3
interneurons in zebrafish (Schäfer et al., 2007). In agreement
with this, the LFP progenitors remain responsive to hedgehog,
whereas differentiated KA” cells lose their responses (Huang
et al., 2012). Further evidence indicates that forced expression of
Gli1 reduces the number of KA” cells and increases in nkx2.9-
expressing LFP cells, suggesting that termination of hedgehog
signaling is essential for KA” cell differentiation (Huang et al.,
2012). In addition, activation of hedgehog signaling by ectopic
expression of Shh or the dominant-negative form of PKA mRNA
induces numerous tal2-expressing KA” cells, as well as dorsally
located KA’ cells (Huang et al., 2012). Intriguingly, expression of
tal2 in more dorsally located cells, which might represent KA’
cells and V2b interneurons, is unaffected in the absence of Gli2
(Schäfer et al., 2007). This phenomenon appears to hold true in
embryos incubated in cyclopamine from the shield stage to the
22 somite stage, in which tal2-positive KA” cells are completely
eliminated, whereas the tal2-positive KA’ cells are not, and V2b
interneurons also likely exist (Schäfer et al., 2007). These results
suggest that hedgehog signaling may play differential roles in
specifying KA” and KA’ cells.

Comparative studies suggest that the functions of hedgehog
signaling in mouse differ from those in zebrafish (England
et al., 2011). Hedgehog signaling is required to induce both V3
interneurons in the p3 domain and some motoneurons in the
pMN domain. Loss of Shh signaling in mouse results in severely
decreased numbers of V1 and V0v cells, in which case only a
few V2 interneurons form, and there is a complete elimination

of motoneurons. Additionally, a lack of hedgehog signaling in
zebrafish embryos results in most V3 domain cells not forming
and motoneurons being dramatically reduced (England et al.,
2011). However, it is unclear whether hedgehog signaling plays
a role in defining the CSF-cN identities in mouse.

Notch signaling has been implicated in KA cell development
(Schäfer et al., 2007; Shin et al., 2007; Yeo and Chitnis, 2007;
Huang et al., 2012). Absence of Notch signaling in the zebrafish
mutant, mindbomb (mib), which encodes an E3 ubiquitin ligase
and is necessary for efficient Notch signaling (Itoh et al., 2003),
results in loss of both LFP and KA” cells (Schäfer et al., 2007;
Yeo and Chitnis, 2007). In addition, early blocking of Notch
signaling by expressing a dominant-negative form of Xenopus
suppressor of Hairless [Su(H)] or inhibitors at 7 hpf leads to a
reduction in the number of KA” cells, as that observed in the
mib mutant (Schäfer et al., 2007; Yeo and Chitnis, 2007; Huang
et al., 2012). Inhibition of Notch signaling from 10 to 25 hpf
results in a significant increase in the number of tal2-expressing
KA” cells at the expense of nkx2.9-expressing FLP cells (Huang
et al., 2012). Conversely, activation of Notch signaling by the
induced Notch intracellular domain (NICD) at 10 hpf almost
completely eliminates tal2-expressing KA” cells, but increases the
LFP cells expressing nkx2.9 (Huang et al., 2012). In contrast,
blocking Notch signaling at 17 hpf does not affect the number of
KA” cells (Yeo and Chitnis, 2007). Furthermore, knockdown of
Jagged2, a ligand of Notch receptors, causes a significant increase
in the number of KA” cells and secondary motor neurons (SMNs),
as well as a significant decrease in the rate of cell division. These
data suggest that Jagged2-mediated signaling is not only required
to maintain a group of dividing precursors, but that it also plays
a role in regulating the number of KA” cells. Notch signaling also
plays a pivotal role in specifying KA’ cells. In the absence of Notch
signaling, primary motoneurons are formed at the expense of KA’
cells. In contrast, an excess of Notch signaling induces KA’ cell
formation at the expense of PMNs in zebrafish, suggesting that
Notch signaling promotes KA’ cell identity and inhibits primary
motoneuronal fate (Shin et al., 2007). These lines of evidence
support that Notch signaling plays an essential role in KA cell
differentiation. Hence, specification of KA” cells initially depends
on the activation and then the attenuation of both Notch and
hedgehog signaling (Huang et al., 2012).

THE TRANSCRIPTIONAL REGULATORY
LOGIC THAT DRIVES KA/CSF-CN
IDENTITY

Based on findings by our lab and other research groups (Park,
2004; Yeo and Chitnis, 2007; Yang et al., 2010; Petracca et al.,
2016; Andrzejczuk et al., 2018; Di Bella et al., 2019; Gerber
et al., 2019), here, we summarize the regulatory network guiding
the KA/CSF-cN differentiation and identity (see Figure 2).
Considering that KA/CSF-cN cells are GABAergic neurons,
we summarize the transcriptional regulatory network guiding
GABAergic neuronal identity in the mouse telencephalon,
midbrain, hindbrain, and dorsal spinal cord (Figure 2).
A line of evidence supports that the genetic program guiding
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FIGURE 2 | Gene regulatory network leading to differentiation of GABAergic interneurons. Of note, arrows do not necessarily reflect direct interactions between
genes or proteins. The BioTapestry was used for building the GRN (http://www.biotapestry.org/).

GABAergic fate is likely dependent on multiple transcription
factors in different regions, rather than by universal regulators
that govern differentiation of all GABAergic neurons (Achim
et al., 2014; Hobert and Kratsios, 2019). Furthermore, there
is conceivable evidence supporting that differences in the
transcription regulatory networks controlling generation of the
diversity of GABAergic neurons may depend on the respective
selector gene being either selectively antagonized by a repressor
and/or assisted by region-specific cofactors (Hobert and Kratsios,
2019). Nevertheless, transcription factors including proneural
genes (e.g., Ascl1, Helt) and postmitotic subtype selector genes
(e.g., Gata2, Gata3, Tal1, and Tal2) appear to be repeatedly
employed for driving GABAergic identity in mouse. In particular,
functions of PTF1A and GATA2/TAL1 have been demonstrated
to play a role as a GABAergic, rather than glutamatergic selectors
in the dorsal and ventral spinal cord, respectively. In addition,
Dlx1/2, Gata2, and Gata2/Tal2 have been suggested to play
roles as selectors for GABAergic neuronal identity in the mouse
telencephalon, diencephalon, and midbrain, respectively (Achim
et al., 2014; Figure 2).

KA’ and KA” cells share a class of the transcription factors,
including gata2, gata3, tal1, tal2, sox1a, and sox1b, despite
these cellular subtypes having different developmental origins.
This is in agreement with observations that similar neurons,
such as dopaminergic and GABAergic neuronal classes with

distinct lineages, appear to be specified by the same terminal
selector type transcription factors in C. elegans (Gendrel
et al., 2016). We surmise here, as suggested via terminal
selectors elucidated previously (Hobert, 2016) that gata3/tal1
and gata2/tal2 may serve as terminal selectors controlling KA’
and KA” differentiation, respectively, by combining cis-regulatory
motifs associated with gad1/2 and/or pkd2l1/pkd1l2 genes in
zebrafish. Gata3 and tal1 are expressed in KA’ and KA” cells;
however, genetic removal of gata3 and tal1 only leads to a failure
of KA’ to be differentiated from precursors. Similarly, gata2/tal2
are expressed in both KA’ and KA” cells, but genetic removal
of gata2 and tal2 only leads to a failure of KA” cells to acquire
a GABAergic identity (Yang et al., 2010; Andrzejczuk et al.,
2018). This is consistent with the function of Gata2 in specifying
GABAergic identity in the mouse midbrain and in rhombomere
1. Gata2 is required for GABAergic neuronal differentiation in
the midbrain. However, expressions of the GABAergic marker
genes,Gata3 andGad1, in GABAergic precursors of rhombomere
1 are not altered in the Gata2 mutants (Kala et al., 2009).
The most likely explanation for these observations is that the
differences in the cooperation of gata3/tal1 and gata2/tal2 for
specifying the KA’ and KA” cell identity may be related to the
different lineages of KA’ and KA” cells. Gata3 may cooperate
with the cofactor tal1 to define KA’ identity. In line with this
hypothesis, deficiency of tal1 phenocopies the characteristics of
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gata3 mutants, including the elimination of KA’ cells expressing
gata2a, gata3, tal2, and gad1/2 (Andrzejczuk et al., 2018). Similar
to findings in tal1 mutants, in the absence of gata3, expressions
of gata2a, tal1, tal2, and gad1/2 are abolished in KA’ cells. In
addition, deletion of tal1 phenocopies loss of expression of Tg(-
8.1gata1-EGFP) in the V2b region observed in gata2a/gata3
double mutants, suggesting that gata2a and gata3 may cooperate
with their cofactor, tal1, as a functional complex for specifying
V2b interneurons in zebrafish (Andrzejczuk et al., 2018).

In mouse, both CSF-cN’ cells and V2b interneurons share the
expressions of Gata2 and Gata3. However, evidence supports that
CSF-cN’ cells are different from early born GATA2 and GATA3-
expressing V2b interneurons. In contrast with the finding
that Foxn4 is essential for V2b interneuronal specification,
differentiation of CSF-cN’ cells is unchanged in the Foxn4
mutants. Moreover, the activity of PAX6 is indispensable for CSF-
cN’ specification, but V2b interneurons are not affected in Pax6
mutant mice (Petracca et al., 2016).

DIFFERENCES BETWEEN KA/CSF-CN
DIFFERENTIATION IN MOUSE AND
ZEBRAFISH

Since the underlying mechanisms and signaling controlling the
formations of the medial floor plate and LFP are different in
mouse and zebrafish (Strähle et al., 2004), the genetic programs
defining the identity of KA/CSF-cN cells may differ in these two
vertebrate species. Indeed, in Ascl1-deficient mouse, CSF-cN cells
fail to initiate differentiation, and the precursors are converted
into ependymal cells. In contrast, in the knockdown of ascl1a
and ascl1b, KA cells are still formed, despite a decrease in the
numbers of KAs observed in zebrafish (Di Bella et al., 2019).
Whether Ascl1 plays a similar role in differentiation of early born
KA/CSF-cN cells inXenopus and lamprey as that does in zebrafish
remains to be elucidated. In addition, observations have shown
that CSF-cN cells are differentiated only after a neurogenic-to-
gliogenic switch of spinal precursors in mice, rats, and chicks
(Petracca et al., 2016) (Kútna et al., 2014) (Di Bella et al., 2019).
In contrast to findings in mouse, in zebrafish and Xenopus, KA
cells are produced simultaneously with primary motoneurons
and other interneurons.

DISCUSSION

Although it is currently known that gata3/tal1 and gata2/tal2
drive KA’ and KA” identities, respectively, in the zebrafish spinal
cord, it remains unclear how gata3/tal1 and gata2/tal2 genes
are selected and functionally define these two groups of KA
cells despite all of these genes being expressed in both KA’
and KA” cells. In addition, at least some KA” cells change
from a GABAergic identity to a glutamatergic V3 interneuronal
identity or acquire a hybrid V3/KA” identity in gata2a mutant
zebrafish. Furthermore, in the absence of both gata3 and tal1,
an increase in the numbers of phosphor-histone H3-labeled
precursors and olig2-positive cells is observed in the pMN

domain, from which KA’ cells are produced, suggesting a failure
of KA’ cells in terminal differentiation. Although gata2/3 and
tal1/2 encode highly related proteins and act via both the distinct
and redundant functions in the central nervous system and
during hematopoietic development, it is not known how these
genes are functional as selector genes and/or activators for
exiting the cell cycle.

PERSPECTIVES

We currently know that gata2/3 and tal1/2 are critical for
specifying KA’ and KA” cells, respectively, but the crucial
details remain unknown as to how these two subgroups of
KA cells that originated from two different progenitor domains
are encoded at the genomic, epigenomic, and transcriptomic
levels via transcription factors, particularly in terms of KA/CSF-
cN cells that are present in all vertebrate species that have
been studied. Based on a mechanistic understanding of this
regulatory network, transient expression of ASCL1 and DLX2 is
sufficient to convert human pluripotent stem cells exclusively into
GABAergic neurons with characteristics of forebrain GABAergic
neurons. Remarkably, a combination of Ascl1 and Dlx2 with
other transcription factors, including Arx, Brn4, Ebf1, Gata2,
Gbx1, Gsx2, Ikaros, Islet1, Lhx6, Lmo2, Lmo3, Meis1, Meis2, Oct6,
Otp, Pbx1, and Ptf1a does not drive the cells to generate the
different subtypes of GABAergic neurons (Yang et al., 2017),
suggesting that much remains unknown regarding how these
GABAergic cells are differentiated and specified. It has been
indicated that regulatory elements as binding hubs are critical
for regulating spatiotemporal gene expression patterns and cell
lineage specifications. Although cis-regulatory control of gene
expression is a complex process, dependent on distal sequences,
spatial organization of the chromosome, and chromatin or
epigenetic states and advances in genetics, genomics, and
developmental neurobiology have helped to gain further insight
into the genetically encoded wiring diagram that ultimately
gives rise to KA/CSF-cN cells. In particular, single-cell RNA-
sequencing methods have been demonstrated in characterizing
cellular diversity and transcriptional regulation of the brain and
spinal cord, shedding the new light on revealing the regulatory
networks that specify KA/CSF-cN identities.
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