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Two stereoscopic cues that underlie the perception of motion-in-depth (MID) are
changes in retinal disparity over time (CD) and interocular velocity differences (IOVD).
These cues have independent spatiotemporal sensitivity profiles, depend upon different
low-level stimulus properties, and are potentially processed along separate cortical
pathways. Here, we ask whether these MID cues code for different motion directions:
do they give rise to discriminable patterns of neural signals, and is there evidence for
their convergence onto a single “motion-in-depth” pathway? To answer this, we use
a decoding algorithm to test whether, and when, patterns of electroencephalogram
(EEG) signals measured from across the full scalp, generated in response to CD- and
IOVD-isolating stimuli moving toward or away in depth can be distinguished. We find
that both MID cue type and 3D-motion direction can be decoded at different points
in the EEG timecourse and that direction decoding cannot be accounted for by static
disparity information. Remarkably, we find evidence for late processing convergence:
IOVD motion direction can be decoded relatively late in the timecourse based on a
decoder trained on CD stimuli, and vice versa. We conclude that early CD and IOVD
direction decoding performance is dependent upon fundamentally different low-level
stimulus features, but that later stages of decoding performance may be driven by a
central, shared pathway that is agnostic to these features. Overall, these data are the
first to show that neural responses to CD and IOVD cues that move toward and away
in depth can be decoded from EEG signals, and that different aspects of MID-cues
contribute to decoding performance at different points along the EEG timecourse.

Keywords: motion-in-depth, stereomotion, EEG, IOVD, CD, multivariate decoding, motion perception

INTRODUCTION

To navigate the visual environment successfully, the primate visual system must interpret signals
that indicate movement through three-dimensional (3D) space, or “motion-in-depth” (MID).
Stereoscopic vision offers two potential cues to MID (Rashbass and Westheimer, 1961; Regan, 1993;
Cumming and Parker, 1994; Harris et al., 2008). First, the change in disparity over time (CD) can be
computed from the temporal derivative of interocular differences (disparities) in retinal position. In
this case, position is computed first, and temporal differences are computed second: objects moving
toward or away from the observer have opposite-signed CD signals. Alternatively, the interocular
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velocity difference (IOVD) can be derived by reversing the
order of the computation above: retinal velocities are computed
first and the interocular difference between these velocities also
provides a signed indication of 3D object velocity. Although two
separate retinal computations underlie the initial processing of
CD and IOVD-cues, the extent to which these cues are processed
via separate cortical pathways is still unknown.

At the retinal level, CD and IOVD depend on different
aspects of low-level stimulus properties. However, at some
point binocular integration is required to extract both CD (by
computing the interocular disparity) and IOVD (by computing
the interocular velocity) information. As there is very little
binocular interaction in the LGN, this binocular stage is
almost certainly located in visual cortex (Casagrande and
Boyd, 1996). In the case of CD, the extraction of binocular
disparity presumably occurs in primary visual cortex (V1), but
the sites of binocular motion computations remain unclear.
Recent functional magnetic resonance neuroimaging (fMRI)
and psychophysical studies suggest that 3D-motion might be
encoded downstream; areas in and around MT have been
shown to respond to MID (Likova and Tyler, 2007; Rokers
et al., 2009) and MT neurons are selective for 3D-motion
directions (Rokers et al., 2009, 2011; Czuba et al., 2011; Joo
et al., 2016). Likewise, fMRI studies have identified that these
cues both activate motion selective area MT (or its human
homolog) and nearby regions, while electrophysiological studies
in macaque have shown that CD and IOVD stimuli both
drive responses in macaque MT (Likova and Tyler, 2007;
Rokers et al., 2009; Czuba et al., 2014; Sanada and DeAngelis,
2014; Héjja-Brichard et al., 2020). However, psychophysical
measurements of CD and IOVD suggest that these mechanisms
adapt independently (Sakano et al., 2012; Joo et al., 2016),
have different speed sensitivities (Shioiri et al., 2008; Wardle
and Alais, 2013), and engage systems with different spatial
resolutions (Czuba et al., 2010). Thus, CD and IOVD appear to
be processed via relatively independent pathways that provide
input, and potentially converge, in MT (Joo et al., 2016). The
extent to which both 3D-motion direction and MID pathways
remain separate throughout cortical processing is not known.
Further, it is unclear whether these pathways converge at later
stages of processing.

These questions can be addressed using
electroencephalography (EEG) and multivariate statistical
techniques. To date, no study has used EEG to investigate MID
processing, and further, there is a scarcity of research testing
for the existence of 3D-motion direction sensitive cells. Unlike
fMRI and behavioral methods, the high temporal resolution
of EEG allows one to test for changes in the pattern of neural
response across the timecourse of a relatively short analysis
period, with the underlying assumption that later timepoints
reflect later processing stages that occur higher up the visual
processing hierarchy. This processing hierarchy is not necessarily
mapped to the anatomical hierarchy; feedback to early visual
areas may occur at relatively late stages of functional processing
(Lamme and Roelfsema, 2000; Bullier, 2001) and regions
outside of visual cortex. The high temporal resolution of EEG
comes at the cost of poor spatial resolution; one limitation is

that this method does not allow us to pinpoint the cortical
regions that drive such neural responses. Moreover, novel
machine learning decoding allows one to identify timepoints
at which the pattern of electrical responses distributed across
the full scalp differ between both MID cue type and 3D-motion
direction. We employ this powerful technique to investigate the
independence of MID pathways in the cortex. We asked a series
of questions about the overall pattern of neural signals generated
by CD and IOVD stimuli moving in different 3D-motion
directions and answered them using both within-cue and
cross-trained decoding.

Here, we used EEG to measure signals from 64 channels
across the scalp, generated in response to well-isolated CD
and IOVD cues that either moved toward or away in depth.
First, we asked if different 3D-motion directions give rise
to different EEG responses by testing whether a multivariate
pattern classifier (i.e., a decoder) could use the pattern of EEG
signals to accurately discriminate motion direction (toward vs
away) for both CD and IOVD cues. The ability to do this
would suggest that different motion directions drive different
neural populations, or alternatively, drive similar populations
with differences in timing, synchrony, and coherence. One
confound here is that CD stimuli necessarily have a start and
end position in 3D space. To control for this, our CD were
designed to maintain the same average depth across a stimulus
cycle irrespective of 3D-motion direction, but this meant that
they started from different sides of the horopter. In theory
therefore, our CD motion direction decoding could be based
on the time-averaged disparity around the stimulus onset or
offset. To examine this, we ran a second experiment that
used dynamically updating static CD stimuli (“static disparity
stimuli”) that were located either near or far in depth, with
no stereomotion information. Thus, we also asked whether we
could decode relative stimulus position of these static disparity
stimuli (near vs far).

In addition, we asked if CD and IOVD cues generate different
response patterns. Although our stimuli were matched as far
as possible in their low-level properties (dot density, size, and
contrast), they necessarily differed in some important ways
(e.g., dot duration and velocity). We hypothesized that CD
and IOVD stimuli would drive different neural populations
because of these differences and, potentially, because they may
also be processed along anatomically independent pathways. To
address this, we tested whether, and when, the decoder could
use EEG signals to accurately discriminate between MID cue
types (CD vs IOVD).

Change in disparity over time and IOVD stimuli rely on
fundamentally different low-level features, thus, if cross-trained
decoding is possible at some point in the EEG timecourse, it
would indicate some contribution of shared MID information,
perhaps due to a mechanism that is agnostic to such features.
Therefore, our final question asked whether MID cue decoding
performance relied on unique CD and IOVD signals, or if there
was shared information between these two signals that would,
for example, allow us to decode CD motion direction based on
IOVD motion direction data. To test this, we cross-trained the
decoder and examined whether it could accurately discriminate
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CD motion direction cues after being trained using only IOVD
motion direction cues, and vice versa.

MATERIALS AND METHODS

Participants
In the first experiment, 12 healthy participants (mean
age = 24 years, eight males) were recruited from the University
of York. All participants completed a pre-screening to ensure
they had functional stereoscopic vision. Two participants
did not pass the pre-screening and did not participate in the
experiment. Thus, 10 participants (eight males) completed a
1-h EEG session. In a second “static disparity” experiment, nine
participants (mean age = 27 years, four males, including three
participants from the previous experiment) completed a 1-h
EEG session. All participants had normal or corrected-to-normal
vision and provided written consent before participating in
the study. Experiments were conducted in accordance with
the Declaration of Helsinki and the experimental protocol
was approved by the ethics committee at the Department of
Psychology, University of York.

Stimulus Display
Stimuli were presented on a VIEWpixx/3D (VPixx
Technologies, Saint-Bruno, QC, Canada) display (1920 × 1200
pixels,120 Hz refresh rate). The display had a mean luminance
of 100 candela/m2 and was gamma corrected using a
photospectrometer (Jaz; Ocean Optics, Largo, FL, United States).
Participants viewed the display from 57 cm and were required
to wear wireless liquid crystal display (LCD) shutter glasses
that were controlled by an infrared emitter (NVIDIA GeForce
3D; NVIDIA, Santa Clara, CA, United States). Here, binocular
separation of the stimuli, with minimal crosstalk, was achieved
by synchronizing the VIEWpixx refresh rate (120 Hz, thus

60 Hz per eye) with the toggling of the LCD shutter glasses
(Baker et al., 2016).

Stimuli
CD and IOVD Stimuli
The stimuli were similar to those used in previous papers
(Maloney et al., 2018; Kaestner et al., 2019). Briefly, MID
stimuli consisted of random dot patterns that were designed to
experimentally dissociate CD- or IOVD-based mechanisms. The
low-level properties of the dots were matched between cue types
as far as possible. In all conditions, the dots were anti-aliased
and had a Gaussian profile (σ = 0.05◦). The black and white
dots were positioned at a density of one dot per 1◦ of visual
angle2 on a mean luminance gray background, with a Michelson
contrast of 100% (50:50 black:white). Stimuli were presented
using MATLAB 2014a (The Mathworks Inc., Massachusetts,
MA, United States) and the Psychophysics Toolbox Version 3
(Brainard, 1997).

For CD stimuli, MID information is carried by changes
in the disparities of pairs of dots presented to the left and
right eye. To remove any velocity cues, dots can be replaced
at new random positions on each video refresh. Thus, CD
stimuli consisted of temporally uncorrelated dynamic random
dot patterns, where each frame consisted of a set of binocularly
correlated, randomly positioned dot patterns, only differing in
a lateral shift in retinal disparity between the left and right eye
(see Figure 1A). CD stimuli changed unidirectionally in disparity
(i.e., the stimulus moved either toward or away in depth). This
shift in disparity followed a single linear ramp that began at
the far point and finished at the near point for toward motion,
and the opposite points for away motion. The mean stimulus-
averaged depth relative to fixation for both stimuli was therefore
zero. The near and far points were identical for each with a
peak binocular disparity of ±32 arcmin which is below the

FIGURE 1 | Examples of the CD and IOVD stimuli presented across two consecutive frames. Panel (A) illustrates CD, where the dots are positioned randomly and
paired between the left and right eyes and only differ in their lateral shift in disparity across each video frame. Panel (B) illustrates IOVD, where the dots laterally shift
through time and there is no pairing of dots between the left and right eyes.
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fusion limit for typical human observers (Norcia and Tyler, 1984;
Howard and Rogers, 2002).

For IOVD stimuli, MID information is carried by the relative
interocular velocities of retinal features across time. No fine-
grained interocular matches are required (or indeed possible).
Our IOVD stimuli consisted of fields of moving dots with the
left and right eyes seeing uncorrelated dot patterns. The patterns
moved coherently across time and the velocity of this motion was
equal and opposite in the two eyes (see Figure 1B). The lateral
shift of the dots that defined the unidirectional MID was, again,
in the form of a linear ramp. To maintain uniform dot density
and equal visual transients across the stimulus, equal numbers of
dots reached the end of their lifetime (50 ms) and were “reborn”
in a new position on the stimulus for each frame of the stimulus.
For IOVD stimuli, the maximum monocular lateral displacement
was ±128 arcmin.

Thus, to ensure that no disparity information leaked into
IOVD stimuli, the spatial positioning of the IOVD dot patterns
was organized so that they fell into two horizontal strips that were
two dot widths wide (∼0.5◦). The strips alternated across the eyes
to ensure that they did not coincide on the two retinae (Shioiri
et al., 2000, 2008). On the rare occasion when a dot fell near the
border of a horizontal strip in the left eye that was close to the dot
near the border of the horizontal strip in the right eye, these dots
were assigned opposite contrast polarity to disrupt any potential
disparity signals (Maloney et al., 2018).

All stimuli were presented within an annulus that had an
inner radius of 1◦ and an outer radius of 6◦ (see Figure 2).
The contrast of the dots appearing at the edge of the annulus
was smoothed with a cosine ramp that was 0.5◦ wide. To
provide relative depth information, a circular central fixation
lock (0.4◦ radius) surrounded the fixation cross, while a circular
outer fixation lock (11.75◦ radius) surrounded the edge of the
display. These locks were split into black and white quadrants
that served as a set of nonius non-ius lines to assist in gaze
stabilisation and the fusion of the images presented to the two
retinae. An example of a single frame from the stimulus is
presented in Figure 2. Animated examples of CD and IOVD
stimuli are available in Supplementary Materials of previous
work (Kaestner et al., 2019).

FIGURE 2 | An example from a single frame of the random dot stereogram
pattern that is presented within a circular fixation lock. The dots are presented
in an annulus with an inner radius of 1◦ and an outer radius of 6◦.

Static Disparity Stimuli
Using fixed far and near endpoints for CD stimuli means that
a decoder discriminating between CD stimuli moving toward
and away in depth could potentially rely on static disparity
information at either the beginning or the end of the stimulus
presentation, rather than the time-averaged MID information.
We ran a control experiment that examined whether the decoder
could distinguish between dynamically updating but depth-fixed
CD stimuli located at either the near or far positions in depth.
The near and far static positions in depth were identical to the
extremes of depth at the start and end points of the MID CD
stimuli. These extreme positions were chosen as they would
deliver the largest static disparities available to us, thus producing
the largest signal. These disparity stimuli had identical durations
(250 ms) and dot update rates to the CD stimuli, however the
stereomotion velocity was set to zero.

Experimental Design
Participants’ 3D vision was tested using the TNO Stereo Test,
19th edition (Lameris Ootech, NL) to ensure that they had
functional stereo-acuity (with thresholds at or below 120 arcsec).
This test screens for static depth perception (rather than MID
perception) as traditionally defined in clinical settings (see
Maloney et al., 2018). During the EEG cap set-up, participants
were presented with a demonstration of each of the four
stimulus conditions on the VIEWpixx display, whereby the
stimuli oscillated toward and away continuously according
to the linear ramp. This allowed participants to practice
identifying toward and away motion directions and CD and
IOVD cues. These demonstrations did not require a keyboard
response and were presented until the participant felt that they
were confident in identifying all four stimulus conditions and
ensuring that they could perceive stereomotion. Following this,
participants completed two practice runs of the experiment
itself. During testing, participants could return to practice
runs if necessary.

Participants completed six blocks of 220 stimulus trials.
Within each block the four stimulus conditions (CD toward,
CD away, IOVD toward, and IOVD away) were randomized
and occurred with equal frequency. For each participant, we
retained 210 of these trials to account for any potentially
dropped triggers during testing. In the static disparity control
experiment, participants completed three blocks of 220 stimulus
trials, with 210 retained, and each block contained two stimulus
conditions, “CD near” or “CD far,” that were also randomized
and occurred with equal frequency. Participants were given a
1-min break between each block. For each trial, the stimulus
probe had a duration of 250 ms, which corresponded to one
full linear ramp (i.e., the stimulus followed a unidirectional
trajectory over the 250 ms duration). The stimulus probe was
followed by an inter-trial interval (ITI). The length of the
ITI was selected randomly from a uniform distribution (lower
bound = 1 s, upper bound = 3 s). Participants were instructed
to fixate on the central cross throughout the entire experiment.
While fixating, participants completed a task in which they
were required to respond, using their right hand, to indicate
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whether the stimulus was moving toward (2 on the number
pad) or away (8 on the number pad) from them. The keyboard
response was recorded, and participant accuracy is available in
Supplementary Figure 1. For the static disparity experiment,
participants were instructed to indicate whether they perceived
the stimulus as being near (“2”) or far (“8”) in depth. Participants
received audio feedback in the form of a tone to indicate
incorrect responses only and were not shown their overall
response accuracy.

EEG Recording and Collection
EEG data were collected at 1 KHz from 64 electrodes that were
distributed across the scalp according to the 10/20 system in an
ANT WaveGuard EEG cap and digitized using the ASA Software
(ANT Neuro, Hengelo, NL, United States). The ground electrode
was placed posterior to electrode FPz and the signal from each
channel was referenced to a whole-head average. Eye-blinks
were recorded using two vertical electrooculogram electrodes.
Individual records were inspected for excessive blinking and
we found that this was not an issue with our data. These
signals were amplified, and the onset of each stimulus trial was
recorded in the EEG trace using a low-latency digital trigger.
Data were exported to MATLAB 2018a for offline analysis using
customized scripts.

EEG Pre-processing and Bootstrapping
For each participant, EEG data were epoched into 1000 ms epochs
at −200 to 800 ms, relative to stimulus onset at 0 ms (see
Figure 3). A low-pass filter of 30 Hz was applied to remove high
frequency noise, including line noise. Each epoch was then down
sampled from 1000 to 125 Hz via linear interpolation. Thus, we
retained a sampling pool of 1260 EEG epochs (210 trials × 6
blocks) that included each of the four stimulus conditions. To
gain an estimate of the variance of our classification results
we used permutation testing. For each stimulus condition, we
bootstrapped the data of 10 epochs from the sampling pool. These
10 epochs were averaged together to create a mean bootstrapped
epoch. This was repeated for each stimulus condition. For
each participant, this process was repeated 21 times. Thus, for
each participant, and each stimulus condition, there were 21
mean bootstrapped EEG epochs, for each of the 64 electrodes.
Bootstrap resampling and averaging were done in parallel across
all EEG channels. Data were then z-scored to standardize across
electrodes. This process was repeated for 1000 iterations of a
bootstrapped support vector machine (SVM) classifier, with each
iteration generating a unique set of 21 × 21 mean bootstrapped
EEG epochs for each participant, by averaging together new sets
of sample epochs from the sampling pool. This generated unique
input data for each iteration of the SVM.

FIGURE 3 | Examples of averaged EEG waveforms from a single participant, taken from three occipital electrodes in response to each stimulus type. Waveforms are
averaged over 210 trials. Each epoch is –200 to 800 ms and the stimulus is presented between 0–250 ms. A relative change in EEG signal begins around 100 ms
after stimulus onset.

Frontiers in Neuroscience | www.frontiersin.org 5 December 2020 | Volume 14 | Article 581706

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-581706 December 5, 2020 Time: 21:23 # 6

Himmelberg et al. Decoding Motion-in-Depth Using EEG

Bootstrapping Keyboard Response and
Percept Control Analysis
In a supplementary control analysis, we asked whether our results
could be driven by motor signals (due to the button press –
“2” or “8” on the keypad) rather than visual inputs. To check
this, we asked whether we could decode EEG data that had
been pooled into keyboard response conditions (with balanced
stimulus types), rather than stimulus conditions. As we decoded
using all the electrodes across the scalp, our goal was to test
whether motor responses (i.e., responses that occur due to using
the middle or index finger on the same hand to indicate if
the stimulus was moving toward or away) had any influence
on decoding performance (Cottereau et al., 2011, 2013, 2014).
Thus, if our SVM is inaccurate at decoding keyboard-response, it
would indicate that the EEG signals associated with the keyboard
response have little influence on decoding accuracy, confirming
that our overall decoding results are driven predominately
by sensory inputs. The methods and results for this control
analysis can be found in Supplementary Materials: Decoding
keyboard responses: motor responses do not contribute to decoding
performance (Supplementary Figure 2). Further, we used these
keyboard responses to run an additional supplementary analysis
that tested whether the percept of MID direction could be
decoded from the EEG signals. Here, we used each participants’
keyboard responses to create mean bootstrapped EEG epochs
based on whether a participant perceived the stimulus moving
toward or away in depth, irrespective of the actual direction, or
cue, of the stimulus. A description of the analysis and the results
are presented in detail in Supplementary Materials: Decoding
the directional perception of MID based on behavioral responses
(Supplementary Figure 3).

Statistical Analysis: Decoding EEG
Signals Using a Support Vector Machine
To decode MID information from our EEG data, we
bootstrapped a pairwise SVM classifier with a linear kernel
in MATLAB 2018a using the LIBSVM toolbox, v. 3.23 (Chang
and Lin, 2011). This allowed us to run pairwise decoding at each
of the 125 time-points, thus obtaining decoding accuracies across
the EEG time-course. In the case of our EEG data, decoding can
only occur at above-chance levels if different stimuli produce
patterns of electrical activity at the scalp that differ in some
consistent manner on an individual basis. For each participant,
decoding was performed at each of the 125 time points
(from −200 to 800 ms), using data from all 64 electrodes. The
advantage of this decoding technique is that it does not assume
consistency in the pattern of electrical activity across participants,
but rather, the decoding is run on individuals. Examples of the
pattern of EEG response across the scalp at early-, mid-, and
late-stages of the EEG time course are available in Supplementary
Materials: Scalp distributions (Supplementary Figures 4, 5).
Each electrode had equal weighting in its contribution to
decoding accuracy. EEG data were bootstrapped repeatedly (as
described above) and run through 1000 iterations of the SVM
to derive a mean decoding accuracy at each time point, for each
participant. Significant decoding accuracy was assessed across

time. Here, decoding accuracy was deemed significantly different
from chance (50%) using a non-parametric cluster corrected
t-test (as described below).

Decoding accuracy was estimated using a leave-one-out
classification procedure. On each run, the SVM is trained on all
but one of the EEG epochs. This left-out EEG epoch serves as the
test data that will be classified by the SVM. We trained the SVM
on 40 EEG epochs while 1 EEG epoch was left-out as the test
data (Boser et al., 1992; Cortes and Vapnik, 1995; Wang, 2018).
Thus, the SVM was trained to decode between two stimuli by
learning to discriminate between the pattern of EEG responses
arising from a pair of stimulus conditions at a single time-point.
The SVM then predicted the class of the left-out test EEG epoch
(Grootswagers et al., 2017). If the SVM can accurately classify
the test EEG epoch into its correct class, decoding accuracy will
be high. If the SVM cannot classify the test EEG epoch into
its correct class, decoding accuracy will fall around chance; this
would suggest that there are no meaningful differences in the
EEG response elicited by the two stimulus conditions in that
comparison. A decoding accuracy is obtained for each of the
125 time-points across the EEG time-course. Chance baselines
were verified by shuffling class labels. This confirmed that SVM
performance was not driven by artifacts in the signal processing
pipeline (see Supplementary Figures 6, 7 for results of decoding
accuracies after shuffling labels).

Additionally, we “cross-trained” the SVM classifier to test if
shared information between CD and IOVD-cues could be used
to decode 3D-motion direction. This analysis differed from that
above. Here, the SVM is trained to decode 3D-motion direction
for a single MID cue-type (i.e., CD toward vs CD away) and
outputs a classification model. The decoder then uses this model
to decode new, unseen data that comes from a different pair
of conditions (i.e., IOVD toward vs IOVD away). Thus, in the
cross-trained analysis, we trained the SVM to decode CD motion
direction and used the output model to decode IOVD motion
direction, and vice versa.

Non-parametric Cluster Correction
To test for significance, decoding accuracy was compared to a
chance baseline (50% decoding accuracy) using a non-parametric
cluster comparison. By definition, the time points at which
the decoder performs at above-chance (as assessed from the
distribution of bootstrapped SVM classification accuracies) must
have an overall pattern of EEG signals that differs significantly
between stimulus conditions. However, the large number of
time points (125) can inflate the false discovery rate due to
multiple comparisons.

To solve this, we used a non-parametric cluster correction
test. This method is commonly used in EEG and takes advantage
of temporally clustered significant time-points to compute the
t-statistic (Maris and Oostenveld, 2007). The approach involves
the following: first, for each time-point, decoding accuracy is
compared to 50% chance baseline by means of a one-sample
t-test. To reduce the number of multiple comparisons, these
significant time-points are then clustered based upon their
temporal adjacency and commonality. Next, cluster level t-values
are calculated by summing the t-values within each cluster.
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A null distribution is computed via a permutation test, and
we ask whether the cluster-level t-value is greater than one
that would occur by chance (using this null distribution). Any
clusters with a significant pooled t-value, when compared to the
null distribution, are identified. If the p-value for a cluster is
smaller than the cluster threshold (p < 0.05), it is deemed to
be a significant cluster.

RESULTS

All our multivariate decoding was performed using a series of
binary comparisons. First, we tested if we could discriminate
between toward and away 3D-motion direction responses when
pooled across MID cue type. Next, we tested if we could
discriminate between CD and IOVD cue type responses when
pooled across 3D-motion directions. Following this, we asked if
we could decode stimulus 3D-motion direction responses within
MID cue type, and between MID cue type responses within
stimulus 3D-motion direction; therefore, comparing between
CD toward against CD away cues, IOVD toward against IOVD
away cues, CD toward against IOVD toward cues, and CD
away against IOVD away cues. Next, we examined the reliance
of CD decoding performance on static disparity information
by testing whether we could discriminate responses from static
disparity stimuli at either near or far positions in depth.
Finally, we cross-trained the decoder and tested if it could
distinguish between CD toward against CD away cues using a
decoding model that was trained using IOVD motion direction
data, and vice versa.

Here, we present decoding accuracy for these binary
comparisons. We report decoding accuracy across time (from
stimulus onset at −200 ms through to 800 ms). Likewise, we
report whether this decoding accuracy was significantly above a
chance baseline of 50% decoding accuracy (p < 0.05), across time.

Decoding Between 3D-Motion Direction
and Cue Type: MID Cues Moving Toward
and Away in Depth Give Rise to
Independent Neural Responses
First, we tested whether the decoder could discriminate between
EEG signals generated in response to toward and away
3D-motion directions when the data was pooled across MID
cue type. As illustrated in Figure 4 (red line), after collapsing
over CD and IOVD cue types, we were able to decode toward
vs away 3D-motion direction at above-chance levels from 320
until 632 ms after stimulus onset, with accuracy peaking at 65%
at 536 ms (p < 0.05). Thus, our results show that we could decode
the direction of motion through depth (i.e., either moving toward
or away), independent of cue type.

Next, we tested if the decoder could discriminate between
CD and IOVD cue responses when the data was pooled across
3D-motion direction. As illustrated in Figure 4 (green line),
EEG responses to CD and IOVD cues (irrespective of 3D-
motion direction) could be decoded relatively early in the EEG
timecourse. Decoding occurred above chance at 120 ms after

FIGURE 4 | Decoding accuracy across 125 time points for cue type (pooled
over motion direction) in green and 3D-motion direction (pooled over cue type)
in red. The colored ticks on the x-axis represent the time point of peak
accuracy for each condition. Green and red circles indicate the points of time
when the Bonferroni-corrected t-tests were significant (p < 0.05). Shaded
error bars represent ± 1SE of the bootstrapped mean (1000 iterations).

stimulus onset and continued at above chance levels across the
remaining timecourse (p < 0.05). Here decoding performance
peaked at 224 ms and reached 84% accuracy. The decoding
performance for IOVD vs CD at 120 ms is the earliest difference
that we see in this study. Notably, the peak of decoding accuracy
occurred much earlier than the peak for decoding motion
direction (toward vs away).

We hypothesize that the ability to decode between CD and
IOVD cues is due to the low-level properties of these cues
themselves. Although we matched the low-level cue properties
of the CD and IOVD stimuli as far as possible, they inevitably
differed in some respects. CD stimuli (deliberately) contained
no coherent monocular motion energy while the dots in the
IOVD stimuli traveled short distances on the retina before
being refreshed. These differences are intrinsic to the cues
themselves – a MID system that isolates CD will necessarily
rely on different low-level aspects of the stimulus than an
IOVD pathway, and these differences in stimulus properties
cannot be avoided, although that is not to say that these cues
do not drive the unique responses seen here. Additionally,
in principle, differences in the cortical signals generated by
different eye-movements patterns could also contribute to CD
vs IOVD decoding performance. Moreover, the later peak for
3D-motion direction decoding may be due to increased time for
the integration of MID information and, potentially, the role of
feedback from higher level brain mechanisms when decoding
between 3D-depth directions.

Decoding Within Motion Direction and
Cue Type
Decoding performance pooled across stimulus 3D-motion
direction and cue type tells us little about the computations
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underlying CD and IOVD cues. For example, IOVD and CD
may recruit entirely different neural populations, or alternatively,
these cues may activate similar neural populations but generate
unique responses that differ in their timing, coherence, or
synchrony. Because of the way that we pooled the data
(i.e., pooled over MID cue type, and pooled over 3D-motion
direction), it is possible that decoding performance is driven
by only one of the two pooled elements at any particular
time point. For example, CD 3D-motion direction decoding
performance may peak at early stages of the timecourse, and
IOVD 3D-motion direction may peak at later stages of the
timecourse. To gain a more complete understanding of the neural
responses driven by each cue type and 3D-motion direction,
we split our data into individual conditions and ran a series of
further comparisons.

Here, we asked whether we could decode 3D-motion direction
within individual cue type and whether we could decode cue
type within individual 3D-motion directions. Our data (Figure 5)
show that we could do so at above-chance levels for all
comparisons. The decoder obtained above-chance performance
in decoding the 3D-motion direction of both CD and IOVD
stimuli (p < 0.05). CD toward vs CD away stimuli could be
decoded from 320–672 ms, then again from 688–800 ms, with
a relatively late peak in decoding accuracy of 68% at 592 ms
(Figure 5, red line). IOVD toward against IOVD away stimuli
could be intermittently decoded from 296 ms, with a decoding
peak of 58% at 536 ms (Figure 5, light blue line). The decoder
could first distinguish between IOVD direction 24 ms before
CD direction, and IOVD direction decoding accuracy (536 ms)
peaked 56 ms before CD direction decoding accuracy (592 ms).

The ability to resolve EEG responses to 3D-motion direction
is intriguing. The ability of the decoder to discriminate between
toward and away 3D-motion direction shows that differences in

FIGURE 5 | Pairwise decoding accuracy across 125 time points for four
stimulus conditions. Red, light blue, dark blue, and green dots indicate time
points when the Bonferroni-corrected t-tests were significant for each
condition (p < 0.05) and the colored ticks on the x-axis represent the time
point of peak decoding performance for each stimulus condition. Shaded
error bars represent ± 1SE of the bootstrapped mean (1000 iterations).

response can be resolved using EEG, and that these responses
are relatively independent from each other in the cortex.
One might hypothesize that this independence is due to an
intermingled network of neurons that are selective for different
3D-motion directions.

For completeness, we also tested if the decoder could
discriminate between CD and IOVD cues within each 3D-motion
direction. Decoding between CD toward and IOVD toward
stimuli (Figure 5, dark blue line) was significant from 128 ms
and peaked at 82% accuracy at 264 ms (p < 0.05). Next,
decoding between CD away and IOVD away stimuli (Figure 5,
green line) was significant from 136 ms and accuracy peaked
at 78% at 224 ms (p < 0.05). Thus, significant accuracy in
decoding between cue-type within individual motion directions
begins soon after stimulus onset. Decoding performance accuracy
remains high along the EEG timecourse, regardless of motion
direction; an effect that appears to be driven by unique neural
responses to the fundamentally different low-level properties of
CD and IOVD cues. Extended results of decoding between CD
toward against IOVD away, and IOVD toward against CD away,
are available in Supplementary Figure 8.

Decoding Static Disparity Stimuli: Static
Depth Information Contributes to Early
Stages of CD Direction Decoding, but
Not Late Stages
To ensure the same average stimulus disparity over the course
of each trial, our CD stimuli began at one extreme in depth
(i.e., either near or far) before traversing toward or away
from the participant. However, the instantaneous disparities
at the start and end of each presentation are therefore
correlated with the motion direction, and at least part of
the decoding performance for the CD toward vs CD away
condition may potentially be driven by this static depth cue,
rather than MID information. This confound is not present
for the IOVD condition because these stimuli do not have
a well-defined 3D location. To measure the extent to which
our CD motion direction decoding was indeed due to MID
information, rather than static depth information, we ran a
second experiment to test if the decoder could discriminate
between dynamically updating static disparity stimuli that
were held at one of two fixed depth locations – near or far.
The static disparity stimuli used in this control were more
informative about a single 3D depth than those used in the MID
condition (because they signaled the same depth for a longer
period). Thus, we hypothesize that the increase in decoding
performance in the MID condition is due to 3D-motion rather
than the static depth confound. Conversely, static disparity
information may have some contribution to MID CD decoding
performance at time points where near and far static disparity
stimuli can be decoded.

In the static disparity control condition, we identified a short
set of time points where the decoder could distinguish between
near and far depths. Our data showed that decoding was possible
between 288 and 312 ms (Figure 6, green line). Thus, the decoder
could distinguish between static disparity stimuli located near or
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FIGURE 6 | Pairwise decoding accuracy across 125 time points for static
disparity (SD) stimuli that are presented either near or far in depth, and for CD
stimuli moving either toward or away in depth. Red and green dots indicate
time points when the Bonferroni-corrected t-tests were significant (p < 0.05).
Shaded error bars represent ± 1SE of the bootstrapped mean (1000
iterations).

far in depth for a short “early” period around 300 ms. However,
this differs from the MID CD condition (Figure 6, red line -
identical timecourse from Figure 5), where CD toward vs CD
away decoding was similarly possible from around 300 ms but
continued to be significant across the rest of the EEG timecourse.
Thus, transient static depth information may contribute to the
earliest stages of MID depth decoding, however, the subsequent
stages of decoding must be attributed to the smooth motion
information that was not present in these stimuli.

Decoding From a Cross-Trained
Decoder: Early Performance Is
Associated With Cue Differences While
Later Performance Might Extend From a
Shared MID Pathway
Next, we examined whether CD and IOVD signals are entirely
independent, or if neural information about stimulus motion
direction is shared between these mechanisms at some point. To
examine this, we “cross-trained” the decoder. Here, we trained
the decoder using toward vs away CD responses and then asked
whether this CD-trained decoder could distinguish responses to
different directions of IOVD motion, and vice versa. If CD and
IOVD pathways are independent from each other, one could
expect decoding accuracy to be close to 50% (chance), as a
decoder trained on signals from one cue (i.e., CD) should not
be helpful in decoding signals from the other cue (i.e., IOVD).
However, if cross-trained decoding is possible along the EEG
timecourse, it would suggest some cross over between CD and
IOVD pathways, with the contribution of a mechanism that
is agnostic to whether CD or IOVD cues deliver the MID.
Further, because IOVD stimuli have no unique depth, this

cross-validation information must be independent of confounds
from pure disparity cues.

Remarkably, we could decode 3D-motion direction from
the cross-trained classifier for significant periods at a latency
of approximately 500 ms. Specifically, IOVD motion direction
could first be decoded from a CD-trained classifier at 512 ms
after stimulus onset with 56% accuracy (p < 0.05), with
intermittent significance through to 800 ms (see Figure 7, purple
line). A similar result was found for decoding CD motion
direction from an IOVD-trained classifier: significant decoding
first occurred at 488 ms after stimulus onset and again at
56% accuracy (p < 0.05), through to 552 ms, and was then
intermittently significant through to 648 ms (see Figure 7, green
line). Importantly, decoding was not possible during early stages
of the stimulus presentation period (i.e., before 250 ms) or soon
thereafter. The ability of the cross-trained decoder to perform
3D-motion direction decoding from a classifier trained on the
opposing cue type indicates similarities in the pattern of response
at later stages of MID processing. One possibility is that the earlier
classification performance we see in our original CD vs IOVD
decoding Figures due to low-level stimulus differences in CD
and IOVD cues, while the later performance seen here might
depend upon a late-stage convergence of the CD and IOVD
signals involved in MID processing.

DISCUSSION

We have examined whether, and when, the pattern of EEG
signals generated in response to CD- and IOVD-isolating
stimuli moving toward or away in depth can be decoded

FIGURE 7 | Pairwise decoding accuracy of a cross-trained decoder across
125 time points, comparing between toward and away directions for CD and
IOVD stimuli. The purple line represents decoding accuracy for IOVD toward
vs IOVD away after decoder is trained using CD direction data. The green line
represents decoding accuracy for CD toward vs CD away after the decoder is
trained using IOVD direction data. Purple and green dots indicate time points
when the Bonferroni-corrected t-tests were significant for the two conditions
(p < 0.05). Shaded error bars represent ± 1SE of the bootstrapped mean
(1000 iterations).
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using a multivariate pattern classifier. We find that both the
3D-motion direction (toward vs away) and MID cue type
(CD vs IOVD) can be decoded based on the distinct pattern of
neural responses measured across the scalp. We also show that
CD motion direction decoding performance cannot be accounted
for by the presence of static disparity information. Finally, and
importantly, our data show that a cross-trained decoder (trained
on one cue type, and then tested on the other) can decode
EEG signals at relatively late stages of the EEG timecourse,
suggesting a late-stage convergence in the processing of CD and
IOVD information.

Decoding MID Direction
The decoder could distinguish between signals generated from
stimuli moving toward or away in depth for both CD and IOVD
stimuli. It has been well described that neurons in V1 and MT+
are selective for 2D-motion direction (Hubel and Wiesel, 1959,
1968; Born and Bradley, 2005) and disparity tuning (DeAngelis
and Newsome, 1999; DeAngelis and Uka, 2003). Studies have also
found evidence for MT+ neurons that are selective for 3D-motion
direction, with both fMRI and psychophysical evidence for 3D
direction-selective adaptation (Rokers et al., 2009, 2011; Joo
et al., 2016). Notably, the peak for 3D-motion direction decoding
occurred much later in the EEG timecourse than peak for
MID-cue decoding. Brief stimuli produce a complex, temporally
sustained pattern of cortical activity (including feed-forward
and feedback signals, and the phase-resetting of endogenous
rhythms) that persists for hundreds of milliseconds after stimulus
offset (Stevenson et al., 2011; Mullinger et al., 2013, 2017;
Bertamini et al., 2019). Further, 3D-motion direction signals take
time to accumulate; motion direction can only be determined
by integrating motion over time and the relatively late peak
for 3D-motion direction decoding performance when compared
to cue type discrimination is consistent with this (Baker and
Bair, 2016). The relatively long time-scale required to decode
3D-motion direction after stimulus onset (from approximately
300 ms onward) is in line with what one might expect based
on recent work of a similar vein (Bae and Luck, 2019), given
the relatively weak percept of our stimulus, and the fact that the
cortex must integrate its input for some time to make a complex
decision about 3D-motion direction (Roitman and Shadlen,
2002). To note, we have decoded MID direction from responses
recorded across the entire scalp, and the spatial resolution of EEG
does not allow for localization to specific visual areas. Thus, we
do not suggest that our decoding MID direction is due to signals
in MT, or V1 alone, although such visual regions might make
some contribution to decoding performance. Importantly, our
supplemental analysis showed that post-stimulus decoding could
not be accounted for by different keyboard motor responses,
as the decoder was unable to differentiate EEG signals between
toward and away keyboard responses.

At the retinal level, the stimuli for the two motion directions
(i.e., toward or away for a single cue type) are essentially identical
at any given moment, and this might explain why motion
direction decoding accuracy was relatively low when compared
to CD vs IOVD cue decoding. Decoding 3D-motion direction
in the case of the CD stimulus must depend on a mechanism

that can compute a temporal derivative from disparity selective
neurons. Three-dimensional direction decoding in the case
of the IOVD stimulus must be driven, at a minimum, by
differential responses from monocular motion-selective neurons
or by neurons that receive input from those populations. Most
models of MID processing would posit that these 3D-motion
direction selective neural populations are intermingled within
visual areas involved in motion processing and so the ability to
resolve these responses using EEG is intriguing (Czuba et al.,
2014). A common suggestion within the field of EEG multivariate
decoding is that neurons with different stimulus sensitivities
are not co-mingled at random, but rather, are arranged in
macroscale structures (such as columns or orientation domains),
and their electrical signals might be differentiated – perhaps
because of additional selectivity imposed by the curvature
of the cortical surface (Hubel and Wiesel, 1974; Shoham
et al., 1997; Sun et al., 2007; da Silva, 2013; Cichy and
Pantazis, 2017). An alternative model might suggest that toward
and away motion directions drive similar neural populations,
however they might do so with differences in the timing or
coherence. Overall, these data provide support for the existence
of clusters of 3D-motion direction selective neurons, although
we cannot identify the spatial scale of this clustering, or their
broader cortical locus. It may be that our results are driven
by 3D-motion direction selective neurons that are organized
into columnar-scale structures within individual visual areas
(much as 2D-direction selective neurons are), or that common
populations of neurons process 3D-motion direction information
but give rise to unique signals that differ in their timing,
synchrony, or coherence.

Decoding Static Disparity at Early Stages
of the EEG Time Course
To examine the contribution of the time-averaged disparity
information to CD direction decoding performance, we ran
a second “static disparity” experiment that used depth-fixed
random dot stereogram stimuli with an identical distribution
of starting positions, durations, and dot update rates to our
original experiment. Although it was possible to decode static
disparity information from the EEG signal at a few time points
around 300 ms, decoding performance differed notably from
CD direction decoding performance, which also rose above
the statistical threshold around 300 ms, but then remained
above chance for the remainder of the EEG timecourse. Static
disparity information may drive the initial phases of CD decoding
(i.e., the brief time point where decoding was possible for
both experiments, around 300 ms), while later stages of MID
decoding are attributable to motion through depth, rather than
depth per se. The results of this static disparity experiment
suggest that MID decoding is not based solely on responses from
populations of motion-insensitive, disparity-selective neurons.
However, this control cannot rule this possibility out entirely.
Although human psychophysical observers are very accurate
in discriminating between static stimuli with the maximum
near and far disparities, and the discrimination performance
for pairs of stimuli with zero disparity is necessarily at chance,
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in principle, the EEG signal classification may be qualitatively
different for intermediate disparities that we have not tested.
In future experiments, it would be of interest to compare
psychophysical and EEG decoding performance in detail over
this range for static stimuli.

Decoding CD and IOVD Cues
The decoder could accurately discriminate between CD and
IOVD cues (pooled over 3D-motion direction) soon after
stimulus onset. Here, decoding performance was high, with
accuracy peaking at 84%. Similarly, we could decode CD and
IOVD cues that were moving in the same direction in depth,
indicating that most of the pooled decoding performance was
driven by differences in the properties of CD and IOVD cues,
rather than motion direction. Thus, our data show that the
pattern of CD and IOVD signals are independent from each
other at the level of the cortex, and that the intrinsic differences
in the cue properties that give rise to the unique CD and
IOVD retinal computations can be resolved downstream from
the unique EEG signals that these cues provoke. Although we
matched the low-level features of our CD and IOVD stimuli
as closely as possible, they were, necessarily, different. CD and
IOVD cues are thought to drive independent computations in
the early visual system, and engage pathways with different
spatial and temporal resolutions (Shioiri et al., 2008; Czuba
et al., 2010; Wardle and Alais, 2013). A MID system that
isolates CD and IOVD pathways will be necessarily reliant
upon intrinsically different low-level stimulus properties. For
example, CD monocular dot fields contain no monocular
coherent motion energy and have a short lifetime, refreshing on
every frame (i.e., every 16.6 ms across the two eyes), whereas
IOVD dots travel short distances and have a relatively longer
lifetime of 50 ms. Further, it may be that differences in the
cortical signals generated by different eye-movement patterns
to CD and IOVD cues contribute to between-cue decoding
performance. Our data show that CD and IOVD cues give rise
to distinct patterns of cortical signals, and the independence
of these signals indicates that they would be processed via
independent pathways. From this, one might hypothesize that
neural computations involved in CD and IOVD processes are
also kept independent from each other (Harris et al., 2008;
Rokers et al., 2009).

Cross Trained Decoding at Late Stages
of the EEG Time Course
We cross-trained the decoder on the two different MID cues to
examine the crucial question of whether decoding performance
relies on shared or independent signals. We found that after
being trained on CD toward and CD away signals, the decoder
could accurately differentiate between IOVD toward and IOVD
away signals, and vice-versa, at late stages of the EEG timecourse,
beyond ∼500 ms. This important result suggests that although
the decoder must rely on unique CD and IOVD signals at the
early and mid-stages of the EEG timecourse, there appears to
be shared information at later stages of the timecourse. One
possibility is that the cross-trained decoders performance at

later stages depends on the convergence of signals involved in
MID information processing. Our decoding performance was
obtained using electrodes from across the full scalp and we do
not attempt to spatially localize where this convergence occurs.
One possibility is the existence of a mechanism that is agnostic
to differences in CD and IOVD cue properties, or possibly
fuses both velocity and disparity signals together (Movshon and
Newsome, 1996; Ponce et al., 2008). One candidate cortical
location for this general stereomotion processing mechanism
is the region in or around the human MT+ complex which
includes cells that are known to be sensitive to both lateral motion
defined from a variety of cues, as well as 3D-motion (Likova
and Tyler, 2007; Rokers et al., 2009; Huk, 2012; Czuba et al.,
2014; Sanada and DeAngelis, 2014; Kaestner et al., 2019; Héjja-
Brichard et al., 2020). The temporal integration of 3D-motion
signals has been shown to occur across hundreds of milliseconds,
from ∼150 to 1000 ms post-stimulus, with sensitivity to 3D-
motion increasing across this integration period (Katz et al., 2015)
and the behavioral integration of 3D-motion signals across time
is known to be relatively slow (when compared to lateral motion)
(Richards, 1972; Norcia and Tyler, 1984; Harris and Watamaniuk,
1995, 1996; Brooks and Stone, 2004, 2006; Harris et al., 2008; Huk,
2012). From this, combined with our relatively weak stimulus,
and typical EEG dynamics, it is reasonable to assume that the
convergence of MID signals can be measured ∼500 ms post
stimulus onset, although we reiterate, that the locus of such
convergence cannot be identified in the current study.

CONCLUSION

3D-motion direction (toward and away) and MID cues (CD and
IOVD) can be decoded from the distinct pattern of EEG signals
that they generate across the scalp. These data are consistent
with reports suggesting the existence of clusters of 3D-motion
direction selective neurons in visual cortex that may be organized
into macroscale structures (Czuba et al., 2011; Joo et al., 2016).
Further, we have shown that static disparity information can be
decoded relatively early in the EEG timecourse, but it can play
only a small, early role in CD direction decoding. Next, a MID
system that isolates CD and IOVD necessarily relies on different
low-level aspects stimulus properties, and we have shown that
CD and IOVD cues can be resolved from the cortical signals
that they provoke, suggesting that they are processed via two
direction-specific independent pathways. Finally, results from a
cross-trained decoder indicate that early stages of the EEG signal
rely upon MID cue properties, while later stages of the signal rely
on shared MID information. Overall, these data are the first to
show that CD and IOVD cues that move toward and away in
depth can be resolved and decoded using EEG, and that different
aspects of MID-cues contribute to decoding performance along
the EEG timecourse.
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