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Sensorimotor rhythm (SMR)-based brain–computer interfaces (BCIs) provide an
alternative pathway for users to perform motor control using motor imagery. Despite
the non-invasiveness, ease of use, and low cost, this kind of BCI has limitations due
to long training times and BCI inefficiency—that is, the SMR BCI control paradigm may
not work well on a subpopulation of users. Meditation is a mental training method to
improve mindfulness and awareness and is reported to have positive effects on one’s
mental state. Here, we investigated the behavioral and electrophysiological differences
between experienced meditators and meditation naïve subjects in one-dimensional
(1D) and two-dimensional (2D) cursor control tasks. We found numerical evidence
that meditators outperformed control subjects in both tasks (1D and 2D), and there
were fewer BCI inefficient subjects in the meditator group. Finally, we also explored the
neurophysiological difference between the two groups and showed that the meditators
had a higher resting SMR predictor, more stable resting mu rhythm, and a larger control
signal contrast than controls during the task.

Keywords: EEG, electroencephalogram, mindfulness, meditation, BCI, brain-computer interface

INTRODUCTION

Decades of research have sought to find alternative methods of communication between the human
brain and the outside world. With the ever-growing knowledge in the neuroscience field, scientists
have designed the brain–computer interface (BCI) to achieve this goal (Wolpaw et al., 2002; He
et al., 2020). A BCI attempts to recognize the user’s intent by decoding her/his neurophysiological
signals and then converts this intent into commands to control objects, such as a cursor on a
computer screen (Wolpaw et al., 1991; Trejo et al., 2006), a quadcopter (LaFleur et al., 2013), or
a robotic arm in space (Meng et al., 2016; Edelman et al., 2019).

One of the main goals for the BCI is to help people suffering from various kinds of
neuromuscular diseases, such as amyotrophic lateral sclerosis, stroke, and spinal cord injury
(Armour et al., 2016) to regain a certain degree of movement ability (Rebsamen et al., 2010; Ang
et al., 2015). Despite the limited ability to move, cognitive ability in this population remains partially
or fully intact. Therefore, it would be a significant improvement in the quality of life if these
individuals could use a BCI to complete daily life tasks.
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There are many types of BCI based on various recording
techniques and signals extracted. In this work, we focus
on the sensorimotor rhythm (SMR)-based BCI, which uses
electroencephalogram (EEG) to detect scalp electrical signals and
decode motor intention (Yuan and He, 2014; He et al., 2015).
The EEG-based SMR BCI has multiple merits, such as non-
invasiveness, ease of use, relatively low cost, and high temporal
resolution (He et al., 2020). This is particularly true when only
a few electrodes are used (Clerc et al., 2016). The SMR or mu
rhythm in EEG is generated by the synchronized electrical brain
activity over the motor cortex area and has a frequency range
of around 8–12 Hz (Pfurtscheller et al., 2006; Bernier et al.,
2007). In BCI applications, the frequency band centered at 12 Hz
(Royer et al., 2010; Doud et al., 2011; Cassady et al., 2014; Meng
et al., 2016, 2018; Stieger et al., 2020) was shown to be effective
in SMR control. Event-related desynchronization (ERD) occurs
when the amplitude of mu rhythm decreases in response to a
person moving or imagining moving her/his body (Pfurtscheller
and Aranibar, 1979). On the other hand, when a person stops
moving or imagining moving, the amplitude of mu rhythm
increases, which is called event-related synchronization (ERS).
SMR based BCI is a well-established BCI modality, and it has
been demonstrated that people can perform multidimensional
cursor control (McFarland et al., 2010; Meng et al., 2018),
drone control (Royer et al., 2010; Doud et al., 2011; LaFleur
et al., 2013), wheelchair control (Galán et al., 2008; Huang
et al., 2012), and robotic arm control (Meng et al., 2016;
Edelman et al., 2019) with SMR BCI.

Despite the progress of SMR-based BCI, challenges exist.
Two primary limitations of SMR-based BCI are the system’s
need for long training times and BCI inefficiency, where the
SMR BCI control paradigm may not work on around 20% of
the system’s users (Blankertz et al., 2010). The latter could be
further developed as a subject variability issue: there exists a
large variability of SMR BCI performance among the population.
Efforts have been made to investigate its cause and solution (Ahn
and Jun, 2015; Jeunet et al., 2016). For instance, Guillot et al.
(2008) found that good MI performers have an increased ability
to recruit MI-related brain network, and Sannelli et al. (2008)
found that BCI inefficient subjects usually have higher intrinsic
noise, i.e., the noise in the data which can overshadow the
class-related information; Ahn and Jun (2015) did a systematic
review of literature on SMR BCI inefficiency and found that
these subjects typically have less developed brain networks
for motor skills; Jeunet et al. (2016) further summarized the
factors influencing SMR BCI as a relationship to the technology,
attention, and spatial abilities.

Attention has been focused on developing better decoding
algorithms and recording techniques (Lotte and Guan, 2011) for
SMR BCI, i.e., from the “computer” perspective of BCI. However,
less attention has been drawn to enhancing people’s ability to
generate more decodable EEG signals, i.e., from the “brain” side.
For the latter, the high-level goal is to determine, given the same
BCI system, if there exists a subpopulation that is better able
to control it and if a certain kind of training or intervention
could be developed to equip neurotypical people with this BCI
control ability.

In the search for optimal mental training methods to
potentially improve SMR BCI control, meditation is of interest
due to its ability to alter brain plasticity and influence spatial–
temporal brain activity, which in turn, are important components
of SMR BCI control (Chan and Woollacott, 2007; Tang et al.,
2007; Moore and Malinowski, 2009; Debarnot et al., 2014).
As summarized in Debarnot et al. (2014), one of the most
important effects of meditation is enhanced attention control,
such as orienting attention (van den Hurk et al., 2010) and
conflict monitoring (Jha et al., 2007). In terms of the influence
of meditation on brain rhythms, Halsband et al. (2009) found
that in hypnotic and mindfulness meditation states, there exist
a modulation of alpha, gamma, and theta band brain rhythms,
including but not limited to the sensorimotor area, which
indicates the ability of meditation to alter motor-related spatial–
temporal brain activity. In Kerr et al. (2011a), mindfulness
training was found to enhance MEG alpha power modulation in
the primary somatosensory cortex (SI).

With growing evidence suggesting that meditation brings
enhanced attention and brain rhythm control, it is reasonable
to hypothesize that people with meditation experience would
develop a better ability to control SMR-based BCI. Indeed,
previous work has investigated the effect of meditation on SMR
BCI cursor control (Cassady et al., 2014; Tan et al., 2014,
2015; Kober et al., 2017; Stieger et al., 2020) or just generating
ERD/ERS without controlling a BCI system (Kerr et al., 2011a,b,
2013; Rimbert et al., 2019). Similar to what Tang et al. (2015)
summarized for the neuroscience aspect of meditation studies,
efforts to study the meditation effect on SMR BCI could be
divided into two categories, longitudinal studies and cross-
sectional studies:

1. Previous longitudinal studies separated meditation-naïve
subjects into a meditation group and a control group, with
the meditation group receiving meditation training and
the control group receive either active control tasks or no
specific task (Mahmoudi and Erfanian, 2006; Tan et al.,
2014, 2015; Botrel and Kübler, 2019; Stieger et al., 2020).
After that, BCI performance and/or neurophysiological
difference between the two groups was assessed. For
example, a series of studies by Tan et al. (2014, 2015)
and Ramli et al. (2019) described the effect of 4 weeks
mindfulness meditation on SMR BCI performance, that
mindfulness meditation improved BCI performance and
was correlated with activation in the frontal–parietal region
in functional magnetic resonance imaging during motor
imagery. In Mahmoudi and Erfanian (2006), the mental
practice of MI and concentration procedures improved
the offline classification of MI in multiple EEG electrodes,
such as C3 in the primary motor cortex area and F3 in
the frontal area. In Kerr et al. (2013), they discovered that
an 8 weeks mindfulness-based stress reduction training
served to optimize attentional modulation of 7–14 Hz
alpha rhythm in the primary sensory neocortex. Rimbert
et al. (2019) found that the hypnotic state changes the
sensorimotor beta rhythm during the ERD period, whereas
the ERS in the mu and beta band remains unchanged. In
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Stieger et al. (2020), an 8 weeks MBSR class improved SMR
BCI accuracy via modulation of the volitional resting-state
high alpha EEG rhythm.

2. In contrast, cross-sectional studies have investigated the
difference in BCI/neurofeedback learning between people
who already have meditation experience and meditation
naïve subjects (Cassady et al., 2014; Kober et al., 2017).
In Cassady et al. (2014), the meditation group was
shown to have better results compared with the control
group in terms of performance, learning speed, and
information transfer rate. However, most of the claims
in this study focused on the behavior difference. A more
in-depth analysis of the neurophysiological difference is
needed. Another question left unanswered is whether
meditators are also better at more complex tasks, such
as two-dimensional (2D) cursor control. A typical 2D
cursor control paradigm is achieved by having the subject
use left/right (LR) motor imagery to control LR cursor
movement, bilateral hand motor imagery to go up, and
rest to go down. Successful 2D cursor control requires
the subject to carefully balance the strength of LR motor
imagery and, therefore, is more challenging than 1D
control. Because meditators are trained to control their
attention, it is of interest to see if the BCI learning
difference between meditators and non-meditators in a
2D BCI task would be even larger compared with 1D
tasks and if there is any difference between the LR and
up/down (UD) within the 2D compared with the 1D
version of LR and UD tasks. In another study, Kober
et al. (2017) found that people who pray frequently had a
higher ability to control the SMR, but the recording was
limited to Cz electrode only, and the control dimension
was limited to 1D.

Despite the abundance of literature reporting positive effects
of meditation on SMR BCI control, there are also studies
whose results only partially support (Stieger et al., 2020) or
do not support such a hypothesis (Botrel and Kübler, 2019).
For example, Stieger et al. (2020) found that after an 8 weeks
mindfulness-based stress reduction training, subjects indeed had
significant performance improvements in the UD task (both
hands motor imagery to go up and rest to go down), but
for the LR control task (LR-hand motor imagery) the effect
was not significant. Botrel and Kübler (2019) found that week-
long visuomotor coordination and relaxation training did not
improve SMR-based BCI performance. One of the reasons for
this kind of disagreement may be a dose-effect, meaning that it
might take a longer meditation time to affect BCI learning in a
significant manner.

With these questions in mind, we recruited experienced
meditators and controls and investigated the difference in SMR
BCI learning between these two groups in both 1D and 2D
tasks. The aims for this cross-sectional study are as follows:
First, to verify the conclusions in the pilot study (Cassady et al.,
2014) that meditators had better learning in SMR BCI with
an independent investigation; second, to explore the behavior
difference between the two groups in a more complex 2D

task; and third, to investigate the neurophysiological difference
between these two groups.

MATERIALS AND METHODS

Participants
The experimental procedures involving human subjects
described in the current study were approved by the Institutional
Review Board (IRB) of Carnegie Mellon University with study
ID STUDY2017_00000430, and all participants provided written
informed consent. Subjects were recruited via flyers in the
surrounding area and an email sent out to local mindfulness
groups. We utilized a single-blind two-group experimental
design, with a meditation group and a control group. The
experimenters did not know the identity of the subject in
relation to their meditation experience throughout the whole
experiment. We achieved this blinding through the following:
(1) we asked two other researchers at our lab to refer potential
subjects (both meditators and controls) to an unblinded research
assistant (screener) and not to the blinded experimenters; (2)
these potential subjects were screened for inclusion/exclusion
by this screener whose only involvement in the study was to
conduct screening; (3) during the consent process and survey, the
experimenter asked the subject to cover any information related
to meditation experience when submitting the paperwork; thus,
the experimenter only knew information unrelated to meditation
(age, sex, name, etc.) about this subject after collecting these
documents. (4) During the experiment, the experimenter
remained unaware of the subjects’ meditation status and
avoided any conversation related to meditation with the subject
throughout the entire six sessions.

The meditation group consisted of 16 healthy subjects
(age = 38.5 ± 15.7 years) with a history of meditation practice,
as evaluated by a questionnaire regarding personal meditation
practice completed before experimentation. To be accepted into
the meditator group, individuals had to cite at least a year of
frequent and consistent practice, with most subjects having 2
or more years of consistent practice. Most of the meditators’
practices belong to the subgroup of Vipassana, Zen, Mindfulness,
and Buddhism. The control group consists of 19 healthy
individuals (age = 25.6 ± 9.4 years) with no prior meditation
experience. Both groups had no prior BCI experience. We
continually asked participants to describe their motor imagery
strategies. If these strategies diverged from the kinesthetic motor
imagery they were asked to perform, we reminded them to focus
on the sensations and intention behind the imagined motion of
their hands. We excluded one subject (identity: meditator) from
the analysis because she/he expressed resistance to performing
the required motor imagery and was not able to provide a
concrete strategy when asked. Subjects’ demographic information
is summarized in Supplementary Table 1.

Surveys to Measure Mindfulness
In the first session, we asked subjects to fill out two surveys
before the BCI experiment. Both surveys aim to measure one’s
level of mindfulness. The first survey is called the Freiburg
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Mindfulness Inventory (FMI) (Walach et al., 2006), which has
14 statements, such as “I am open to the experience of the
present moment.” The subject was asked to use a 1–4 scale to
indicate how often she/he has such experience. The FMI score
was calculated by summing up the answers to each question
with a proper recode of one question (Walach et al., 2006).
The second survey is called Day-to-Day Experiences (Brown and
Ryan, 2003), which has 15 questions, such as “I find it difficult
to stay focused on what’s happening in the present;” the subject
was asked to use a 1–6 scale to indicate how often she/he has such
experience. The Mindful Attention Awareness Scale (MAAS) was
calculated by averaging answers to each question in this Day-to-
Day Experiences survey. In both surveys, a higher score indicates
a higher level of mindfulness.

Data Acquisition and Brain–Computer
Interface Cursor Control Task
Subjects in both groups went through six sessions of BCI
training within 4–6 weeks, with at least 1 session per week. Each
experimental session lasted about 2 h, with a 9 min break in the
middle. EEG data were recorded throughout the session using
the Neuroscan SynAmps system with 64-channel EEG QuikCap

(Neuroscan Inc., Charlotte, NC). The sampling frequency was set
to 1,000 Hz, and the impedance was kept below 5 k� during
the preparation. The experimenter checked the impedance in
the break to make sure it remained below 5 k�. In addition, to
minimize the influence of artifact on the EEG data, we monitored
the behavior of the subject and the recorded waveform. We
restarted this run if we found the subject moved a lot or the
real-time EEG signal became noisy.

The experiment setup is shown in Figure 1. Each session
began with a 5 min warmup task, where the subject was
instructed to perform left- or right-hand motor imagery
by focusing on imagining the sensations and intention of
opening/closing the LR hand.

After that, the subject was asked to perform BCI cursor control
of three different tasks: LR, UD, and 2D, by moving the cursor
to the corresponding bar with motor imagery. This experiment
flow is detailed in Figures 1A,B. In the LR task, subjects were told
to imagine opening/closing the LR hand as they practiced in the
warm-up to move the cursor to the LR, to hit a bar that appears
randomly at the right or left side of the screen. The vertical
position of the cursor was fixed in the middle of the screen in the
LR task. After subjects performed three runs of LR BCI, with each
run consisting of 25 trials, a similar explanation was given for the

FIGURE 1 | Experimental setup. (A) Top: three experiment tasks and typical cursor trajectories in left/right (LR) control, up/down (UD) control, and 2D control.
Dashed lines were invisible to the subject. Bottom: example topology of mu rhythm band power in each motor imagery class. (B) Experiment flow of one session.
(C) Each trial consists of 2 s of intertrial interval, 2 s of target presentation, and 0–6 s of BCI feedback control.
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UD BCI task, except they were instructed to imagine both hands
simultaneously opening and closing to move the cursor up, and
to rest, in other words, try to clear their minds to move the cursor
down. The cursor’s horizontal position was fixed at the middle of
the screen in the UD task. After subjects performed three runs
of UD BCI, they moved onto the 2D task, in which the same
instructions were implemented to move the cursor up, down, left,
or right according to which bar appeared on the screen. In the
2D task, the cursor is free to move in any direction within the
screen boundary. After one block (three runs) each of LR, UD,
and 2D BCI, the subjects were given a 9 min break in which they
were instructed to read and rate comics by pressing a key on the
keyboard. This standard “break task” ensures that subjects use the
same approach to relax. After the break, they completed one more
block each of LR, UD, and 2D BCI. In total, at each session, a
subject completes six runs (25 trials each run, takes ∼3 min each
run) of LR, UD, and 2D tasks.

We used the standard cursor task in BCI2000 (Schalk et al.,
2004) to conduct the SMR BCI experiment mentioned earlier.
The technical details of the classifier are presented as follows:
The spectral amplitude of the small Laplacian filtered C3 and C4
electrodes were estimated using autoregressive (AR) methods in
a 3 Hz bin (Stieger et al., 2020) surrounding 12 Hz (Meng et al.,
2016, 2018). After that, for the horizontal motion, a control signal
was calculated by taking the AR amplitude difference between
two electrodes (C4 – C3), and for the vertical motion, it was
calculated by summing up the AR amplitude of two electrodes
(C4+ C3). This control signal was further subtracted by an offset
and multiplied with a gain value to make the normalized control
signal zero mean and unit variance. The pink cursor acted as the
feedback to the subject; the normalized control signal determined
its speed, and its position was updated every 40 ms. The gain and
offset values were reset when performing a new task (LR, UD,
and 2D) and after the break. As shown in Figure 1C, each trial
starts with a 2 s intertrial interval where the screen was black;
then, the yellow target bar appears randomly at one of the possible
locations for 2 s; after that, the subject was able to use MI to
control the cursor (bar still visible). The length of the feedback
control varied between 0 and 6 s and depended on if and when
the cursor hits the bar. There could be three possible outcomes
for each trial: the cursor hits the correct bar (hits, the cursor turns
yellow), the cursor hits the incorrect bar (misses, the cursor does
not change color), or the cursor does not contact any target within
6 s (timeout, the cursor does not change color).

Performance Metric
We quantify the performance using percent valid correct (PVC)
(Cassady et al., 2014; Meng et al., 2016; Edelman et al., 2019),
which is the ratio between the number of hit trials and number
of hit trials plus the number of missed trials. To reduce the
influence of large subject variability in SMR BCI, in the analysis,
we excluded outlier subjects: we compute the averaged percent
valid correct (PVC) across the six sessions for a subject as
the performance, for LR, UD, and 2D, respectively. After that,
for each task (LR, UD, and 2D), we identified any subjects
that are ± 2.5 median absolute deviations from the median
of the whole sample (Leys et al., 2013). Finally, we took the

union of subjects identified in the three tasks as the excluded
subjects. With this criterion, we identified one meditator and four
controls as outliers. Together with the subject excluded due to
not following the MI guideline (one meditator), the number of
subjects involved in the analysis is 14 meditators and 15 controls.
The information regarding the median performance and outlier
subjects’ performance is shown in Supplementary Table 2.

Offline Electroencephalogram Data
Analysis
We bandpass filtered the EEG data using a Hamming window as a
finite impulse response filter with the passband set between 1 and
100 Hz, then downsampled to 250 Hz. We identified and rejected
noisy channels with high impedance by visual inspection; then,
these channels were spherically interpolated. The EEG data were
re-referenced to a common average. We attempted to remove
potential eye blinking artifacts using independent component
analysis and a template matching procedure. In addition, we also
visually inspected trials with high data variance and excluded
these trials in the analysis, as these trials have a higher probability
of containing muscle artifact. After that, complex Morlet wavelet
convolution was used to extract the power of the mu frequency
band (3 Hz bin centered at 12 Hz).

The neurophysiological predictor or SMR predictor measures
the difference between mu band power and the 1/f noise floor
in a power-frequency plot for C3 and C4 (Blankertz et al.,
2010). Concretely, the EEG power spectrum at rest could be
fitted with the sum of a 1/f noise floor, n

(
f ;λ, kn

)
and two

Gaussian distributions, centered at mu rhythm and beta rhythm,
gα

(
f ;µα, σα

)
and gβ(f ;µβ, σβ). In this study, the power spectral

density is equal to the mean of C3 and C4 band power after
small Laplacian spatial filtering during the intertrial resting state,
combining LR conditions and UD conditions.

P̂SD
(
f ;λ, σ, k

)
= n

(
f ;λ, kn

)
+ gα

(
f ;µα, σα

)
+ gβ(f ;µβ, σβ)

n
(
f ;λ, kn

)
= kn1 +

kn2

f λ

gα

(
f ;µα, σα

)
= kαN(f ;µα, σα)

gβ(f ;µβ, σβ) = kβN(f ;µβ, σβ)

The SMR predictor (dB) is calculated individually for C3 and
C4 electrode mu rhythm band power after small Laplacian spatial
filtering.

Predictor = 10 · log10
PSD (mu)

n (mu)

In the case where the algorithm could not find a curve to fit, we
manually selected 5–10 representative data points to describe the
1/f noise floor function by following the trend of the PSD curve
and fitted these points using n

(
f ;λ, kn

)
. We discard a subject and

session pair if the PSD does not follow a 1/f decrease trend. The
percentage of data points discarded was 10.5%.

We designed a method to calculate the control signal during
task execution to be as close to the real condition as possible.
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Concretely, we first calculated the C3 and C4 electrode frequency
band power after small Laplacian spatial filtering, denoted PC3
and PC4. Then, the raw control signal was calculated using the
following equation:

CSraw,LR = PC4 − PC3

CSraw,UD = PC4 + PC3

Then, we applied a similar z-scored procedure to the raw
control signal as the BCI 2000 platform,

CSreal = G× (CSraw − offset)

where G and offset are set to make the CSreal zero mean and
unit variance. The difference between this offline z-score and the
online approach is that the latter is causal and adaptive, i.e., G and
offset is calculated via past 30 s of a window and change as time
goes on. As shown in Supplementary Figure 1, we found that
the control signal under this definition could better explain the
variability of performance than the ERD/ERS method, i.e., band
power during task execution divided by resting-state band power.

We quantify the contrast between two contexts in a task (e.g.,
left trials and right trials in LR task) using the Fisher score
(Perdikis et al., 2018).

FS =
|µ1 − µ2|√

s2
1 + s2

2

where µ1and µ2 are the means and s2
1 and s2

2 are the variance
of context 1 and context 2’s band power in one session. The
Fisher score is calculated independently for each channel, and
its topology was obtained using FieldTrip (Oostenveld et al.,
2010) toolbox; data in between-electrodes space are interpolated
in a linear fashion.

When evaluating the statistical difference between the two
groups, we noticed some outliers in subjects’ neurophysiological
metrics (SMR predictor and control signal contrast); therefore,
we identified and excluded these outliers from analysis with the
same method mentioned in section “Performance Metric.” We
did not find outliers when analyzing SMR predictor; we found
additional two meditators and one control outlier when analyzing
the resting-state EEG stability; we found an additional one
meditator and one control outlier when analyzing the LR control
signal; we found an additional one control outlier when analyzing
the UD control signal. The results obtained in Figure 5B are
obtained after excluding these additional outliers.

Statistical Analysis
We performed linear mixed-effects models per type of
performance and neurophysiological measures to investigate
the session, group, and interaction effect. lme4 package (1.1-25)
in R (4.0.3) was used to generate the linear mixed-effects
models, and p-values were computed using lmerTest package
(3.1-3), using Satterthwaite approximation for degrees of
freedom (Kuznetsova et al., 2017). Each BCI performance and
neurophysiological measure were modeled over time with a fixed

effect of session (six levels) and group (two levels, meditator
and control). Random effects include within-subject factors
of the session. Models were initially fit with the interaction of
group and time, and then, fixed effects were reduced stepwise
by excluding non-significant interaction terms/predictors and
compared using ANOVA ratio tests until this smaller model
explained the data significantly worse than the larger model
(significant Chi-squared test) (Kuznetsova et al., 2017). Other
statistical tests used in this work include rank-sum test, linear
regression, and Chi-squared tests; the details of these tests will be
explained wherever it appears in section “Results.”

RESULTS

Survey Results
In both surveys, we found meditators had higher scores than
control subjects. Concretely, the FMI score for meditators is
44.5± 4.5, whereas, for control subjects, it is 36.6± 6.7. The
difference is significant (Wilcoxon rank-sum test, Z = 3.15,
p < 0.01). The MAAS score for meditators is 4.42± 0.81,
whereas, for control subjects, it is 3.73± 0.67. The difference is
significant (Wilcoxon rank-sum test, Z = 2.53, p < 0.05). Bar
plots for the two groups’ scores are shown in Figure 2A. The
same observation also holds when including outlier subjects.
These results serve as additional support, apart from the self-
reported meditation experiences, that the meditators had higher
levels of mindfulness than the control group. In addition to
the group difference, we also calculated the correlation between
these survey results and performance. We used baseline PVC as
performance because this session is when the surveys were filled
out. The correlation between survey results and UD PVC turned
out to be significant. Specifically, for FMI, r(27) = 0.42, p < 0.05,
and for MAAS, r(27) = 0.41, p < 0.05.

Group Averaged Performance
We found that meditators achieved numerically better
performance (PVC) compared with control subjects, and
this difference was consistent throughout the six sessions. The
group averaged performance in the baseline, and the final
session is shown in Supplementary Table 3, and the averaged
performance for all sessions is shown in Figure 2.

We used a linear mixed-effects model (see section “Materials
and Methods”) to investigate the statistical difference between
the two groups in terms of group, session, and group–session
interaction effect. The session effect indicates if BCI learning
occurs for a specific task. We found a significant learning effect
in all three tasks [LR: t(144) = 2.98, p < 0.01; UD: t(28) = 2.22,
p < 0.05; 2D: t(28) = 2.84, p < 0.01]. The difference in
dimensionality is due to the difference in the final model when
performing the stepwise reduction (see section “Materials and
Methods”). However, the group effect did not show significance
[LR: F(1, 27) = 2.01, p = 0.16; UD: F(1, 27) = 2.71, p = 0.11; 2D:
F(1, 27) = 1.79, p = 0.19], indicating that there is only a numerical
superiority of meditators’ BCI performance. We also did not find
significance in the learning speed difference between the two
groups, indicated by the interaction effect [LR: F(1, 143) = 0.1,
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FIGURE 2 | Survey results and group averaged performance and learning. (A) Survey results of FMI and MAAS show that meditators have a higher level of
mindfulness than controls. Data are shown as mean ± SD. Med. is meditator, Ctrl. is control. (B) Line plot describes the group LR averaged PVC ± SEM for
mediators and controls. Violin plot describes session-averaged performance distribution, with blue horizontal line indicating mean and white dot indicating median.
(C) For UD task, (D) for 2D task, LR within the 2D task, and 2D within the 2D task. ∗ Indicates group difference with p < 0.05, and ∗∗ indicates p < 0.01, same for
subsequent plots.

p = 0.75; UD: F(1, 27) = 0.001, p = 0.97; 2D: F(1, 27) = 0.32,
p = 0.57].

Given that the 2D task is the combination of LR and UD, we
next separated the LR and UD tasks within the 2D. Interestingly,
we found that within the 2D task, meditators had a numerically
higher baseline of LR, but for the UD, these two groups were at
the same level. Further, the learning curve showed that meditators
had numerically better learning compared with controls in the
UD within 2D. Statistical analysis using linear mixed-effects
model shows that learning effect of UD within the 2D is
significant, whereas LR within the 2D is not [LR within 2D: F(1,
28) = 2.58, p = 0.11; UD within 2D: t(28) = 2.92, p < 0.01]. We
did not find the group effect to be significant [LR within 2D: F(1,
27) = 3.11, p = 0.08; UD within 2D: F(1, 27) = 0.45, p = 0.50],
as well as the interaction effect [LR within 2D: F(1, 27) = 0.21,
p = 0.64; UD within 2D: F(1, 27) = 0.28, p = 0.60].

Competency Curve
Although group averaged PVC is a good indicator of
performance, there are several drawbacks. First, it only provides
information on the overall trend of performance during BCI
learning; we still do not know how many subjects remain BCI
inefficient. Second, it does not provide information regarding
within-session learning.

To intuitively show how learning occurs in the two groups,
we plotted competency, the percentage of subjects whose PVC
passed the BCI inefficiency threshold as sessions go on. We set

the threshold as 70% for 1D control and 40% for 2D control
(Combrisson and Jerbi, 2015), but we obtain similar results
under varied thresholds. To cope with potential fluctuation of
performance, a subject passes the threshold if she/he meets one of
the following criteria: achieving an averaged PVC > threshold in
three consecutive runs or achieving an averaged PVC > threshold
in one single session (Cassady et al., 2014). The result is shown in
Figure 3.

There are two observations from this plot. First, after six
sessions of learning, the percentage of subjects passing the BCI
inefficiency threshold appears to be higher in meditators. The
percentage of non-BCI inefficient subjects is 78.5% (53.3%),
92.8% (73.3%), and 92.8% (66.7%) for meditators (controls), in
LR, UD, and 2D tasks, respectively. Therefore, in all three tasks,
meditators indeed had numerically less BCI inefficient subjects
after six sessions or 36 runs of learning, but Chi-squared tests did
not reveal a significant difference for the competency between
two groups [X2(1, N = 29) = 2.04, 1.93, 3.02, p = 0.15, 0.16
and 0.08 for LR, UD, and 2D]. Second, regarding the speed
of learning, the LR and the UD plot showed a steeper decline
during the initial six runs, i.e., the baseline session. This means
that the learning speed of meditators appears to be faster than
the control subjects. Besides, although previous studies showed
that BCI learning occurs on a session-by-session basis (Meng
et al., 2016), our results showed that learning could also occur
within a 2 h session. We also noticed that compared with 1D
tasks (LR and UD), both groups in the 2D task showed a similar
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FIGURE 3 | Competency curves for (A) LR, (B) UD and (C) 2D tasks. Competency describes the percentage of subjects passing the performance threshold (70%
for 1D and 40% for 2D). Each session has 6 runs for one task, accounting for 36 runs in total throughout the 6 training sessions.

learning curve in the first 20 runs, i.e., in the first three sessions.
After that, meditators showed a numerically better learning speed
compared with control subjects. This observation is consistent
with the previous group average performance in the sense that
in UD within the 2D task, meditators had numerically larger
improvement starting from the third session. In addition, it also
shows that 2D control is indeed more difficult than 1D control,
requiring more training time.

Group Averaged Topology During Task
Figure 4 shows the LR and UD task Fisher score topology
(Perdikis et al., 2018) for meditators and controls. From the
plot, a gradual increase of motor cortex area high alpha power
could be seen in both groups, indicating that both groups were
able to increase the contrast of two opposite conditions through
voluntary motor imagery as learning progresses. However, this
plot did not provide quantitative information regarding whether
meditators had a higher baseline of C3 and C4 high alpha power
or exhibited better learning. We also did not find electrode
clusters with a significant difference between the two groups with
cluster-based permutation tests (Stieger et al., 2020). To further
investigate the effect of meditation experience on these quantities,
we looked into the SMR predictor during the intertrial resting
state, mu power variability at rest, and control signal contrast
during task execution.

Neurophysiological Predictor
Blankertz et al. (2010) found that in the resting state power
spectral density plots of C3 and C4 electrodes, the difference
between mu rhythm peak and noise level baseline is a significant
predictor of the BCI performance. Here, we tried to investigate
the difference in SMR predictor between meditators and controls.
As shown in Figure 5A, we first fit a linear regression model
between the SMR predictor and PVC. We found that in the LR
task, the correlation coefficient between SMR predictor and PVC
is r(153) = 0.13, p = 0.11, and in the UD task, r(153) = 0.20
with p < 0.05. Our correlation coefficient was smaller than
that of Blankertz et al. (2010). The difference might be due to
the task design, subject variability, or it could be due to the
fact that Blankertz et al. (2010) recorded a 2 min resting state,

whereas, here, we used multiple short pretrial segments. We next
asked if the session, group, and interaction effects exist in the
SMR predictor. We found that the session effect is significant
[t(125) = 2.42, p < 0.05], but we did not find the group and
interaction effects to be statistically different between meditators
and controls [group effect: F(1, 27) = 3.29, p = 0.08; interaction:
F(1, 124) = 0.001, p = 0.96]. However, as shown in Figure 5B,
a numerical difference between the meditator group and the
control could be observed.

Variability of Resting
Electroencephalogram Mu Rhythm
Another perspective of investigating the resting state difference
between meditators and controls is the stability of the EEG
pattern, i.e., the mu rhythm in the SMR BCI setting. Sannelli
et al. (2008) pointed out that BCI inefficient subjects usually
have higher intrinsic noise. Specifically, this means that the
presentation of noise in EEG band power overshadows the useful
information. In our study, a relevant measurement of noise
could be the variability or stability of EEG mu rhythm, and we
hypothesize that this is related to the performance. Here, we
used the coefficient of variation (CV) (Brown, 1998) to measure
variability: the ratio of intertrial resting-state EEG mu power
standard deviation and its mean. The lower the value, the more
stable the EEG pattern is. We indeed found that the stability is
negatively correlated with the performance [LR: r(172) = −0.19,
p < 0.05, UD: r(172) =−0.18, p < 0.05], when excluded potential
outlier points, the relationship between LR PVC and stability
is still significant [LR: r(154) = −0.17, p < 0.05], whereas for
UD, it is not [UD: r(154) = −0.13, p = 0.11], indicating that
the correlation is weak, especially for UD task. This CV did not
show session, group, or interaction effect [session effect: F(1,
129) = 0.34, p = 0.55; group effect: F(1, 24) = 1.36, p = 0.25;
interaction: F(1, 128) = 0.63, p = 0.42]. These results are shown
in Figures 5C,D.

Control Signal Baseline and Learning
Given the behavior difference described in the previous section,
the next question to ask is whether meditators exhibit better
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FIGURE 4 | Fisher score topology for meditators and controls during (A) LR and (B) UD task as session goes on. Fisher score describes the mu rhythm contrast
between two opposite contexts in a task (e.g., left trials and right trials in LR task, or up trials and down trials in UD task).

overall performance and learning of 1control signal. Like the
online scenario (see section “Materials and Methods”), we
computed the control signal as the difference of z-scored C4
power and C3 power (for LR) or summation of z-scored C4
power and C3 power. The 1control signal is the difference
of control signal between two opposite trial types (LR and
UD). Figures 5E,F show the group averaged 1control signal
as sessions go on. We noticed a session effect in the UD
1control signal [t(27) = 2.05, p < 0.05] but not the LR 1control
signal [F(1,134) = 0.96, p = 0.32]. However, we did not notice
significance in group [LR: F(1,25) = 0.68, p = 0.41; UD: F(1,
26) = 1.26, p = 0.27] or interaction effect [LR: F(1,133) = 0.71,
p = 0.39; UD: F(1, 26) = 0.09, p = 0.75].

DISCUSSION

Reducing the training time and BCI inefficiency is critical
for the application of SMR-based BCI. Although prior studies
have tried to solve this problem from the “brain” side of
BCI by investigating the effect of meditation experience on
SMR BCI learning, the relationship between these two is still
not comprehensive. First, due to the large variability in the
type and duration of meditation, more studies are needed to
confirm the existence of such an effect. Second, it is still unclear
whether and to what extent meditators are better able to do
more complex tasks than 1D control. Third, a more thorough
investigation of the neurophysiological difference between these
two groups is needed.

Our results provide insights into the effect of long-term
meditation experiences on SMR-based BCI. Concretely, we found
that level of mindfulness is significantly correlated with the SMR
BCI performance in the UD task, and experienced meditators
had numerically higher overall BCI performance compared
with meditation naïve subjects. We also found that there were
numerically fewer BCI inefficient subjects remaining after six
sessions of learning. As for task complexity, we extended the
control paradigm to a more complex 2D cursor control task.

We found a similar trend when separating the LR and UD tasks
within the 2D control, that meditators had numerically higher LR
performance within the 2D task than controls. We also found that
although meditators and controls started at approximately the
same level of UD performance within the 2D task, numerically,
meditators exhibited better learning and resulted in higher
improvement than controls. Finally, neurophysiology analysis
revealed a numerical difference between the SMR predictor,
resting mu power stability, and UD control signal. Nevertheless,
the statistical significance mainly lies in the learning of the
task, i.e., subjects statistically improved their BCI performance
after learning; we did not find that meditators statistically
outperformed control subjects in terms of averaged performance
and learning speed. As for the task difficulty and learning, we
found that although the 1D version of LR and UD tasks both
have a significant learning effect, in 2D, only the UD part showed
significant learning. In terms of the 1control signal, we also
found a significant learning effect of UD rather than LR. This
observation is in agreement with Stieger et al. (2020) and suggests
that the neurophysiological processes involved in learning the
UD task (motor imagery vs. rest) could be easier to learn than
the LR task (left motor imagery vs. right motor imagery).

It should be noted that our experimental task is consistent
with prior work (Cassady et al., 2014) in terms of the platform
(BCI 2000) and 1D BCI task design. However, there are several
points that this prior work did not address: (1) Most of their
claims were focused on the behavioral difference, including
PVC and competency; the analysis on the neurophysiological
difference between the two groups was limited. We added
the electrophysiological topology, SMR predictor, mu stability,
and control signal analysis to this framework, which could
better explain the neurophysiological difference between the two
groups. (2) Cassady and colleagues’ work did not implement 2D
control tasks, which represents a more challenging task. Although
by design, the 2D task is the combination of LR and UD control,
in real-time BCI control, it is more challenging because subjects
need to carefully maintain the cursor position while moving the
cursor in the prompted direction. As meditators are better able
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FIGURE 5 | (A) Regression between SMR predictor and PVC for UD task. Red line is regression line. For LR the correlation is not significant (plot not shown). (B)
Group averaged SMR predictor for the meditator group and control group. Violin plot shows the session-averaged result. (C) Regression between resting-state
stability and PVC for LR task. For UD task the correlation is only significant before excluding outliers (plot not shown) (D) Group averaged stability for the meditator
group and control group. Violin plot shows the session-averaged result. (E,F) Group averaged 1 control signal for (E) LR and (F) UD. Violin plot shows the
session-averaged result.

to control their attention, they might perform even better than
controls compared with 1D tasks. Currently, we are not aware
of prior literature explicitly investigating the 2D cursor control

of long-term meditators and controls. Therefore, it is of interest
to see if meditators would also be better at the 2D task, how
much they outperform the controls, and if there is any difference
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between the LR and UD within the 2D compared with the 1D
version of LR and UD tasks. (3) It is known that there exists
a large variability of SMR BCI performance in the population.
Apart from the literature that reports the positive influence of
meditation on SMR BCI control, we are also aware of literature
that only partially supports or does not support the hypothesis
that people with meditation experience would demonstrate better
SMR BCI control (Botrel and Kübler, 2019; Stieger et al., 2020).
Therefore, to make a claim more rigorous, it is important to show
the replicability of results.

Our study serves to confirm and extend this finding by
conducting experiments at a different location and time with
independent subjects and experimenters. Specifically, although
we generally found that meditators on average outperformed
control subjects by 5–10% PVC, we did not find a statistical
difference between the two groups in terms of overall
performance (as shown in the group effect) and learning speed
(as shown in the interaction effect), and the percentage of BCI
inefficient subjects in these two groups was not statistically
different (although the p-value was small). The difficulty of
getting statistical significance could be due to the following
two reasons: (1) Meditation experience is not the determining
factor for generating SMR, and the effect is weak. (2) The
variability among SMR BCI performance is large, thus requiring
a larger sample size. For example, in Stieger et al. (2020),
they implemented twice as large a sample size as us, but
this requires much larger efforts to acquire. Therefore, our
work updates the community about “how much” meditators
perform better than meditation naïve people at SMR BCI
and could serve as a reference for researchers who would
like to recruit experienced meditators to obtain a better
SMR BCI control.

Nevertheless, it is still of interest to discuss the potential
cause of this meditation effect, as it could provide insight into
what factors do influence BCI performance: The long-term
meditation effect on SMR BCI could be due to the plasticity
introduced by meditation experience. For example, one of the
main benefits of mindfulness meditation is enhanced attentional
control (MacLean et al., 2010). In the SMR BCI task, subjects are
instructed to focus on or pay attention to the motor intention,
which could be regarded as a specific type of attention control.
Therefore, the prolonged meditation practices might serve as
additional “training time” and cause the meditator group to have
enhanced BCI performance. Future work along this line should
investigate if neurotypical people are also able to improve SMR
BCI control, apart from UD tasks (Stieger et al., 2020), with more
extended meditation training.

An alternative explanation would be the preexisting difference
in brain structure, personality, etc., for people who choose to
meditate for years (Tang et al., 2015). In other words, the
subpopulation who choose to meditate for years may have
attributes that contribute to a successful SMR BCI control.
Nevertheless, the research focusing on SMR BCI control ability
for people with different characteristics is still limited, and future
work on investigating the impact of these multidimensional
and interrelated personal attributes might reveal more details of
SMR BCI control.

The presence of BCI proficient subjects is also of importance
to study. Multiple studies have shown that there exists a certain
portion of subjects who are able to control the SMR BCI with very
high accuracy the first time they use this technology (Edelman
et al., 2019; Stieger et al., 2020). In our study, we quantified
these subjects by the outlier exclusion criteria described in
section “Materials and Methods.” See Supplementary Table 2
for the details of these outliers’ performance. We found five
subjects quantified as outliers; all were BCI proficient subjects.
Interestingly, we found that there is only one meditator but
four controls among them. This phenomenon is interesting
because (1) it points out that meditation is not the determining
factor of BCI proficiency, as a large portion of outliers are
controls; (2) given that controls have numerically lower BCI
performance and more BCI proficient subjects, larger variability
might exist within the population with no meditation experience.
Although more data are needed to validate this observation,
it could be another perspective to investigate the effect of
meditation on SMR BCI.

EEG resting mu rhythm variability and SMR BCI. In this
study, we found that the resting EEG coefficient of variation
(CV) is related to SMR BCI performance and could serve as
an SMR BCI indicator, such as the SMR predictor (Blankertz
et al., 2010). However, going back to the central question of
finding a training paradigm to help prepare subjects for SMR
BCI control, such an indicator is not optimal due to the
lack of a clear training method, i.e., the training procedure
of reducing resting EEG variance is not well established. We
believe at least two potential research directions could be inspired
by our work given the numerically more stable resting-state
EEG signals of the meditator group: (1) Validation of the
effect of resting-state EEG signal on SMR BCI performance
by an independent investigator and BCI system; (2) A further
investigation of the relationship between meditation training and
resting-state EEG stability through a longitudinal perspective,
i.e., if people could gain more stable resting-state EEG signal
through meditation training. Research along this line could
answer both “what causes the SMR BCI performance variation”
and “how to improve SMR BCI,” which we believe is of high
practical value.

Potential influence of presentation of the three tasks. In our
study, the order of the three tasks is fixed for all subjects, i.e.,
LR followed by UD, followed by 2D. The fact that they are not
randomized could influence the performance because subjects are
usually more concentrated on the early phase of the experiment.
Nevertheless, we believe the current study design is still of benefit
to the question we are trying to address: if there exists a difference
in learning within a task between meditators and controls. It
would be fairer to compare the performance of a task given a
similar level of tiredness. On the other hand, the randomized
task design could be used to more rigorously investigate if the
learning between different tasks is different, but it should also be
noted that a larger sample size would be needed because of the
randomized design.

Another concern regarding studying these two distinct groups
is the effect of age and sex on our results. Although we tried
our best to find age-matched controls for the meditators, the
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meditators were on average 38.5 years old, and the controls were
on average 24.8 years with a 13.7 years difference. One might
argue that if meditators in our sample were more senior, this
might affect our conclusion. However, we did not find evidence
of significant correlations between age and performance, age and
1control signal, or age and SMR predictor (see Supplementary
Table 4). These results suggest that the influence of age on our
BCI system is not significant. As for sex, we have six females and
eight males in the meditator group and 11 females and four males
in the control group. Randolph (2012) found that females could
be better at BCI tasks, but in our BCI setting, we did not find
a significant difference in LR, UD, and 2D performance or SMR
predictor between male and female subjects (see Supplementary
Table 4). Nevertheless, this insignificance could also be due to the
insufficient sample size, and future work along this line should
either try to recruit a larger number of samples to validate the
effect of age and sex or try to recruit subjects with a more
balanced age and sex.

CONCLUSION

In this study, we have examined the behavior and
neurophysiological differences between experienced meditators
and control subjects. We found evidence supporting that long-
term meditation experiences could influence SMR BCI in terms
of averaged performance, SMR predictor, resting-state mu
stability, and control signal during task execution. This finding
has implications on enhancing the “brain” side of SMR BCI and
may help overcome the limitations of SMR BCI technology, such
as long training time and BCI inefficiency.
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Supplementary Figure 1 | Comparison of two methods to compute the 1control
signal during task execution. The traditional method to quantify how EEG band
power changes during task execution is event-related desynchronization.
Concretely, the control signal under the ERD definition would be band power
normalized by the resting state alpha activity. Here we argue that the control signal
using the z-score method would be a better metric by showing that it explains
more performance variability. (A) in LR, the correlation coefficient for regression
between 1control signal and PVC was 0.70 in the ERD method and 0.8 in the
z-scored method, p < 0.05, (B) for UD it was 0.67 and 0.82, p < 0.05.

Supplementary Figure 2 | Violin plot for performance and SMR. The violin plot
provides more detailed information regarding the mean, median and distribution of
the data. (A) for LR PVC, (B) for UD PVC, (C) for 2D PVC, (D) for SMR predictor,
(E,F) for LR and UD 1 control signal. The blue/red dots represent everyone’s
performance, the white dot indicates the median, the blue/red horizontal lines
represent the mean, and the violin-like envelop represents the distribution density.
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