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Neuropsychiatric diseases, such as mood disorders, schizophrenia, and autism,
represent multifactorial disorders, differing in causes, disease onset, severity, and
symptoms. A common feature of numerous neuropsychiatric conditions are defects
in the cortical inhibitory GABAergic system. The balance of excitation and inhibition
is fundamental for proper and efficient information processing in the cerebral cortex.
Thus, altered inhibition is suggested to account for pathological symptoms like
cognitive impairments and dysfunctional multisensory integration. While it became
apparent that most of these diseases have a clear genetic component, environmental
influences emerged as an impact of disease manifestation, onset, and severity.
Epigenetic mechanisms of transcriptional control, such as DNA methylation, are known
to be responsive to external stimuli, and are suspected to be implicated in the
functional impairments of GABAergic interneurons, and hence, the pathophysiology
of neuropsychiatric diseases. Here, we provide an overview about the multifaceted
functional implications of DNA methylation and DNA methyltransferases in cortical
interneuron development and function in health and disease. Apart from the regulation
of gamma-aminobutyric acid-related genes and genes relevant for interneuron
development, we discuss the role of DNA methylation-dependent regulation of
synaptic transmission by the modulation of endocytosis-related genes as potential
pathophysiological mechanisms underlying neuropsychiatric conditions. Deciphering
the hierarchy and mechanisms of changes in epigenetic signatures is crucial to develop
effective strategies for treatment and prevention.
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INTRODUCTION

Neuropsychiatric and neurological diseases, like schizophrenia, autism spectrum disorder (ASD),
and epilepsy, represent multifactorial disorders, which seem to emerge from a combination
of both, genetic predisposition and environmental impacts. For these disorders, evidence was
provided that insults during development can likewise contribute to disease manifestation
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GRAPHICAL ABSTRACT | Main conclusions of the minireview.

(Tsuang et al., 2001; Brown, 2011; Risch et al., 2014; Bölte
et al., 2019). Considering the observation that numerous disease
susceptibility genes are linked to neurodevelopmental processes
has caused a debate whether schizophrenia, ASD, and epilepsy
should be classified as neuropsychiatric or neurodevelopmental
diseases (Bolton et al., 1998; Price et al., 2000; Lewis and Levitt,
2002; DiCicco-Bloom et al., 2006; Tuchman and Cuccaro, 2011).
Indeed, the age at disease onset can vary tremendously, ranging
from patients being few months to several years old. Besides
genetic causes (Krebs et al., 2000; Klei et al., 2012; Pourcain
et al., 2018), environmental contributions might provide an
explanation for the differing onsets as well as for the various
degrees of disease severity.

Epigenetic mechanisms of transcriptional control, such as
histone modifications, DNA methylation, and non-coding RNAs,
provide an attractive hypothesis for the causal relationship of
extrinsic incidents and the afflicted persons’ disease development.
DNA methylation was reported to be affected distinctively
in different neuronal subsets across various neuropsychiatric
conditions (Feng and Fan, 2009; Gräff et al., 2011), and emerges
to mediate a broad spectrum of biological effects. For this,
we focus on DNA methylation here. DNA methylation was
traditionally considered a repressive epigenetic mark, impeding
transcription factor binding either directly, or indirectly by
the action of methyl-CpG-binding domain proteins (Curradi
et al., 2002). This view has been challenged by recent studies,
suggesting that DNA methylation could also create new motifs
for transcription factor binding sites in addition to interaction
sites for histone modifying complexes (Smith and Meissner,
2013; Jang et al., 2017). Moreover, DNA methylation is relevant
for alternative promoter choice and alternative splicing, giving
rise to different protein isoforms (Maunakea et al., 2010, 2013).

As DNA methylation was reported to be changed in response
to altered neuronal activity (Guo et al., 2011), it could likely
mediate or contribute to the integration of external cues
into pathological cell features, resulting in impaired neuronal
functionality. Moreover, DNA methylation is known to act on
diverse aspects of neuronal development, such as differentiation,
migration and survival regulation (Hutnick et al., 2009; Chestnut
et al., 2011; Pensold et al., 2017; Symmank and Zimmer,
2017), supporting the assumption that it might further be
implicated in or mediate the developmental contribution to
disease manifestation.

DNA methylation is dynamically regulated by DNA
methyltransferases (DNMTs) and ten-eleven translocation
(TET) proteins. While DNMTs catalyze cytosine methylation,
TET proteins initiate active demethylation by oxidizing 5mC–
5hmC and further oxidation forms, which are then actively
demethylated by thymine DNA glycosylase (TDG)-mediated
base excision repair (Ito et al., 2011; Kaas et al., 2013; Kohli and
Zhang, 2013; Wu and Zhang, 2014).

DNMT1 and DNMT3a are the two main DNMTs being
expressed in developing and adult neurons. Apart from cell fate
specification, neuronal migration, and survival regulation during
brain development, DNA methylation and DNMTs were reported
to regulate synaptic function and plasticity, being involved in
learning and memory regulation (Levenson et al., 2006; Nelson
et al., 2008; Meadows et al., 2015, 2016; Sweatt, 2016, 2017).
Thereby they seem to exert in part redundant (Feng et al., 2010)
but also distinctive functions (Morris et al., 2016). Similarly,
TET enzymes were identified to regulate neuronal development
(Santiago et al., 2014), synaptic plasticity and memory extinction
(Rudenko et al., 2013), as well as gene expression in response to
global synaptic activity changes (Yu et al., 2015).
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Dysregulated expression of DNMTs and TETs, as well
as alterations in both, DNA methylation and demethylation
networks, were found in brains of patients suffering from
different neuropsychiatric diseases including schizophrenia and
ASD, but also epilepsy (Huang and Akbarian, 2007; Zhubi
et al., 2009; Guidotti et al., 2011; Dong et al., 2012; Grayson
and Guidotti, 2013; Guidotti and Grayson, 2014; Benes, 2015).
Based on their implications in healthy brain development and
function, it is conceivable that disease-related changes in DNA
methylation and demethylation, as well as DNMT and TET
function contribute to the symptoms seen in these diseases.

Such symptoms include substantial restrictions in learning
and memory formation, disorientation, hallucinations,
and problems with communication, which point toward
mayor impairments regarding the patients’ sensory cortical
information processing. Indeed, one crucial hallmark of
neuropsychiatric diseases is defective multisensory integration,
which is important for perception, cognitive processing, and
complex behaviors, and might thus be the basis for the former
mentioned symptoms.

Multisensory processing is known to critically rely on
the proper function of inhibitory gamma-aminobutyric acid
(GABA) – containing interneurons in the cerebral cortex (Olcese
et al., 2013), which synchronize surrounding glutamatergic
pyramidal neurons, enabling local neural assemblies (Hensch,
2005; Klausberger and Somogyi, 2008).

The group of cortical inhibitory GABAergic interneurons
is enormously diverse in matters of morphological, molecular
and functional features (Tremblay et al., 2016). The most
abundant subset of cortical interneurons are parvalbumin
(PV)-expressing interneurons, which include the fast-spiking
chandelier and basket cells (Rudy et al., 2011). Due to
the essential role inhibitory interneurons have in cortical
information processing (Defelipe et al., 2013), deficits in the
development and/or function of GABAergic interneurons are
likely implicated in causing or mediating the pathological
symptoms in neuropsychiatric diseases. In support of that,
alterations in the cortical GABAergic system represent a common
denominator of different neuropsychiatric disorders, and human
and mouse genetic studies provided evidence for the critical
role of altered GABAergic circuit formation in schizophrenia,
epilepsy, and autism (Marín, 2012). Especially for schizophrenia
and ASD, disturbed interneuron development would explain
a variety of the associated pathological symptoms (Lewis and
Levitt, 2002; Marín, 2012).

Of note, alterations in DNA methylation signatures of
GABA-related genes and/or changed expression of DNMTs
in GABAergic interneurons were reported for diverse
neuropsychiatric diseases (Veldic et al., 2004; Guidotti
et al., 2011). Given that DNMTs and DNA methylation not
only regulate cortical interneuron functionality (Pensold
et al., 2020) but also their development (Pensold et al.,
2017; Symmank et al., 2018, 2020), an implication of altered
DNA methylation in inhibitory interneurons for disease
manifestation seems plausible. On the other hand, a dysregulated
epigenetic machinery could also constitute a secondary effect
of disease progression. To explore the potential of epigenetic

key regulators as targets for therapeutic interventions, we need
to draw a conclusive picture, shedding light on the detailed
mechanisms underlying transcriptional dysregulation and
impaired physiology of the different neuronal subtypes in
neuropsychiatric disorders.

DEFECTS OF THE GABAERGIC SYSTEM
CONTRIBUTE TO NEUROPSYCHIATRIC
DISORDERS

In this paragraph, the evidence for the implication of GABAergic
defects in different neuropsychiatric and neurological diseases
will be discussed in more detail.

Altered levels of GABA and GABA-mediated inhibition
were found in vivo using magnetic resonance spectroscopy
(MRS) in patients suffering from epilepsy or depression
(Chang et al., 2003), and in brain tissue of epileptic patients
(Treiman, 2001). Moreover, changes in GABAergic function
became apparent in genetic and acquired animal models for
epilepsy (Treiman, 2001). Concordantly, both GABA antagonists
and therapeutics, that downregulate GABA synthesis, can
elicit seizures in otherwise unaffected patients. On the other
hand, GABA agonists and GABA-mimetic agents act as
anticonvulsants (Treiman, 2001) and antidepressants (Sanacora
et al., 2000), underlining the implication of GABA in eliciting
neurological symptoms.

Altered GABA levels were further detected in post mortem
brains of schizophrenia patients (Benes, 2015). In line with
this, people suffering from schizophrenia were found to
have reduced inhibitory interneuron numbers (Bakhshi and
Chance, 2015). On a molecular level, the expression levels
of GAD67 (an isoform of the GABA-producing glutamate
decarboxylase) and GAT1 (a GABA membrane transporter)
mRNAs were found to be noticeably decreased (Lewis et al.,
2005). Accordingly, inhibitory cortical interneurons displayed
lower neurotransmitter levels and reduced firing capacities
in these patients. The following reduction of inhibition of
excitatory neurons leads to a systemic disinhibition, resulting
in abnormally high activity levels (Bakhshi and Chance,
2015). These aberrant properties were particularly striking
in the dorsolateral prefrontal cortex (DLPFC). Additionally,
a reduction of REELIN on mRNA and protein levels was
evident (Impagnatiello et al., 1998). Under physiological
conditions, REELIN mediates neuronal migration and
positioning (Franco et al., 2011; Sekine et al., 2014). A mis-
positioning of neurons in DLPFC might contribute to
personality changes, e.g., expressed as extremely disorganized
behavior and paranoid thinking, and impairments on tasks
of executive function seen in schizophrenic patients (Bakhshi
and Chance, 2015). Furthermore, working memory and
attention deficits as well reflect dysfunctional DLPFC activity
(Lewis et al., 2004, 2005).

Research on the molecular basis of ASD embraces both
investigating ASD and underlying causes in general as well
as the role of individual genes, whose aberrant expression or
function lead to ASD as a comorbidity. In patients suffering
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from ASD, several genetic variations were identified as potential
causative factors (Marín, 2012). Albeit some of the affected
genes are expressed ubiquitously in the brain, restricting the
expression of mutated genes to the GABAergic system is already
sufficient to induce the expected phenotype, involving stereotypic
and compulsive behavior, motor dysfunction and changes in
social behavior (Chao et al., 2010). Also, in different mouse
models of ASD, a reduced number of inhibitory interneurons
throughout the neocortex was found as a common denominator
(Gogolla et al., 2009). Based on this it is not surprising
that ASD patients have a high comorbidity with epilepsy
(Canitano, 2007). Altered levels of GABA and GABA-related
synaptic transmission in ASD patients are probably due to
the reported changes in mRNA and protein levels of different
GABA-receptor-subunits (Fatemi et al., 2010), and a decrease
of available GABA synthesizing enzymes GAD65 and GAD67
(Coghlan et al., 2012).

Overall, the described changes of the GABAergic system
in the pathological context render neuropsychiatric diseases
“interneuropathies”. In addition to working memory,
the GABAergic system decisively influences multisensory
integration (Olcese et al., 2013), which is virtually inoperable
in patients with neuropsychiatric diseases. Multisensory
processing is a key feature of higher cognitive power,
enabling an individuum to form coherent multimodal
objects out of spatio-temporal cohesive inputs. The ability
of primary and higher cortical areas to integrate unisensory
information and build a meaningful representation of
events is the basis of many cognitive capacities such as
learning and the expression of behavior (Murray et al.,
2016). Hence, impairments in interneuron development and
function as seen in neuropsychiatric diseases likely affect
multisensory processing. Thus, the described aberrations in the
GABAergic system in patients suffering from neuropsychiatric
conditions provide a potential explanation for many of the
psychiatric symptoms.

How are these aberrations in the GABAergic system caused
or mediated? There is increasing evidence that epigenetic
mechanisms of gene regulation like DNA methylation in
inhibitory GABAergic interneurons are implicated in the
pathophysiology of neuropsychiatric diseases like schizophrenia
and autism (Huang and Akbarian, 2007; Connor and Akbarian,
2008). To understand the relevance DNMTs and DNA
methylation have in the etiology of neuropsychiatric diseases,
their implication in interneuron development and adult function
in the healthy brain has to be dissected.

DNMT FUNCTION IN INTERNEURON
DEVELOPMENT

DNA methyltransferase-dependent DNA methylation
in developing interneurons seems to be implicated in
schizophrenia, as prenatal stress in mice elevates Dnmt1
and Dnmt3a expression in GABAergic interneurons and induces
behaviors indicative of a schizophrenia-like phenotype in their

offspring (Matrisciano et al., 2013). Neuronal development is
a multifaceted process involving differentiation from neural
progenitor cells, migration of post-mitotic neurons to their target
regions, morphological maturation, and synapse formation.
While in the dorsal telencephalon DNA methylation has been
proposed to control the neurogenic versus glial cell fate in cortical
progenitors (Miller and Gauthier, 2007), such investigations have
not been executed so far for the basal telencephalon, from where
inhibitory interneurons originate.

At post-mitotic level, DNMT1 was described to regulate
cortical interneuron migration by promoting the migratory
morphology and survival (Pensold et al., 2017) in part through
modulating Pak6 and Lhx1 expression as downstream targets
(Symmank et al., 2018, 2019, 2020). Interestingly, these genes
are DNA methylation-independently regulated by DNMT1 via
a crosstalk with histone modifications (Symmank et al., 2019,
2020). In line with this, DNMTs and DNA methylation were
further shown to be essential for the maturation of diverse other
neuronal subtypes (Fan et al., 2001; Hutnick et al., 2009; Chestnut
et al., 2011; Rhee et al., 2012), including cortical excitatory
neurons (Hutnick et al., 2009; Feng et al., 2010), and dentate gyrus
neurons (Noguchi et al., 2016).

DNA METHYLATION AND DNMTs IN
INTERNEURON FUNCTIONALITY IN
HEALTH AND DISEASE

Alterations in DNA methylation signatures of synapse- and
GABA-related genes were reported for ASD (Nardone et al.,
2017) and schizophrenia (Costa et al., 2003; Veldic et al.,
2004; Ruzicka et al., 2007). The pathophysiology of the Rett’s
syndrome, a form of ASD with symptoms like impaired
language skills, cognitive deficits, and stereotypic behavior
(Chahrour and Zoghbi, 2007), can be traced back to a
loss-of-function mutation of methyl-CpG-binding protein 2
(MECP2; Amir et al., 1999). Consequently, a systemic MECP2
knockout reproduces many of the neurological symptoms of
Rett’s syndrome in mice (Chen et al., 2001; Guy et al.,
2001). Strikingly, most of the symptoms can already be
seen when MECP2 is deleted only in GABAergic cells
(Chao et al., 2010), resulting in a defect of GABAergic
synapses (Medrihan et al., 2008). This underlines the functional
relevance of DNA methylation in GABAergic interneurons for
neuropsychiatric diseases.

Changed DNA methylation signatures in GABAergic
interneurons were further reported for schizophrenia
patients, with genes like REELIN and GAD1, relevant for
GABAergic neurotransmission as well as interneuron function
and development, displaying elevated DNA methylation
levels and reduced expression, being suggested to account
for impaired interneuron function (Veldic et al., 2004;
Ruzicka et al., 2007).

That DNMT1-dependent DNA methylation affects cortical
interneuron functionality, was recently shown in mice. Dnmt1
deletion in PV interneurons leads to increased inhibition,
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which however, seems not to be primarily caused by DNA
methylation-dependent regulation of GABA- or synapse-
related genes (Pensold et al., 2020). Instead, repressive
DNMT1-dependent DNA methylation was identified to act
on endocytosis-related gene expression in parvalbuminergic
cortical interneurons. Functional validation experiments
proposed that DNA methylation catalyzed by DNMT1
restricts clathrin-mediated endocytosis at pre-synapses,
and through this synaptic vesicle recycling and GABAergic
transmission (Pensold et al., 2020). Data obtained from human
hippocampal biopsies of patients with temporal lobe epilepsy
revealed a correlation between DNA methylation-dependent
transcriptional regulation of endocytosis-related genes with the
patients’ seizure rates (Pensold et al., 2020). This corroborates the
connection between DNA methylation, endocytosis regulation
and synaptic functionality.

DNA methylation-dependent regulation of endocytosis
represents a novel mechanism for orchestrating synaptic
transmission and might help us understand the pathophysiology
of disorders characterized by abnormal synaptic transmission,
as seen in different neuropsychiatric disorders (Ramocki and
Zoghbi, 2008; Südhof, 2008). In support of this, it was recently
reported that in addition to pyramidal neurons, PV cells
in the DLPFC of schizophrenia patients display significant
transcriptional changes of genes related to clathrin-mediated
endocytosis signaling (Enwright et al., 2018). Another study
analyzed genome-wide DNA methylation signatures in the
frontal cortex of subjects diagnosed with schizophrenia and
control subjects (Wockner et al., 2014). In cortical tissue of
schizophrenia patients, significant DNA methylation changes
were determined for genes related to endocytosis, including
CLTC, DNM1, DNM3, RAB7A, WIPF1, ZFYVE9, HGS, SPG20
and RAC1 (Wockner et al., 2014). These genes were identified
to be transcriptionally regulated by DNMT1-dependent DNA
methylation in cortical PV interneurons in mice (Pensold
et al., 2020). This proposes that DNA methylation-mediated
alterations in endocytosis-related gene expression seem to be
implicated in the pathophysiology of schizophrenia, which
could consequently contribute to the impaired synaptic
functionality in addition to the reported changes in GABA-
related gene expression. However, the latter could alternatively
represent a secondary consequence of dysregulated DNMT
function to compensate for endocytosis-mediated alterations of
synaptic transmission.

The observed changes in DNA methylation signatures in
schizophrenia were hypothesized to be mediated by increased
expression of DNMT1, as elevated DNMT1 mRNA levels were
found in post mortem schizophrenic brains (Veldic et al., 2004;
Dong et al., 2015). However, a general increase in DNMT1
expression does not explain site-specific effects. Alternatively,
changes in DNMT1 targeting to specific gene loci could account
as disease causing mechanisms. Site-specific DNA methylation
by DNMT1 was proposed to be mediated by long non-
coding RNAs (lncRNAs), preventing or promoting DNMT1
binding (Chalei et al., 2014). Indeed, there is accumulating
evidence for the significance of lncRNAs impairment in

several neuropsychiatric diseases including ASD, schizophrenia,
intellectual disability, major depressive disorder and others
(Hosseini et al., 2019).

Moreover, it should be kept in mind that DNMT1 was
described to act non-canonically on gene expression by
interactions with histone modifiers (Symmank and Zimmer,
2017; Symmank et al., 2018). DNMTs and DNA methylation
interfere at different levels with histone modifications, which
likewise modulate the specificity of transcriptional changes.
Hence, a more global and combinatorial analysis of expression
profiles and epigenetic signatures of post mortem brain material,
favorably at single cell level, might help to get better insights
into the role of DNMTs in mediating the patho-mechanisms
of schizophrenia and other neuropsychiatric conditions at
subcellular level.

DISCUSSION AND CONCLUSION

For numerous neuropsychiatric diseases, abnormalities of the
GABAergic system were identified. In fact, a dysfunction or
dysgenesis of inhibitory interneurons in mouse models were
observed to elicit pathological phenotypes, such as multimodal
integration impairments. This coincides with inhibitory
interneurons being pivotal for multisensory processing in the
cerebral cortex. Next to genetic predispositions, environmental
impact during development and resulting changes in the
epigenetic landscape have more recently been considered as
contributors to the diseases’ cause and course. Alterations in
gene expression, relevant for cortical interneuron functionality,
have been related to changes in DNA methylation signatures
and DNMT1 expression levels in schizophrenia patients. Also,
a mouse model of maternal adversity found that neonatal
stress induced DNA methylation changes of genes related to
synapse formation and function (Oh et al., 2013; Tordjman
et al., 2014). Phenotypically, these mice showed neuropsychiatric
symptoms, such as anxiety, elevated stress reactivity, and
impairments of vocal communication, which could be affected
by malfunctioning multimodal integration. Hence, a connection
of epigenetic modulation and multisensory processing is highly
likely and a noteworthy matter of future research.

DNMT1-dependent DNA methylation likewise regulates
interneuron function in the healthy (mouse) brain, acting
on synaptic transmission by modulating endocytosis,
which might be affected in disease. Deciphering disease-
relevant mechanisms requires more integrative analyses
of patients’ brain samples, including the profiling of both,
transcriptomic as well as epigenomic signatures. Therefore,
studies analyzing changes in DNA methylation patterns
need to be complemented by histone modification profiling
and lncRNA expression and interaction analysis, to draw a
conclusive picture of the hierarchy of epigenetic networks.
Moreover, cell type-specific investigation of excitatory and
inhibitory neurons of the different cortical layers within the
distinct brain regions is elementary, to approach network
changes and dynamics.
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To relate the transcriptome to electrophysiological properties
of cells, Patch-Sequencing techniques reach increasing
popularity, which enables to correlate individual firing
properties and eventually morphology with molecular features
(Cadwell et al., 2016; Fuzik et al., 2016). The ongoing
improvement of sequencing-based single cell approaches
might render the comprehensive and parallel analysis of
the epigenome, transcriptome, and electrophysiological
features tangible. This will help to decipher which
epigenetic mechanisms act as drivers or passengers in
neuropsychiatric diseases.
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