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Many individuals struggle to understand speech in listening scenarios that include

reverberation and background noise. An individual’s ability to understand speech arises

from a combination of peripheral auditory function, central auditory function, and general

cognitive abilities. The interaction of these factors complicates the prescription of

treatment or therapy to improve hearing function. Damage to the auditory periphery

can be studied in animals; however, this method alone is not enough to understand

the impact of hearing loss on speech perception. Computational auditory models bridge

the gap between animal studies and human speech perception. Perturbations to the

modeled auditory systems can permit mechanism-based investigations into observed

human behavior. In this study, we propose a computational model that accounts for

the complex interactions between different hearing damage mechanisms and simulates

human speech-in-noise perception. The model performs a digit classification task as

a human would, with only acoustic sound pressure as input. Thus, we can use the

model’s performance as a proxy for human performance. This two-stage model consists

of a biophysical cochlear-nerve spike generator followed by a deep neural network

(DNN) classifier. We hypothesize that sudden damage to the periphery affects speech

perception and that central nervous system adaptation over time may compensate

for peripheral hearing damage. Our model achieved human-like performance across

signal-to-noise ratios (SNRs) under normal-hearing (NH) cochlear settings, achieving

50% digit recognition accuracy at −20.7 dB SNR. Results were comparable to eight

NH participants on the same task who achieved 50% behavioral performance at −22

dB SNR. We also simulated medial olivocochlear reflex (MOCR) and auditory nerve

fiber (ANF) loss, which worsened digit-recognition accuracy at lower SNRs compared

to higher SNRs. Our simulated performance following ANF loss is consistent with

the hypothesis that cochlear synaptopathy impacts communication in background

noise more so than in quiet. Following the insult of various cochlear degradations, we

implemented extreme and conservative adaptation through the DNN. At the lowest SNRs

(<0 dB), both adapted models were unable to fully recover NH performance, even with

hundreds of thousands of training samples. This implies a limit on performance recovery

following peripheral damage in our human-inspired DNN architecture.

Keywords: speech-in-noise (SIN), deep neural network (DNN), cochlear modeling, cochlear synapatopathy, medial

olivocochlear (MOC) efferents
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1. INTRODUCTION

It is a universal human experience that background noise and
reverberation make it harder to understand speech, and this
phenomenon is exacerbated for those who suffer from hearing
loss. Even individuals with normal clinical hearing tests (i.e.,
pure-tone audiograms) can have difficulty understanding speech
in noise (Liberman et al., 2016). Deficits in an individual’s speech
perception may impact their quality of life, including physical,
financial, social and emotional dimensions (Ciorba et al., 2012).
The degree to which noise impacts an individual’s ability to
discern spoken words (i.e., their speech perception) varies,
and difficulties in these scenarios arise from a combination of
deficits in peripheral auditory function, central auditory function,
and general cognitive abilities (Frisina and Frisina, 1997; Plack
et al., 2014; Heinrich et al., 2015; Parthasarathy et al., 2020).
Unfortunately, directly assessing the impact of peripheral or
central factors on speech perception would require invasive
human studies that are typically not possible.

While isolating the cause of speech perception in human
studies can be challenging, over the past decade animal studies
have shown that noise exposures cause a permanent loss of low-
spontaneous-rate auditory nerve fibers (ANFs) and reduction of
auditory brainstem response (ABR) wave-I amplitudes (Kujawa
and Liberman, 2009). This phenomenon is termed cochlear
synaptopathy, and is thought to create difficulties understanding
speech in noise for humans, while not producing changes that
are reflected in the clinical pure-tone-threshold audiogram.
There is currently no established technique to measure cochlear
synaptopathy non-invasively in humans. As a result, it is difficult
to translate noise-induced hearing loss findings from animal
studies into perceptual measures of human auditory function
(Plack et al., 2014; Bramhall et al., 2019; Le Prell et al., 2019).
Unlike pure-tone audiometric testing, where threshold shifts
can be converted into cochlear inner hair cell (IHC) and outer
hair cell (OHC) health estimates, a speech-in-noise assessment
score currently does not have physiological interpretation.
Oxenham (2016) predicted that a 50% loss of low-spontaneous-
rate ANFs would cause a negligible decline in performance on
psychoacoustic tasks, including tone detection in noise. This
information theory approach, however, did not directly assess
speech perception.

Computational auditory models provide a bridge between
studying the effects of controlled noise exposures in animals
and estimating the perceptual outcomes of humans in real-
world environments (Tepe et al., 2017; Verhulst et al., 2018;
Le Prell et al., 2019). Recent versions of the auditory periphery
model (Zilany et al., 2014) potentially provide a more accurate
representation of human cochlear tuning and can be adjusted
to match the audiogram of an individual person. Furthermore,
human cochlear models also have the capacity to simulate
cochlear synaptopathy which is hypothesized to contribute to
human speech-in-noise perception difficulties (Bharadwaj et al.,
2014; Bruce et al., 2015; Smalt et al., 2016; Keshishzadeh and
Verhulst, 2019).

Many existing speech intelligibility metrics rely on much
simpler cochlear models, and therefore they are limited in their

capacity to predict human speech perception performance. For
example, the speech transmission index (STI), a commonly
used measure of intelligibility, outputs a normalized prediction
between 0 and 1. However, STI was not designed to take into
account cochlear non-linearities (such as the effect of overall
sound level) and hearing loss (Houtgast et al., 1980; Taal et al.,
2011). Elhilali et al. (2003) developed an extension of the STI,
referred to as the spectro-temporal modulation index (STMI)
to account for cochlear non-linearities and account effect phase
shifts in the acoustic waveform, but their method does not
address the impact of hearing loss.

To account for hearing loss, speech-in-noise intelligibility
metrics can be estimated from the neurogram, a simulated
auditory nerve population’s response produced by
phenomenological cochlear modeling. Zilany and Bruce
(2007) used the neurogram as input to the STMI, allowing
the intelligibility prediction to account for hair-cell damage.
Hines and Harte (2012) derived an alternative metric called the
Neurogram Similarity Metric (NSIM), which directly compares
a clean and degraded neurogram model output and is less
computationally intensive.

Another disadvantage shared by many current speech
intelligibility prediction metrics is the need for a clean
reference speech waveform that is separated from the noise
or degradation. Such metrics ultimately rely on quantifying
degradation in the signal’s acoustic properties and do not directly
capture physiological components of perception. The Bispectrum
(Hossain et al., 2016, 2019) is an alternative reference-free
technique that is similar in terms of computational complexity,
but the mapping between the metric and perceptual performance
may need to be tuned for a specific speech-in-noise task.
In addition, the Bispectrum does not capture the potential
effects of semantics or vocabulary. In general, the classic
speech intelligibility metrics lack the ability to account for the
contribution of the auditory cortex and other parts of the brain
that are involved in speech recognition, and so they cannot be
directly used to assess perceptual performance.

An alternative approach to estimating speech intelligibility
is to couple auditory-periphery inspired signal processing to
a speech recognition system that performs a stimulus-in-noise
classification task. The performance of the recognition system
can be directly related to human performance without a clean
reference signal for comparison. Several studies have used a
deep neural network (DNN) based automatic speech recognition
(ASR) system with a periphery-inspired front-end to simulate
speech intelligibility under various conditions (Moritz et al.,
2015; Kell et al., 2018; Spille et al., 2018; Arai et al., 2019). There
are a few studies that also extend their model to study the impact
of audiometric losses on their simulated performance (Fontan
et al., 2017; Schilling et al., 2020). However, it is hypothesized
that individuals with normal audiometric profiles may still have
issues with speech intelligibility due to cochlear synaptopathy
(Liberman et al., 2016). A series of studies which used a
cochlear model paired with a non-DNN speech recognizer found
a simulated speech intelligibility performance improvement
when the medial olivocochlear reflex (MOCR) was incorporated
into the model (Brown et al., 2010; Clark et al., 2012). The
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MOCR efferent feedback reduces OHC gain, providing an anti-
masking effect in background noise, resulting in improved digit
recognition accuracy (Backus and Guinan, 2006).

This study’s aim was to develop an end-to-end model of
the auditory system that uses a biophysical cochlear front-end
with a DNN representation of the brainstem, midbrain, and
cortex (Figure 1). We used this model to study the effects
of audiometric, MOCR, and ANF cochlear degradations on
speech perception performance. This work is novel relative
to other biologically-inspired ASR systems since it explored a
combination of cochlear degradation types as well as subsequent
central adaption. In the first stage, we used the cochlear
periphery model to generate neurogram responses to spoken
digits presented in background noise with a variety of hearing
loss configurations. In the second stage, we then classified
the neurograms using a DNN. We used this resulting model
to perform a closed-set, digit-recognition-in-noise task across
a range of SNRs, and produced a digit recognition accuracy
curve that can be compared against human speech-in-noise
psychometric curves. We explored three main goals in this work.
The first was to test if using a spiking cochlear model (instead
of acoustic waveforms) could be used to replicate human-like
speech recognition. Our second goal was to test how various
cochlear model degradations affect the performance of the digit-
in-noise classifier. Third, we compared how two simulations of
neural plasticity affected the DNN classifier’s ability to adapt
to the cochlear degradations. As part of this last aim we
proposed more conservative bounds around how much hearing
performance recovery is possible following retraining.

2. METHODS

2.1. Pure-Tone Audiometric
Characterization of Subjects
Nine MIT Lincoln Laboratory employees (seven male, two
female) gave written informed consent to participate in a
pure-tone audiometric hearing test in addition to a digit-in-noise

assessment. The MIT Committee on the Use of Humans as
Experimental Subjects and the US Army Medical Research
and Materiel Command (USAMRMC) Human Research
Protection Office approved the experimental protocol. We
conducted all research in accordance with the relevant guidelines
and regulations for human-subject testing required by these
committees. Since our two-stage model is representative of the
framework of one ear, we are reporting the assessment results for
each participant’s left ear only. We administered the audiogram
using Wireless Automated Hearing Test System (WAHTS)
headphones (Creare LLC., Hanover NH) in a sound-treated
booth. The automated audiogram evaluates pure-tone thresholds
at [0.125, 0.250, 0.5, 1, 2, 4, 8] kHz. Figure 2 contains behavioral
audiometry for each of the nine participants. Figure 2 also shows
the three modeled audiometric profiles superimposed with
participant left ear audiograms. Eight participants self-reported
normal hearing and subsequently produced normal-hearing
(NH), non-shifted flat pure tone audiometric results around
0 dB Hearing Level (HL). One hearing-impaired participant
stands out from the cohort due to their exhibited high-frequency
sloping hearing loss. We did not perform further analysis
on this subject.

2.2. Digit-in-Noise Task
To evaluate speech perception performance, we used a digit-
in-noise speech identification task. This task was performed by
both human participants and our computational model. Human
participants listened to the the spoken digit in noise, and were
asked to identify that digit. The computational model was given a
digital representation of underlying acoustic waveforms, with the
output being a prediction of the spoken digit in that waveform.
Our digit-in-noise assessment used the TIDIGITS, a set of
acoustic recordings of spoken digits (Leonard and Doddington,
1993). Our digit-in-noise assessment used the shorter, single-
digit utterances zero through nine, instead of the conventionally
used triple-digit utterances because processing stimuli through
the auditory periphery model is extremely computationally
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FIGURE 1 | Diagram of the two stage digit-in-noise processing model. This two-stage model takes an acoustic waveform as its input and outputs a prediction of the

spoken digit in that waveform. For the first stage, the peripheral model of Smalt et al. (2014) and Zilany et al. (2014) has the ability to implement audiometric, medial

olivocochlear reflex (MOCR) and auditory nerve fiber (ANF) losses and produces auditory neurograms. For computational reasons, we down sampled and z-score

normalized this output and use it as the input to the digit-in-noise classification network. The second stage of the model, a DNN digit classifier is constituted by

convolutional and fully connected layers that have normalization and max pooling layers interspersed and was inspired by the architecture of Kell 2018 for its relevance

to human neurobiology.
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FIGURE 2 | Behavioral and modeled pure-tone audiograms. This figure

overlays the individual participant left ear audiogram results (thin lines) with the

three modeled audiometric profiles (thick dashed lines). Eight out of nine of our

participants have normal-hearing (NH) audiograms, i.e., flat pure-tone

thresholds near 0 dB hearing level. One of our participants had characteristic

sloping hearing loss so we excluded them from further analysis. Although

pure-tone thresholds do not consistently correspond with speech difficulties,

we performed this hearing assessment for completeness.

expensive. Each of the dataset’s 225 talkers (111 male and 114
female) contained two recorded single-digit utterances, resulting
in 4,500 unique single-digit utterances. We set each of the unique
utterances to a stimulus level of 70 dB SPL and digitally added
flat-spectrum, white noise between [0, 100] dB SPL at 5 dB steps,
amounting to 94,500 waveforms. Each of these waveforms were
individually processed through the auditory peripherymodel that
we describe in detail in section 2.3.1.

Using a random sampling of the TIDIGITwaveform data base,
we ran a speech-in-noise test on the the eight participants with
NH, i.e., non-shifted, flat-pure-tone audiograms. The human
assessment consisted of 100 individual trials at each background-
noise level presented to the left ear through Sennheiser HD598
headphones. We presented the speech stimulus at a fixed sound
level of 65 dB SPL and varied the noise level to produce test
stimuli with SNRs between [−30, 0] dB. Figure 3 contains the
digit-in-noise performance for each of the eight NH participants.
Using the following equation, we computed a sigmoid fit on the
mean speech perception performance curve computed across the
NH subset of participants:

fhuman(x) = 0.1+
0.9

(1+ exp(−a(x− b)))
. (1)

This sigmoid fit is plotted in black in Figure 3. We used
MATLAB’s (Mathworks, Natick, MA) fit function to solve
for parameters a and b using non-linear least squares. To
provide an accurate performance benchmark for the full model
described in Figure 1, we ran the digit-in-noise assessment on
self-reported, NH participants. Figures 6, 8 each have the mean
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FIGURE 3 | Behavioral digit-in-noise assessment. The colored lines represent

the individual participant digit-in-noise performance curves and the black

curve is a sigmoidal fit applied to the mean digit-in-noise performance taken

across normal-hearing (NH) participants. We use this NH behavioral curve as

the benchmark digit recognition accuracy curve when optimizing the DNN.

participant performance curve overlaid on each panel to serve as
an unimpaired human reference for the model-based predictions
in the sections that follow.

2.3. Computational Model
2.3.1. Auditory Nerve Model
To simulate ANF synapse output in response to digit-in-noise
utterances, we utilized the cat auditory nerve model by Zilany
(Zilany and Bruce, 2006; Zilany et al., 2009) and the more recent
‘humanized’ version (Zilany et al., 2014). Various groups have
thoroughly compared this model with physiological responses
to a variety of stimuli including tones, speech, and noise
(Carney, 1993; Heinz et al., 2001; Zhang et al., 2001; Tan and
Carney, 2003, 2005; Zilany and Bruce, 2006, 2007). This model
implementation uses time-varying non-linear filters that predict
physiological responses from the cat auditory system, including
compression, suppression, and broadened tuning. The model
uses two parameters to control IHC and OHC loss. We created
three pure-tone threshold profiles representing the following: a
NH, non-shifted flat audiogram; an audiogram reflective of
a constant flat-threshold shift across all frequencies; and lastly,
a high-frequency threshold shift referred to as sloping loss. The
MATLAB fitaudiogram2 method from Zilany et al. (2009)
takes the audiometric profiles as input to estimate the amount of
IHC and OHC loss assuming a 1/3 and 2/3 ratio of loss between
IHCs and IHCs (Zilany and Bruce, 2007; Zilany et al., 2009).
Figure 2 contains the three pure-tone profiles plotted as the three
thick dashed lines. For each of the three audiometric profiles, we
applied two ANF and two MOCR degradation conditions for a
total of 12 modeled peripheral states (Table 1). The peripheral
model takes in an MOCR gain parameter that is either healthy
(20 dB) or degraded (0 dB). We modeled 100 ANFs per cochlear

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 588448

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Haro et al. DNN for HI-Speech Perception

TABLE 1 | Combination of hearing loss used in model simulations.

Audiometric profile MOCR gain

(dB)

Auditory nerve fiber types

([low, medium, high])

NH 20 [20, 20, 60]

NH 0 [20, 20, 60]

NH 20 [0, 0, 52]

NH 0 [0, 0, 52]

Flat loss 20 [20, 20, 60]

Flat loss 0 [20, 20, 60]

Flat loss 20 [0, 0, 52]

Flat loss 0 [0, 0, 52]

Sloping loss 20 [20, 20, 60]

Sloping loss 0 [20, 20, 60]

Sloping loss 20 [0, 0, 52]

Sloping loss 0 [0, 0, 52]

The 12 cochlear states studied in this paper are a result of four combinations of MOCR

and ANF degradations applied to each of the three modeled audiometric profiles.

frequency band and partitioned each set of 100 fibers into 20 low,
20 medium, and 60 high spontaneous-rate ANFs, which matches
the physiologically-observed distributions in the cat (Liberman,
1978). However, the total number of central frequencies (hair
cells) and ANFs in this model is less than the human cochlea, due
to computational limits. Although Carney (2018) proposed that
high spontaneous rate ANFs are crucial for speech, we decided to
model primarily low and medium spontaneous rate ANF loss per
the rationale etched out by Furman et al. (2013). Additionally,
we chose to model the extremes of ANF functionality, i.e., a
healthy distribution ([20, 20, 60]) and a degraded distribution
([0, 0, 52]) in our proof of concept model, even though Kujawa
and Liberman (2009) reports more conservative 50% ANF loss
following noise exposure.

We combined the auditory model of Zilany et al. (2014) with
a model of the MOCR of Smalt et al. (2014) that can simulate
a time and frequency dependent anti-masking effect thought to
be important for speech-in-noise perception (Brown et al., 2010;
Chintanpalli et al., 2012; Clark et al., 2012). The MOCR in the
model adapts the gain of the OHC (cohc) based on the OHC
pathway input of the model. To adapt this model for human use,
we shifted the frequency band sensitive to MOCR effects down
to the human range using the Greenwood function (Greenwood,
1961). The strength of the reflex can be manipulated by the
parameter MOCRMax, and can range from 0 to 1, where 1
represents the maximum gain reduction possible and is equal to
the OHC gain available at that center frequency (CF).

To simulate neural responses to speech-in-noise stimuli, we
ran the auditory nerve model at CFs ranging from [100 Hz, 8
kHz] in 128 logarithmic spaced steps. At each CF we simulated
100 ANF spiking responses. This stimuli representation provides
both narrow band and wide band frequency resolution required
to resolve harmonic and formant information. Similar to Zilany
and Bruce (2007), we added up the spike response at each CF,
and summed the energy in time with a non-overlapping 8 ms
window to produce a neurogram representation of the stimuli.

We downsampled the neurograms from 100 kHz to 100 Hz to
reduce the dimensions to a manageable size for the DNN. Then,
we z-score normalized each of the neurograms independently
before they were used for training and testing the DNN stage of
the model. We discuss our rationale for z-scoring, in detail, in
section 2.3.3.

Figure 4 visualizes the neurogram representation of an
utterance after we processed it through 12 combinations of
audiometric, MOCR, and ANF degradations. We presented a
single talker’s utterance of the digit ‘seven’ in 5 dB SNR of
white background noise. Each row represents the neurogram
output using the three modeled audiometric profiles, while
the columns iterate through the four ANF and MOCR model
settings. Figure 4A represents NH cochlear function, illustrating
the spectral and temporal resolution that themodel provides with
no degradation present. A comparison of the first and second
columns reveals the anti-masking effects of the MOCR, which
occurs between ∼1 and 4 kHz. An overall lower signal level and
reduced clarity of the formants can be observed between the first
and third columns due to the loss in auditory-nerve fibers. It takes
on the the order of 20 min on a single CPU core to generate a
neurogram for a single utterance for a given cochlear state. Using
the the MIT Lincoln Laboratory Supercomputing Center (LLSC),
we generated 94,500 unique neurograms on ∼8,192 cores using
parallelization implemented in pMatlab (Reuther et al., 2018).

This set of neurograms can be used to illustrate a drawback
of standard metrics of speech intelligibility perception, such as
STMI and NSIM. We computed the objective STMI (Elhilali
et al., 2003) and NSIM (Hines and Harte, 2012) metrics for
each neurogram. Although these measures range from 0 to 1,
with 1 representing perfect intelligibility as compared to a NH
reference neurogram in the absence of background noise, they
can not directly be compared to behavioral task accuracies. In
some cases the objective metrics indicate that the neurograms
with audiometric loss are in fact more intelligible than the NH
pure-tone neurogram. For example, in Figure 4E, both STMI
and NSIM indicate that the flat-loss audiogram representation
is more intelligible than the NH audiogram representation.
The modeled flat-loss is reducing the amount of signal at the
auditory nerve of both the noise and digit stimulus, so the STMI
and NSIM report less degradation in the flat-loss audiometric
case than in the NH-audiometric case. However, in the context
of speech intelligibility, an audiometrically degraded stimulus
should not have a better predicted speech intelligibility score.
This inconsistency motivates the need for a more comprehensive
intelligibility metric that is biologically inspired and factors in
additional central processing.

2.3.2. Digit Classifier DNN Architecture
Figure 1 illustrates an overview of our model of speech
perception that is composed of a biophysical auditory periphery
and a DNN representation of central processing. Unlike
conventional DNN-based ASR systems that operate on speech
waveforms or spectrograms, this DNN used the cochlear
neurogram as its input data. We utilized a neural network
classifier to model human post-cochlear neural processing to
perform a digit-in-noise task. The DNN served as an optimal
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FIGURE 4 | Neurogram representation of the digit ‘seven’ in 5 dB SNR of white background noise. (A–L) Illustrates the 12 cochlear model states, organized by their

audiometric profiles (rows) and combination of medial olivocochlear reflex (MOCR) and auditory nerve fiber (ANF) loss (columns). We modeled an MOCR gain of either

0 or 20 dB and a distribution of either [20, 20, 60] or [0, 0, 52] low, medium, and high spontaneous rate auditory nerve fibers. (A) Represents the utterance processed

with the normal-hearing (NH) cochlear setting, while (L) illustrates the utterance processed through the most degraded cochlear state studied. Each image has

objective reference-based predictions of intelligibility (STMI and NSIM) which indicate a loss of intelligibility as simulated cochlear damage increases (a 0-1 scale,

where 1 represents 100% intelligibility).

observer whose goal was to train itself to maximize task
performance (Geisler, 2011), no matter the type of cochlear
degradation. To clarify, we did not train the DNN to make
the same decisions (identification mistakes) found in human
perception. Instead one of our goals was to see if the classifier
learned similar behavior on its own. Furthermore, we know
of no human data set of speech perception confusion matrices
that are paired with ANF and MOCR measures, so this study
explores potential upper and lower bounds for performance
in these scenarios. Since the DNN required inputs of the the
same spectrotemporal dimensions, we trimmed all neurograms
to have the same 700ms length from their onset. Additionally, we
z-score normalized the neurogram outputs independently of each
other. This processing step is explained in detail in section 2.3.3
after our train/test paradigm framework has been thoroughly
presented. We used PyTorch version 1.3 to implement all
processes relating to the DNNmodel (Paszke et al., 2019).

Figure 1 illustrates the structural hyperparameters chosen for
the DNN architecture, including layer types and dimensions.
These network hyperparameters are distinct from network
parameters that the network solves for, such as weights and
biases. Network hyperparameters indicate the operations the
network should contain in its architecture layers. The network
consisted of a set of convolutional layers followed by a set of
fully connected layers. Convolutional layers were used since they
would preserve the two dimensional stimuli processing seen in
spectrotemporal receptive fields in the auditory cortex (David

et al., 2009; Schönwiesner and Zatorre, 2009). Additionally, given
the two dimensional similarity between our spectrotemporal
representation of stimuli and images, it was promising to use
convolutional layers that have found success in DNN-based
image analysis. There exist other ASR models (Kell et al., 2018;
Schilling et al., 2020) and models of the auditory cortex (Akbari
et al., 2019; Rahman et al., 2019) that use convolutional layer-
based DNN models. We selected Kell et al. (2018)’s model
because of its task similarity and validation against human fMRI
imaging data of the auditory cortex.

Our convolutional layer architecture (C1 through C5) is
a modified version of the convolutional layer architecture
found in Kell et al. (2018)’s DNN model. The exact network
hyperparameters differ due to the difference in input stimulus
dimensions and number of output categories, however we
preserved the ratio of layer dimensions. Our DNN includes
five convolutional layers whose layer channel depths dilate and
constrict by a factor of two between neighboring layers. The
first set of convolutional weights are 5 × 5 pixels in dimension,
while the subsequent convolutional dimensions are 3 × 3 pixels.
Local-response normalization and max-pooling layers follow the
first two convolutional layers. Another max-pooling layer follows
the five convolutional layers before a set of five fully connected
layers which gradually decrease in size. The local-response step
normalizes adjacent convolutional layer output channel values
while the max-pooling step provides dimensionality reduction
by finding local maxima around a specified sliding window.
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DNNs widely use normalization (such as z-score and local-
response normalization) and local maxima pooling due to their
neural plausibility (Serre et al., 2007; Carandini and Heeger,
2012).We did not perform additional layer regularization beyond
z-scoring the neurogram input and the two local response
normalization layers. Fully connected layers are incorporated
into the model because they are modeled after the fundamental
units of computation in the brain (London and Häusser, 2005).

The following other hyperparameters define how the network
learns its weight parameters. The network uses a batch size of 256
neurograms for each pass through the network during training.
One epoch is defined as a pass of the entire set of training
examples through the network before they are used again for
more precise parameter value updates. Each epoch in our training
contains 66,150 unique training neurograms. The number of
epochs used in training will be discussed later. We used the
Adam optimizer (Kingma and Ba, 2014) with an equal learning
rate and weight decay of 1e-3. The network utilizes PyTorch’s
cross-entropy loss function which is composed of a log softmax
activation function followed by a negative log likelihood loss
function (Paszke, 2019). For each batch of neurograms trained
through the network, loss is computed between the target class
and the predicted class. This cross-entropy loss function is used
when training a DNN for a classification task as opposed to a
regression task.

A trained DNN’s digit recognition accuracy is variable and
depends on factors, such as the exact training data that is
presented and the order in which the training samples are used
to update the weights. To mitigate the effects of these variables

in biasing our conclusions, we repeated the training and testing
process for each DNN model 10 times. Each fold contained a
random split of all the 94,500 unique neurograms in the form of
a training, validation, and testing subset. All SNRs are sampled
in each of the subsets. For every DNN model, we trained and
evaluated the model on 10 different partitions (folds) of the
relevant neurogram type. As a percentage of the available data
set, the training data consisted of 70% of the available data,
and the validation and testing data consisted of 10 and 20%,
respectively following accepted ranges in the literature. We used
Scikit-learn’s random permutation cross-validator to create these
non-identical data splits (Pedregosa et al., 2011). Consequently,
the final trained weights of each of the 10-folds were slightly
different. All of the visualized model digit recognition accuracy
curves are composed of themeanwith standard error of themean
computed across these 10-folds. Quantifying variability of digit
recognition accuracy within a given train/test paradigm provides
context for interpreting variability of digit recognition accuracy
across paradigms.

2.3.3. Implementing Adaptation-Inspired DNN

Train/Test Paradigms
We developed three training paradigms to simulate sudden
cochlear damage followed by central adaptation. An overview of
the training procedure is illustrated in Figure 5. The first phase of
each training paradigm is identical: a baseline model was trained
using only NH neurograms. This NH-baseline model simulates
a human who is born with normal hearing. In the second
phase of training, we further trained the NH-baseline model
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FIGURE 5 | Three DNN training paradigms used to study adaptation following cochlear degradation. This training and testing framework is run for each of the 12

cochlear states that we modeled. Both training and testing data sets contain neurograms from all 21 SNRs. Normal-hearing (NH) neurograms are used to train a

baseline model, which simulates NH speech-in-noise word recognition. This baseline network is utilized by three networks during a second phase of training. During

phase 2, the NH control is trained on NH neurograms and the unconstrained and constrained adaptation paradigms are trained on degraded neurograms. All three of

the resulting models are then tested on a held out set of degraded neurograms. The end result is digit recognition accuracy as a function of SNR, which simulates a

psychometric function. The NH-control paradigm (yellow) simulates performance after a sudden hearing loss, the unconstrained-adaptation paradigm simulates

unlimited training after hearing loss (red-orange), and the constrained-adaptation paradigm (green) simulates limited training following hearing loss.
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with additional neurograms under three different conditions.
The first condition is the NH-control. For the NH-control, the
NH-baseline model was further trained using additional NH
neurograms (illustrated in yellow in Figure 5). In the remaining
two conditions, the NH-baseline model was further trained using
degraded neurograms, simulating a person who started with
normal hearing, then acquired hearing loss. In the first degraded
condition, the DNN was allowed to adapt to the sudden hearing
loss without constraint (illustrated in red-orange in Figure 5). In
the second degraded condition, the DNN adaptation to sudden
hearing loss was constrained; the model was only permitted to
adapt in the final layer (illustrated in green in Figure 5). Our
purpose in constraining the DNN’s adaptation to hearing loss
was to better approximate the adaptation capability of the human
brain. The specific hearing loss combinations used in the second
phase of model training are outlined in Table 1. Finally, we
evaluated each of the resulting 36 models from our training
procedure on additional held out neurograms with the same type
of modeled cochlear settings.

In the first training phase, we trained the DNN using only NH
neurograms as our baseline. We initialized the model parameters
with values randomly sampled from a normal distribution. To
ensure neurogram data were split in an identical fashion among
the training and test sets, and balanced with regard to talker
and gender, we used a fixed random seed for each of the ten
cross-validation folds. Preserving the train/test splits between
training phases was critical to eliminate the chance that talkers
used in training could accidentally be included during testing.
To set the model training duration for the first training phase,
we empirically derived the minimum amount of data required
to achieve peak digit recovery accuracy in the NH-baseline
model. In the second training phase, we trained the DNN using
the equivalent amount of data established in the NH-baseline
model. This amounted to 250,000 neurograms per training phase
(or ∼3.8 epochs, i.e., exposure to the entire unique training
set 3.8 times).

As a general rule, a DNN should be trained and tested on data
sets that are independently and identically distributed, i.e., data
samples must be non-overlapping but share the same statistical
make-up. If there is a mismatch in train and test statistics, any
machine learning technique, including DNNs, would likely show
a drop in performance. The cochlear degradations we modeled
reduce the spiking output; this in turn reduces the neurogram
signal strength relative to the NH condition. Therefore, we expect
a mismatch between the statistical distributions of the sets of
NH and degraded neurograms. To account for this expected
statistical mismatch, we independently z-score normalized each
neurogram before the first layer of the DNN. This z-score does
not reverse the loss in information due to our modeled cochlear
degradations because our peripheral model is non-linear (e.g.,
even as a function of acoustic stimulus level). Additionally,
normalization in the auditory pathway may be neurologically
plausible given the widespread evidence of normalization that
takes place within the cortex and specifically in primary auditory
cortex (Carandini and Heeger, 2012).

To estimate neural plasticity following cochlear degradation,
we varied the number of DNN parameters it was possible to

change in the phase 2 training. In the unconstrained-adaptation
paradigm, we permitted all parameters in every network layer
to be updated. For the constrained-adaptation paradigm, we
only allowed the fifth fully connected layer (F5) weights and
bias to adapt during phase two of training. Finally, the NH-
control training paradigm acts a static response to cochlear
degradation, no adaptation is possible. In this fashion, the NH-
control paradigm acts as a lower bound for neural plasticity, while
the unconstrained-adaptation paradigm acts as an upper bound.

3. RESULTS

In this section, we first compare our NH-model of speech
perception to NH humans on the digit-in-noise task. Next,
we then use our model’s output to investigate how peripheral
degradation impacts digit recognition accuracy, and how
performance might change after further training on degraded
cochlear neurograms to simulate neural plasticity. To statistically
compare the performance of our various model conditions,
we calculated SNR required to achieve 50% digit recognition
accuracy. Then, we also present confusion matrices between the
target and predicted digit classifications at a given SNR for both
human data and selected models. Finally, we characterize when,
where, and how the network adapts to cochlear degradation.

3.1. Comparison of Normal-Hearing Human
and Model Digit-in-Noise Performance
Our DNNmodel replicated the upper and lower limits of human
performance over a range of SNRs, producing a sigmoidal-
shaped digit recognition accuracy curve. There exists a small
man-machine gap between human performance and the ‘NH-
Model’ in Figure 6. Participants and the model achieved 50%
accuracy at −22 and −20.7 dB SNR, respectively, indicating a
gap of 1.3 dB SNR. The mean absolute accuracy in terms of
percent correct performance discrepancy between human data
and model between [−30, 0] dB SNR was 7.3%. Although the
network achieved sigmoidal digit recognition accuracy, it did not
completely replicate the mean human performance (black line),
particularly at higher SNRs. We performed a sigmoid fit on the
NH-model using the following equation:

fmodel(x) = 0.09+
0.88

(1+ exp(−a(x− b)))
. (2)

To account for a small mismatch at high SNRs between our NH
hearing participants and the model, we applied a scaling factor
to the estimated digit recognition accuracy. We computed the
scaling factor by taking the difference between the parameters
of the sigmoid fit of the mean human data and the sigmoid fit
of the mean NH-model. Thus, scaling factor maps the simulated
psychometric function onto a human-like performance space.
This process was done so that digit recognition accuracy
differences between combinations of paradigms and cochlear
states could be interpreted in the same units as human behavioral
performance. The dark blue curve in Figure 6 shows the impact
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of the scaling factor. The model’s digit recognition accuracy
values in Figures 8, 10 reflect scaled results.

We compared human and model confusions between digits
to determine whether failure modes at these SNRs were similar.
Figure 7 contains the confusions at −20 dB for the mean
NH human responses and the NH-model from Figure 8A.
We computed the mean human confusion matrix across the
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FIGURE 6 | Model simulated digit-in-noise performance scaled by mean

behavioral response. DNN model under the normal-hearing (NH) model

produced the expected sigmoidal shape of measured human behavior (black

curve), leaving a small man-machine gap of 1.3 dB SNR at 50% digit

recognition accuracy. To facilitate visual, qualitative comparison between

between the various models of cochlear degradation studied, we scaled the

DNN output accuracies on all DNN outputs using an SNR dependent scaling

factor. We computed the scaling factor used to remap all subsequent model

accuracies once using the sigmoid fits of the DNN NH-model and NH human

mean performance.

NH participants and the mean NH-model confusion matrix
across 10-folds. Both the model and the human confusions
produced approximately the same performance at this SNR.
Their confusions look similar (Figure 7) and have a root mean
squared error (RMSE) of 8.25. They both classified the digit six
with the most accuracy, digits four through eight well, and more
often confused digits two and three. The two and three digit
confusion has been previously observed in human digit-in-noise
perception (Morgan et al., 1973).

3.2. Effects of Cochlear Degradation and
Adaptation Paradigms on Digit-in-Noise
Performance
Figure 8 breaks down our performance simulations to show the
impact our 12 modeled peripheral auditory degradations have
on digit recognition accuracy. The 12 cochlear states shown
are a combination of audiometric loss (rows) and ANF and
MOCR cochlear degradation (columns). Within each of the 12
panels, we plot the DNN digit recognition accuracy for three
paradigms (yellow, red-orange, and green) with the mean NH
behavioral accuracy (black) from Figure 3. We illustrate a static
response to the indicated combination of cochlear degradation
with no opportunity to adapt when we tested the NH-control
paradigm (yellow) on degraded neurograms. The unconstrained-
adaptation paradigm (red-orange) serves as an upper limit
of the amount of adaptation permitted in this network. The
constrained-adaptation paradigm (green) is a more conservative
model of plasticity following degradation since we only allowed
the last layer of the network to adapt during the second phase
of training. We computed the standard error for each digit
recognition accuracy curve to quantify the slight variations that
are due to the stochastic nature of DNN parameter training
between training folds.

Figure 8A shows digit recognition accuracy across NH
neurograms was nearly identical regardless of the train/test
paradigm. We expected this effect because we used NH
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neurograms across the training phases and during testing. Given
a NH audiogram, as the severity of additional modeled ANF
and MOCR degradation increased (Figures 8A–D), all three of
the paradigms performed more poorly relative to the NH-model
(Figure 8A, yellow). This decrease in digit recognition accuracy
can be interpreted as a shift toward a higher SNR required
to achieve the same accuracy or a change in SNR required
to achieve 50% digit recognition accuracy. The NH-control
paradigm (yellow) serves as a snapshot of digit recognition
accuracy following sudden cochlear degradation with no time
to adapt. Individuals with hearing loss undergo some implicit
auditory training when they ask for clarification on misheard
words, therefore we are treating our more conservative model
of auditory adaptation (constrained-adaption paradigm) as our
most plausible model of speech perception for hard of hearing
listeners. For NH-audiogram degradations (Figures 8B–D), the
difference in 50% SNR between the the NH-model (Figure 8A,
yellow) and the respective constrained-adaptation paradigms
(Figures 8B–D, green) is −0.7, −5.7, and −9 dB SNR. For
the flat-loss audiogram degradations, this metric is −4.8,
−4.7, −11.1, and −11.2 dB SNR from the left to right
panels (Figures 8E–H). For sloping-loss audiograms, there is

a difference of −5.4, −5.4, −13.5, −13.1 dB SNR from the
left to right panels (Figures 8I–L, row 3). Neither adaptation
models recovered back to the level of the NH-model (Figure 8A,
yellow). Both adaptation paradigms (green and red-orange)
outperformed the NH-control paradigm for every cochlear state
that was tested. Both adaptation paradigms recovered more task
accuracy at higher SNRs than at lower SNRs.

To quantify whether the observed differences in digit
recognition accuracy among various factors were significant, we
estimated the SNR corresponding to 50% accuracy for each of
the 10 cross-validation folds. We performed a four-way repeated-
measures ANOVA (audiometric loss by ANF loss by MOCR by
adaptation) with cross-validation folds modeled as a random
factor. We found a main effect on digit recognition accuracy
for audiometric loss [F(2,18) = 293, p < 0.0001], ANF fiber
loss [F(2,9) = 405.5, p < 0.0001], and the amount of DNN
adaptation [F(2,18) = 347.7, p < 0.0001] but not for MOCR loss
[F(1,9) = 0.47, p = 0.8]. Even though there was no MOCR main
effect, there was a significant interaction between the ANF loss
and audiometric loss [F(2,18) = 56.8, p < 0.0001]. Audiometric
and the ANF loss also interacted [F(2,18) = 11.7, p < 0.001],
suggesting a differential effect on the contribution of traditional
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and hidden hearing losses on speech-in-noise performance. The
ANOVA analysis also concluded several other significant 3-way
interactions that are not reported.

As an additional metric of evaluation, we created confusion
matrices on a subset of the cochlear-degraded speech perception

models. We chose the two cochlear states situated at the extremes
of the axes of degradation as case studies for the confusions in

Figure 9. The first cochlear state in Figure 8I is representative

of the worst hair cell degradation, which manifested as sloping
audiometric threshold shift. The second cochlear state in
Figure 8D reflects the cochlear state that has ANF and MOCR
degradations but no pure-tone threshold degradation. Each row
in Figure 9 corresponds to one of the selected cochlear states and
each column represents one of three train/test paradigms.

Figures 9A,D show that of the three paradigms evaluated,
the unconstrained-adaptation paradigm for both of the
cochlear states most closely resembles the confusion symmetry
across the diagonal seen in Figure 7’s human confusions.
Figures 9A,D have an RMSE of 12.2 and 17.8 relative to
Figure 7A. Figures 8D,I indicate that the unconstrained-
adaptation paradigm for both cochlear states produced a 30%
accuracy at −20 dB SNR. Given that digit recognition accuracy
was the same, any differences seen between these confusions can

be attributed to how the cochlear state impacts the neurogram
and the resulting DNN. The sloping loss condition has a failure
mode where the model consistently misclassifies other digits as
the digit three (Figure 9D); we did not observe this phenomenon
in the other condition examined (Figure 9A).

Figures 9D,E show that in the sloping audiometric loss
condition, both the unconstrained-adaptation and constrained-
adaptation paradigms produced ∼30% accuracy at −20 dB SNR.
When allowed to fully adapt, the network made confusions
that had more diagonal symmetry than the constrained-
adaptation paradigm. The constrained-adaptation paradigm
produced confusions that have a more enhanced non-uniform
failure mode in comparison to the unconstrained-adaptation
paradigm (Figure 9E).

3.3. Characterizing Neural Adaptation in
DNN Following Cochlear Degradation
3.3.1. Model Accuracy
To study adaptation to hearing loss, we analyzed the digit
recognition accuracy of the digit classification network as a
function of training iterations. Previously, in Figure 8, we fixed
the duration of the second phase of training, but for Figure 10,
we extended the training duration of the second phase. We
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chose to focus on the most significant cochlear degradation
state (i.e., sloping audiometric loss compounded with MOCR
and ANF losses) since this condition likely requires the most
adaptation. Figures 10A,B shows model accuracy at 0 dB SNR
as a function of training duration. Figure 10 contains accuracy
values beginning at the end of the first training phase on normal-
hearing neurograms.

The NH-baseline network obtained 40% accuracy on
degraded neurograms at the end of phase 1 of training.
However once exposed to degraded neurograms during training,
the adaptation models exponentially improved during training
phase 2 (shown in dark gray). The constrained-adaptation
paradigm (green) plateaued soon after exposure to degraded
neurograms, while the unconstrained-adaptation paradigm (red-
orange) continued to improve its digit recognition accuracy
over a longer training duration. After training on ∼1 million
neurograms, at 0 dB SNR the model recovered to NH accuracy,
but not at −20 dB SNR, illustrating non-linear adaptation over
SNR. The constrained-adaptation paradigm, which simulates
a less plastic central auditory system, never fully adapted at
either SNR.

3.3.2. Model Parameters
To understand how the networks from Figure 10 adapts to
hearing loss, we inspected the parameters over each of the layers
of the network in Figure 11. Each column in Figure 11 represents
one of the three paradigms used in Figure 10. Figure 11 contains
the normalized mean parameter change for each network layer.
Each data series is constructed of the mean and standard error
of the metric computed across 10 folds. For each of the twenty
layers in our network, we compute the absolute mean scaled

difference for each of the n parameter values in the layer’s multi-
dimensional parameter vector, P. The difference is computed
against the corresponding layer’s baseline mean, µB and is scaled
by the corresponding layer’s baseline standard deviation, σB. This
metric is defined in Equation (3) below:

Normalized Mean Difference =
1

n

n
∑

i=1

∣

∣

∣

∣

(Pi − µB)

σB

∣

∣

∣

∣

. (3)

As expected, the constrained-adaptation paradigm showed no
changes except in the very last layer (Figures 11C,F). Figure 11A
illustrates that convolutional weights, in addition to the final
fully connected layer weights, are the most susceptible to
unconstrained adaptation. When left unconstrained, the training
algorithm alters the first convolutional layer the most, instead
of the last fully connected layer. This indicates that changes
in the first stages of processing following the auditory nerve
appear to be advantageous for behavioral performance prediction
in this model.

4. DISCUSSION

We created a two-stage model to simulate human digit-in-
noise speech recognition performance under several types of
dysfunction applied to the cochlear periphery. The model
achieved sigmoidal, human-like performance across SNRs with
normal-hearing cochlear settings and 50% digit recognition
accuracy at an SNR of −22 dB. These model results are
comparable to the eight NH participants who achieved 50% digit
recognition accuracy at −21 dB SNR on the same task. At this
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FIGURE 11 | Adaptation model parameters vs. training iteration. Each panel contains a metric of normalized mean network difference relative to the normal-hearing

(NH)-baseline. (A–C) shows normalized mean difference for each of the 10 layers’ weights, while (D–F) shows the normalized mean difference for the 10 layers’ bias.

The columns correspond to the NH-control, unconstrained-adaptation, and constrained-adaptation train/test paradigms.

NH-audiogram setting, simulated ANF loss produced NH-like
performance at high SNRs, but an∼20% loss in digit recognition
accuracy at low SNRs. This SNR-dependent digit recognition
accuracy loss is not a weakness of the model. Rather it is actually
evidence of our model behaving like listeners who are described
to have healthy audiograms but have trouble discerning speech in
noisy settings.

4.1. Evaluation of Normal-Hearing Model
Figure 6 shows relatively well-matched, sigmoidal-shaped
speech-in-noise performance between audiometrically
normal-hearing listeners and our computational model. The
man-machine gap is especially small when we use the commonly-
used metric: the SNR at which 50% accuracy is achieved. We
did not constrain the DNN to produce a sigmoidal-shaped
performance, it performed as so on its own. We used the
conventional cross-entropy loss function that weighs training
samples equally across SNR. Our model shows a 1.3dB SNRman-
machine gap that is comparable to other computational models
that perform in stationary noise (Schädler et al., 2016). However,
because we are reporting the complete simulated psychometric
functions, we see that at higher SNRs, the model does not meet
human performance perfectly. The model performance values
are remapped to the human performance space so the focus is on
the relative model digit recognition accuracy differences across
train/test paradigms and cochlear degradations. There are a few
reasons why our model performance might be slightly less than
optimal. Primarily, the source could be simplifications made at

the peripheral and central processing model stages may be the
source. One explanation is that we removed the fine structure of
speech when we smoothed the cochlear model spike response
with an 8 ms time window similar to (Zilany and Bruce, 2007;
Bruce et al., 2015) at each CF. Fine structure is known to be
important to both pitch and speech perception, especially in
fluctuating background noise (Moore, 2008). In the present
study, we used a stationary white noise background, so the effect
may be less pronounced than for other noise types. Our method
smooths the spiking behavior at each frequency channel, which
primarily captures the envelope of the neural signal, in order to
dramatically reduce the computational complexity of training
the DNN. A second potential source of simplification is our use
of a relatively common network structure without significant
architecture variation exploration. A hyperparameter search
over the many possible DNN architectures may have closed the
digit recognition accuracy at high SNRs. Since the system’s digit
recognition accuracy drops off and reaches chance at a similar
SNR to our behavioral results (−30 dB), we may reject that the
model over-fit. Additionally, since we kept talker training and
test separate, our test sets included only novel talkers, ensuring
that the network generalizes.

4.2. Evaluation of Cochlear Degradation
Models
A major contribution of this paper shows how unique
combinations of peripheral dysfunction can impact simulated
digit-in-noise accuracy. Our results suggest the overall simulated
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performance (i.e., digit recognition accuracy or % threshold in dB
SNR) can be influenced by several different types of peripheral
dysfunction. This illustrates a model-based explanation for why
the diagnosis of ‘hidden hearing loss’ may be so challenging
(Bramhall et al., 2019). Our ANOVA analysis determined a
main effect on performance for two of three of our cochlear
degradations – ANF loss and audiometric loss. Our model shows
a relationship between ANF loss and simulated performance
which demonstrates that such “hidden” cochlear degradations
could likely impact on speech perception. The audiometric loss
also had an impact on performance. We were not expecting
this factor given the clinical disconnect seen between pure-tone
audiometric threshold and speech perception ability. Central
factors could also have an impact on the diagnosis and these
include overall executive function and an individual’s ability to
adapt following a hearing loss. Many of the simulated cochlear
degradations cannot be easily validated using behavioral testing
since there is no accepted non-invasive clinical measure for
MOCR and ANF dysfunction. We did however find that loss
of the low and medium spontaneous rate fibers in our cochlear
model reduced both subjective and objective quality of the
neurograms in Figure 4, and the resulting performance on a
digit-in-noise task in Figure 8. This finding is consistent with
hypotheses of cochlear synaptopathy impacting communication
in noise (Kujawa and Liberman, 2009; Liberman et al., 2016).
Our results show that complete elimination of low and medium
spontaneous rate ANFs, in addition to a 14% loss in high
spontaneous rate ANFs, does have an impact on simulated speech
perception. It would be interesting to use the model to study
simulated speech perception given severe high spontaneous rate
ANF loss in order to compare the two competing theories of ANF
degradation’s impact on speech perception (Furman et al., 2013;
Carney, 2018).

To put our NH-model and three paradigms’ cochlear-
degradation-dependent task accuracies into context, we looked
to published behavioral speech perception psychometric curves
taken from NH listeners and listeners with various audiometric
profiles. We then compared the relative difference in 50% SNR
between the NH-model and the NH-control paradigm tested
on the 11 other cochlear degradations. Both Pichora-Fuller
et al. (1995) and Bernstein and Grant (2009) recruited NH
listeners and listeners that had high-frequency sloping hearing
loss (similar to our modeled audiometric profile) and ran
speech perception testing in the presence of stationary noise.
Bernstein and Grant (2009) reports an ∼5 dB difference in
50% SNR between NH listeners and listeners with hearing loss.
Pichora-Fuller et al. (1995) compares NH listeners, listeners
with moderate hearing loss, and listeners with severe hearing
loss. They found an approximate 3.1 and 6.2 dB difference in
50% SNR in their listener groups with moderate and severe
hearing loss relative to their NH group. Our three audiometric
profiles with various combinations of ANF and MOCR cochlear
degradation from Figure 8 can be compared to these profiles. For
this comparison, we used the constrained-adaptation paradigm
(green) because listeners with hearing loss implicitly undergo
some amount of training as a result of requesting speech
clarification during conversation.

Since there is currently no way of sub-categorizing individuals
with NH audiograms based on ANF and MOCR function,
we compared the range of 50% SNR losses across a given
audiometric profile. The constrained-adaptation paradigm tested
on the four neurograms with NH-audiograms had a difference
in 50% SNR relative to the NH-model between [−0.7, −9]
dB SNR (Figures 8A–D). The sloping-loss audiometric-tested
constrained-adaptation models had a difference in 50% SNR
relative to the NH model between [−5.4, −13.1] dB SNR
(Figures 8I–L). Our results suggest that a combination of loss to
the MOCR and ANF synapses may be a mechanism that could
explain perceived difficulties in background noise (Kujawa and
Liberman, 2009; Brown et al., 2010; Clark et al., 2012; Smalt
et al., 2014). Pichora-Fuller et al. (1995) reported a 3 dB and
6 dB difference in the 50% SNR between NH listeners and
listeners with moderate hearing loss. This 50% SNR difference
justifies that our model provides a proper order of magnitude in
performance degradation for conservative cochlear degradations
(Figures 8B,C,E,F,I,J). Our more degraded cochlear states
(Figures 8D,G,H,K,L) showed a higher degree of performance
degradations than published behavioral data, indicating that the
12 cochlear states we selected for this proof of concept work, may
be too extreme to match the physiology of listeners who are hard
of hearing. For example, we compared healthy vs. completely
destroyed low and medium ANFs in the modeled periphery, and
this may not be realistic for the human populations we aim to
model. In the future, we may use more conservative amounts of
degradations of the MOCR and ANFs. Given a comprehensive
review of a large data base of speech perception performance
as a function of SNR and audiometric profiles, we may be
able to justify whether the variability along a given audiometric
profile is plausible.

4.3. Adaptation Following Peripheral
Damage
Figure 8 shows a wide range of plasticity in response to
peripheral dysfunction (unconstrained and constrained
adaptation paradigms). For NH pure-tone audiogram simulation
with MOCR loss, both models with adaptation perfectly
recovered the NH-model accuracy across all SNRs (Figure 8B).
For a majority of the other combinations of audiometric, ANF,
and MOCR degradations (Figures 8C–J), both adaptation
models recovered accuracy at high SNRs but not at low SNRs.
Our ANOVA analysis also determined a main effect of test/train
paradigm (i.e., amount of adaptation) on accuracy. Figure 10
illustrates that with more training, even the most degraded
cochlear case (Figure 8L), recovers the 0 dB SNR accuracy
achieved by the NH-model. Although there is no human ground
truth for our exact two adaptation models, the constrained-
adaptation model accuracy seen in Figure 8 is similar in nature
to that seen in Whitton et al. (2017). Whitton et al. (2017)
performed a behavioral study which quantified the impact of 8
weeks of closed-loop audiomotor training on a speech perception
task in hearing aid users. Even after training, their subjects did
not recover 100% accuracy at all SNRs; they demonstrated
more improvement at higher SNRs than at lower SNRs. The
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preservation of the sigmoidal accuracy throughout our static
and plastic models is a strength of the model. Our model may
be successfully simulating the information loss in the periphery,
enough to counteract the propensity for a DNN to tune its
parameters to create an optimal, flat accuracy over SNR.Whitton
et al. (2017)’s task accuracy gains are more conservative than
the accuracy gains attained by our adaptation models. This may
be because of the extreme cochlear degradations and plasticity
we chose to model. In the next iteration of the model, more
conservative cochlear degradation states and degrees of plasticity
will be used. Another way to validate the model would be an
animal study that attempts to quantify how much adaptation to
a stimuli discrimination task can result from intensive training
following controlled cochlear degradation. Such an experiment
like this would help determine whether plasticity is degradation
dependent. Although the accuracy gains achieved by our models
of adaptation may not have a behavioral ground truth, the
analysis done on the networks does provide a framework for
studying models of adaptation in the future.

Figures 10, 11 illustrates how fast a network learns and
where the network changes as it adapts to new stimulus input
properties. Continued training of our model after peripheral
loss resulted in further accuracy gains, as shown in Figure 10.
Often times continued training can lead to over-fitting and
accuracy can even drop or oscillate. It is an open question as
to how much adaptation can occur to the neural substrate of
the auditory pathway in humans, but it is generally thought
that more peripheral regions are less plastic (Irvine and Rajan,
1995). We attempted to model central plasticity by fixing all the
layers of the DNN except the final layer because the later fully
connected layers could be interpreted as the task specific decision
making portion of the cortex of our network. When we analyzed
the location of network adaption, we discovered that when left
unconstrained, the majority of relative weight changes relative
occur at the first input convolutional layer, where adaptation in
humans may not be possible (Figure 11).

4.4. Future Work
Several improvements and extensions could be made to our
model architecture. It is a possibility that the dimensionality
reduction that is currently required to keep processing time
manageable did in fact prove detrimental to the NH-model
accuracy. Given this constraint, there is potentially a better use
of the neurogram dimensions that would keep computation
the same and potentially increase accuracy. It may be fruitful
to redistribute the dimensionality of the neurogram array such
that the frequency and time axes could be adjusted by an equal
factor. This would provide the capacity to have a higher resolved
time dimension to capture short duration speech events like
consonants, while keeping a competitive frequency resolution
in the ASR space (Schilling et al., 2020). Additionally, the
classifier could be extended to recognize a larger vocabulary
set, as done in Kell et al. (2018). With regard to the neural
input, exploring the effects of the fine structure and envelope
representations of speech on classification could reveal their
relative importance to the type of hearing loss. In this work,
we did not study the effect of other types of background noise

(such as multi-talker babble) and the effects of reverberation.
These conditions could be particularly important for studying the
effects of cochlear damage.

One future application of this model is for system
identification, iteratively adapting peripheral model parameters,
such as MOCR and ANF, to match overall human performance
or word confusions for individual subjects. If an individualized
model of the cochlear pathway can predict the confusion patterns
of a listener, it could guide rehabilitation or treatment strategies.
One of the primary reasons for extending both the peripheral
fidelity and noise environment realism for this model is for
acoustic enhancement. Our view is that an end-to-end system
of speech classification, such as the one developed here, could
be pre-pended with an enhancement system that could be
interactively trained. Our model would act as a surrogate for the
human, and could be trained on many possible enhancement
algorithms and hyper-parameters. To improve computational
run time, the periphery itself could perhaps be replaced by
a neural-network based cochlear model (Baby et al., 2020),
although the ability to simulate individualized cochlear settings
once the model is trained may be challenging. It is because of this
fact that hybrid phenomenological-neural-network models may
hold promise for studying the peripheral and central nervous
system. With regards to rehabilitation and enhancement,
the more a surrogate model could match any peripheral
dysfunction, the more likely the enhancement would be
to succeed.

5. CONCLUSION

Our goal in this paper was to develop a model of speech
perception with underlying cochlear functionality to simulate
the impact of various types of peripheral hearing loss on
simulated speech-in-noise performance. We found that
our DNN-based approach for accomplishing a digit-in-
noise task was able to replicate human performance as
compared to normal-hearing approximately listeners. A
sudden hearing loss introduced into the model, followed
by a conservative amount of training, produced simulated
performance that was consistent with published behavioral
speech-in-noise testing.

Future application of this model could serve to translate
results discovered in animal studies into evidence for or against
hypothesized sources of speech-in-noise difficulties. Ultimately,
such a model could be matched to individual behavioral
responses and speech perception performance. This would allow
for the optimization of rehabilitation strategies including targeted
acoustic enhancement, as well as for deriving treatments and
strategies for optimizing adaption to hearing loss.
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