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Traumatic brain injury (TBI) may cause secondary debilitating problems, such as

post-traumatic epilepsy (PTE), which occurs with unprovoked recurrent seizures, months

or even years after TBI. Currently, the Epilepsy Bioinformatics Study for Antiepileptogenic

Therapy (EpiBioS4Rx) has been enrolling moderate-severe TBI patients with the goal to

identify biomarkers of epileptogenesis that may help to prevent seizure occurrence and

better understand the mechanism underlying PTE. In this work, we used a novel complex

network approach based on segmenting T1-weighted Magnetic Resonance Imaging

(MRI) scans in patches of the same dimension (network nodes) and measured pairwise

patch similarities using Pearson’s correlation (network connections). This network model

allowed us to obtain a series of single and multiplex network metrics to comprehensively

analyze the different interactions between brain components and capture structural MRI

alterations related to seizure development. We used these complex network features to

train a Random Forest (RF) classifier and predict, with an accuracy of 70 and a 95%

confidence interval of [67, 73%], which subjects from EpiBioS4Rx have had at least one

seizure after a TBI. This complex network approach also allowed the identification of the

most informative scales and brain areas for the discrimination between the two clinical

groups: seizure-free and seizure-affected subjects, demonstrating to be a promising pilot

study which, in the future, may serve to identify and validate biomarkers of PTE.

Keywords: post-traumatic epilepsy, traumatic brain injury, structural magnetic resonance imaging, multiplex

networks, random forest, machine learning, complex networks

1. INTRODUCTION

Traumatic brain injury (TBI) is the third most common cause of death and debilitating secondary
problems in adults and children worldwide. One common consequence of TBI that causes
significant disability amongst patient populations is post-traumatic epilepsy (PTE) (Humphreys
et al., 2013). This condition develops in up to 50% of patients with TBI. Post-traumatic epilepsy
(PTE) is diagnosed if two or more unprovoked seizures occur at least 1 week after a TBI (Diaz-
Arrastia et al., 2009). Recent investigations suggest that injury severity and especially epileptic
activity are high risk factors of PTE, although the mechanisms by which trauma to the brain
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tissue leads to recurrent seizures is not known. Therefore,
studying if specific structural Magnetic Resonance Imaging
(sMRI) changes can be related to seizures after a TBI is of
fundamental importance to carry out the first steps toward
the discovery of early biomarkers of PTE (Kim et al., 2018).
PTE is not a homogeneous condition and can appear weeks
or several years after a TBI. As a consequence, the precise
percentage of TBI patients who develop PTE is not known
(Verellen and Cavazos, 2010). Currently, growing attention
has been devoted to investigate PTE. In this regard, the
Epilepsy Bioinformatics Study for Antiepileptogenic Therapy
(EpiBioS4Rx) is an international, multi-center project conceived
to identify biomarkers of epileptogenesis after a TBI in order
to evaluate treatments that could prevent the development of
PTE and design clinical trials of antiepileptogenic therapies on
an extensive patient population. With this project, the scientific
community can be granted access to a large amount of high
quality, multi-modal data, including imaging, electrophysiology,
and clinical data from both humans and animals.

Changes in gray matter and white matter related to epilepsy
have been widely observed by using structural MRI (Immonen
et al., 2018; Shah et al., 2019; Lutkenhoff et al., 2020). Many
recent studies have shown that machine learning techniques
and multiplex networks applied to completely non-invasive
neuroimaging techniques, such as structural MRI, can be
useful and efficient to detect pathological alterations in several
neurological diseases, such as Alzheimer’s disease, Parkinson’s
disease, and epilepsy (Amoroso et al., 2018c; La Rocca et al.,
2018; Bharath et al., 2019). Multiplex networks overcome the
limit of the existing complex network standard approaches
not to be able to collectively study what happens to the
same nodes as their interactions change. In our previous work
(Garner et al., 2019), we used different machine learning
strategies to identify alterations in functional brain connectivity
that are related to seizure outcome following TBI. However,
the present study is the first which uses the combination of
multiplex networks of structural MRIs and machine learning
techniques to distinguish patients who have developed at least
one seizure after a TBI from those who have not experienced
any seizures. This study is of paramount importance, because
it offers an opportunity to observe alterations in TBI brain
networks that may reflect structural MRI changes related to
seizure development.

This paper provides three main results: (i) the implementation
of a pipeline which combines complex network and machine
learning models for the identification of TBI patients who
have developed epilepsy; (ii) the investigation of the most
appropriate scale or patch size to study seizure development
in TBI patients; (iii) the implementation, on a TBI cohort, of
a promising complex network model based on segmenting the
brain in patches to obtain comprehensive clinical information
on the whole brain. In the future, this pilot study may
help clinicians localize the epileptogenic focus more precisely,
relate brain lesions to seizure occurrence and understand
the relationship between neuronal activity abnormalities and
structural damage.

TABLE 1 | Imaging findings are reported for each clinical class.

Injury type Seizure-free patients Patients with seizure

Skull fracture 27/37 16/16

Epidural hematoma 8/37 4/16

Extraaxial hematoma 18/37 9/16

Acute subdural hematoma 27/37 14/16

Subarachnoid hemorrhage 30/37 14/16

Intracerebral/Intraparenchymal

hemorrhage

22/37 11/16

Midline shift (Avg shift) 21/37(4.53) 8/16(6.47)

Cisternal compression 6/37 3/16

Frontal contusion 22/37 9/16

Temporal contusion 19/37 7/16

Brain edema 14/37 7/16

Penetrating injury 1/37 0/16

Injury characteristics were reported by clinical staff based on patient Computed

Tomography (CT) scans on the day of hospital admission. No statistically significant

between-group differences were found in the imaging findings except in the skull

fracture (p = 0.02).

TABLE 2 | Sample size, gender, and Glasgow Coma Score (GCS) information are

reported for each clinical class.

Clinical status Sample size Age Female/Male GCS score

Seizure-free patients 37 36.28± 21.18 4/33 10.78± 4.05

Patients with seizure 16 40.50± 18.05 3/13 8.94± 3.59

Age and GCS were provided in terms of mean and standard deviation. No statistically

significant differences between the two classes were found with respect to age, GCS

score, and gender. Statistical evaluations were performed with a Kruskal–Wallis statistic

test except for the gender, for which a Chi-square test was used.

2. MATERIALS AND METHODS

2.1. Dataset
In this work, we used 53 structural MRI scans of TBI subjects
recruited in EpiBioS4Rx according to specific inclusion and
exclusion available online1. Sixteen of these subjects have
experienced at least one seizure within 6 months of a TBI and 37
have not experienced any seizures. As part of their clinical care,
14 subjects required a craniectomy (3 seizure and 11 non-seizure,
p > 0.05). Additional clinical and demographic information are
reported in Tables 1, 2. 3D T1-weighted volumes were acquired
within 32 days (median 8 and interquartile range of [2, 15]) after
the TBI using 3T Siemens, Philips, and GE scanners according
to a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence with the following parameters: 256 mm
field of view (FOV); 1 mm slice thickness; 1,500–2,500 ms
repetition time (TR); minimum echo time (TE); 1,100–1,500 ms
inversion time (TI); 8–15 degree flip angle; 256 phase-encoding
steps, number of excitations (NEX) >1 and 256 Hz frequency.

1https://sites.google.com/g.ucla.edu/epibios4rxmobilewebsite/

inclusionexclusion-criteria
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2.2. MRI Processing
Protocol compliance and quality control (QC) were undertaken
using the Laboratory Of Neuro Imaging (LONI) QC System2.
Structural MRI scans were processed with the Oxford FMRIB
Software Library (FSL) (Jenkinson et al., 2012). Firstly, image
skull-stripping was obtained with the optimized brain extraction
script for patient brain (optiBET) (Lutkenhoff et al., 2014).
For those few cases where the automatic brain extraction was
particularly challenging due to the significant brain deformation
caused by the trauma, we performed the skull stripping
by manually adjusting the brain extraction threshold with
FSL Brain Extraction Tool (BET). Then MRI scan intensity
differences, yielded by bias field, were normalized. After intensity
normalization and brain extraction, a spatial normalization was
performed to co-register the different images into a common
coordinate space by using an affine transformation. The MNI152
was adopted as the reference template, and registration was
performed with the FSL Linear Registration Tool (FLIRT) with
a standard parameter configuration. Even though a deformable
registration would have given a better overlap among TBI
subjects, we purposely used an affine registration for three
main reasons: (i) proving the robustness of the method also
in case of roughly overlap between the anatomical regions of
different TBI subjects; (ii) avoiding misregistration issues due
to the particularly challenging process to apply a non linear
transformation to a cohort with huge brain deformations; (iii)
registering all the subjects to a common reference space keeping
as much as possible the individual differences of the subjects
and the relative lesions. Besides these initial steps, the analysis
pipeline includes two principal sub-pipelines: a complex network
pipeline and a machine learning pipeline that are schematized in
Figure 1 and are described in detail in the next two sections.

2.3. Multiplex Network Pipeline
After image processing, each scan was parceled in homologous
non-overlapping parallelepipeds or patches of V voxels (where
1 voxel is 1 cubic millimeter) in order to obtain a 3D grid.
These patches represent nodes of a brain network, and the
absolute values of Pearson’s correlation between patch pairs were
considered the links between the nodes. In other words, each
network link is obtained by computing the correlation voxel-
by-voxel between the T1 intensities of two patches. Therefore,
for each scan, we obtained a weighted brain network using a
patch-based segmentation. To remove links due to the noise,
we neglected all the correlations lower than 0.3. This threshold
has not been chosen arbitrarily but has been demonstrated in
our previous works (Amoroso et al., 2018b,c) as a threshold
that maximizes classification performance and is the best
trade-off between minimizing noise and maintaining effective
network information in this multiplex network methodology.
This threshold choice is also confirmed by other works in
literature, for example, Mukaka (2012) suggests that correlations
lower than 0.3 are negligible in his guide about the appropriate
use of correlation coefficients in medical research. To further
avoid false positive links in the networks, we also excluded

2https://qc.loni.usc.edu

the patches with a non-brain number of voxels exceeding 10%
of their volume. The idea behind this study is that seizure
development in TBI patients may be related to injury severity
which, as many study demonstrate, results in diffuse cerebral
edemas, hemorrhages, contusions, and distortions of brain tissue
localized in multiple brain regions both close to and distant
from the lesion area. Patch-based approach is aimed to detect
this alterations in terms of correlation variation between regions
with and without tissue damage over the TBI cohort (Kurland
et al., 2012). A patch-based approach is a beneficial trade-off
between a voxel-based approach and an ROI-based approach
and has already been found to be beneficial in the field of
other neurodegenerative diseases (Suk et al., 2014). It has three
main advantages: (i) it overcomes the problem of the “curse
of dimensionality,” (ii) it does not depend on segmentation
accuracy, and (iii) it is robust to misregistration errors (Amoroso
et al., 2018a). Therefore, the patch representation can be very
useful for TBI patients for whom ROI segmentation and spatial
registration are particularly challenging tasks due to the large and
irregular brain deformations caused by TBI lesions. To give a
sense of the injury severity and the related processing challenges
that were faced for this cohort, in Figure 2, for some of the TBI
subjects with the most severe imaging findings, axial and coronal
planes of brain scans after the processing (brain extraction and
registration) are represented alongside the template that the
subjects’ scans are registered to.

The size V of each patch was varied from 1,000 to 8,000
voxels in steps of 1,000 to investigate the most appropriate
scales to study seizure development in TBI patients. At different
scales, the patch number is not constant but is determined
by the patch size. The grid’s origin is fixed for all the scales
because we start to segment each image from the medial sagittal
plane which separates the two brain hemispheres in order to
uniformly cover each hemisphere with an equal number of
rectangular boxes. For each scale, we built a multiplex network
G = {G1,G2, ...,Gi, ...,GM} that is a collection of single subjects’
weighted networks Gi = (N,E,W) sharing the same nodes N,
while the set of links E and weights W change depending on
the subject’s brain networks connections or layer connections.
In other words, in each multiplex network, the same number
of nodes (patches that each scan is segmented into) can be
connected in different ways depending on the specific correlation
coefficient values that characterize the network connections of
a certain layer. Then, given N, the number of network nodes,
we obtained 8N features for each subject, 4N features of single
layer and 4N features of multiplex networks. The single layer
features used in this work are strength and inverse participation
ratio, given by the Equations (1) and (2), and their conditional
means over the nodes with the same degree k, thus having
the same connection number. Conditional means, given by the
Equations (4) and (5), can be useful to examine whether, on
average, the weights of central nodes and less connected nodes
are identically distributed.

sαi =

N
∑

j=1

wα
ij (1)
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FIGURE 1 | Description of the complex network pipeline and machine learning pipeline. First each subject scan is preprocessed, segmented into patches, then for

each subject a weighted undirected network was built and some complex network features were computed. Finally, the feature representation (subject × network

features), obtained after the removal of null mean and variance features and highly correlated features, was used as input for the classification pipeline. The machine

learning pipeline includes 1,000 rounds of cross-validation (CV). In each round the following steps are performed: (i) dataset was stratified; (ii) 80% of the stratified

dataset was used as training set and 20% as validation set; (iii) training set was used, through a first nested Random Forest (RF) classifier, to select the most important

features for the discrimination of seizure-free and seizure affected subjects: (iv) these selected features were used in turn to train a second RF classifier; (v) the

important features and the classification models obtained on the training test were used to classify the subjects of the validation set; (vi) Averaging the classification

performances over the 1,000 CV rounds, we obtained the final accuracy sensitivity, specificity, area under the receiver operating characteristics curve (AUC) and

confidence interval on the validation test.

FIGURE 2 | Examples of coronal plane (Top) and axial plane (Bottom) of TBI subjects with the most severe imaging findings (Left) and the MNI152 reference

template (Right) which the subjects’ images are aligned to.

yα
i =

N
∑

j=1

(

wα
ij

sαi

)2

(2)

s(k)α =
1

Nk

N
∑

i=1

sαi δ(kα
i , k) (3)

Y(k)α =
1

Nk

N
∑

i=1

Yα
i δ(kα

i , k) (4)

α = 1, ..,M indicates the network layer, wij is the correlation
between gray level intensities of the nodes i, j = 1, ..,N
with M subject number, N is the node number, Nk is the
number of nodes having degree k, and δ is the Kronecker
Delta function. Strength and inverse participation ratio indicate,
respectively, the importance of a node and how evenly distributed
the connections between nodes are. Specifically, (yα

i )
−1 ∈

(1, kα
i ) has value kα

i if the weights of the links of node i are
distributed uniformly and, it has value 1 if the weight of one
link is much larger than the other weights (Bianconi, 2018).
The multiplex network features were obtained by weighing the
previous quantities on the multiplex network degree kmulti, given
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by (5), indicating the number of connections of a node in the
multiplex network.

kmulti
i =

N
∑

j=1

amulti
ij ; (5)

where amulti
ij is 1 if there is a layer with at least one link between

nodes i and j and zero otherwise as described in Amoroso
et al. (2018b). From now on, we will refer to these multiplex
quantities as multi-strength, multi-inverse participation ratio,
conditional strength, and conditional multi-inverse participation
ratio. Overall, we obtained for each scale V, a M (subject network
number) X 8N feature representation to analyze with themachine
learning pipeline described in the next section.

2.4. Machine Learning Pipeline
For each scale V, multiplex network features were used to train a
Random Forest (RF) classifier and obtain reliable classification
models to identify, on the validation set, which TBI patients
have developed seizures and which have not. This classification
process, preceded by the removal of null mean and variance
features, and highly correlated features (> 0.95), was carried out
within a machine learning pipeline that includes 1,000 rounds
of stratified cross-validation (Vabalas et al., 2019). For each
round, we randomly picked the same percentage of seizure-
free subjects and seizure-affected subjects in order to examine
balanced datasets. After the stratification, a training set (80% of
the stratified set) and validation set (20% of the stratified set)
were defined. Subsequently, we first used a nested RF classifier,
on the training set, to select and record features exceeding the
third quartile of the importance distribution computed in terms
ofmean accuracy decrease. Then, we used those features to train a
second RF classifier and obtain the classification models. Feature
selection and training phases were nested within each cross-
validation round and were blind to the validation set to avoid
the “double dipping” problem (Kriegeskorte et al., 2009). Finally,
we used the classification models and the important features
retrieved during the training phase to classify the two clinical
classes. Classification performances for each scale were evaluated
in terms of accuracy, specificity, sensitivity, and Area Under the
receiver-operating-characteristic Curve (AUC) averaged over all
the cross-validation rounds. For the average accuracy, we also
reported the 95% confidence interval computed according to the
Wilson score interval (Wilson, 1927). We chose to use RF model
because it is a robust and easy-to-tune model, it does not overfit
thanks to internal bagging and it is particularly appropriate for
analyses with high-dimensional feature spaces and small sample
sizes (even < 100) (Biau and Scornet, 2016; Floares et al.,
2017). Each forest was grown with 500 trees, a number large
enough for the out-of-bag error to reach the typical training
plateau (Breiman, 1996). Therefore, in the internal bagging, given
the training set, 500 bootstraps are formed obtaining 500 new
subjects sets used to grow 500 trees. Each tree is grown by
randomly choosing a subset of features equal to the square root
of the feature number. The learning model built in this way can

FIGURE 3 | The bar plot shows the mean and standard deviations of

accuracy (gold) and AUC (cyan) over 1,000 rounds of cross-validation as

patch volume changes (from 1,000 to 8,000 voxels). The best classification

performances were obtained at 1,000, 3,000, and 5,000 voxels.

be then used to compute the out-of-bag error and the accuracy
on the data left out of the training set.

2.5. Important Feature Assessment
After having found for each round the important features, we
evaluated, for the best scales, which feature occurrences had not
happened by chance over the 1,000 rounds by using the statistical
test of equal or given proportions (Newcombe, 1998). Therefore,
the most important features over all the cross-validation rounds
were found by considering, after the Bonferroni correction for
multiple comparison, a p − value < α ∗ N−1 with α = 0.05.
From the most important nodal features, it was possible to find
the most important network nodes or patches, and thus the most
important anatomical regions. We considered an anatomical
region significantly related to the seizure development only if it
occupied an important patch with a volume greater than 10%
of the patch voxels. To identify the most important anatomical
regions, we used Talairach labels projected in MNI 152 space
(Lancaster et al., 2000). Other details on the reliability of the
feature selection methods used in this work are discussed in the
Supplementary Material.

3. RESULTS

3.1. Classification Performance and
Feature Evaluation
Figure 3 shows the mean and standard deviations of accuracy
and AUC over all the cross-validation rounds as a function of
the patch size. The best classification performances were found
at three patch volumes: 1, 000, 3, 000, and 5, 000 voxels.

Accuracy, specificity, sensitivity, and AUC with the
corresponding standard deviations obtained for these three
optimal scales are reported in Table 3.
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Even though we found the best accuracy for a patch size
of 1,000 and 5,000 voxels (with a 95% confidence interval of
[67, 73%]), and the best AUC for 3,000 voxels, the classification
performances at these three scales are statistically comparable.
Another important aspect is to examine which network
properties are more important to discriminate the two clinical
groups. In this regard, we evaluated the mean percentage of
features associated with a certain network metric that are selected
as important in a cross validation-round. In Figure 4, the mean
percentage of features selected over the cross-validation rounds
and relative to each of the eight network metrics, is reported
for the three most informative scales. This experiment was

TABLE 3 | Accuracy, specificity, sensitivity, and AUC with the relative standard

deviations obtained at the scales of 1,000, 3,000, and 5,000 voxels to which the

best classification performances were reached.

Patch volume Accuracy Specificity Sensitivity AUC

1,000 voxels 0.70 ± 0.03 0.74 ± 0.04 0.66± 0.04 0.75± 0.02

3,000 voxels 0.68± 0.03 0.70± 0.04 0.67± 0.04 0.76± 0.02

5,000 voxels 0.70 ± 0.03 0.68± 0.04 0.69 ± 0.04 0.75± 0.02

The highest value for the four classification metrics are reported in bold.

performed without excluding from the classification the highly
correlated features.

Even though, for each scale, all metrics extracted contribute
to the discrimination of the two clinical groups, we can notice
that the nodal metrics have a greater relevance compared with
the conditional quantities.

3.2. ROI vs. Patch-Based Network
Approach
We also compared the patch-based network approach with
a standard ROI-based approach to evaluate the efficacy
of the proposed complex network methodology to predict
seizure development in TBI patients. We used the publicly
available brain segmentation package, FreeSurfer (FS) v.6.0
(Fischl, 2012), which automatically performs: brain extraction,
intensity normalization, spatial registration, volume labeling,
segmentation, and all steps necessary to compute morphological
features from each image. This tool allowed us to obtain 182
features, for each MRI scan, including subcortical and cortical
gray matter parcellations, white matter parcellations, total gray
and white matter volumes, and intracranial volume. These
FS features were then used to distinguish TBI subjects who
have developed epilepsy from those who have not by adopting
the same machine learning pipeline used for the complex

FIGURE 4 | Mean percentage of features, selected over the cross-validation rounds, relative to strength (S), inverse participation ratio (Y), multi-strength (multiS),

inverse-participation ratio (multiY), and their conditional means(Sc, Yc, multiSc, multiYc) are reported for the scales of 1,000 voxels (yellow barplot), 3,000 voxels (blue

barplot), and 5,000 voxels (dark green barplot).

Frontiers in Neuroscience | www.frontiersin.org 6 November 2020 | Volume 14 | Article 591662

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


La Rocca et al. Multiplex Networks Characterize Seizure Development

network features. In Figure 5, receiver operating characteristics
(ROC) curve and the related area under the curve (AUC) are
reported for the three best scales of the complex networks and
for FS.

We can notice that network approach outperform FS
approach (accuracy: 0.66±0.02, sensitivity: 0.69±0.04, specificity:
0.62± 0.04).

3.3. Anatomical Regions Related to Seizure
Development
For the three scales proved to be more appropriate to identify
brain network alterations related to seizure development, we
reported, in Figure 6, the brain areas (highlighted in green)
corresponding to the most significant complex network features
for the classification of seizure-free subjects and subjects with
one seizure.

At the scale of 1, 000 voxels, the significant patches
(p < 1.563 ∗ 10−5 after the Bonferroni correction) identify
anatomical regions mostly located in the right and left superior
temporal gyrus lobe, but there are significant patches also in the
left middle temporal gyrus, left inferior frontal and precentral
gyrus, and in the right cerebellum within posterior lobe. At the
scale of 3, 000, the most important brain area (p < 3.962 ∗ 10−5

after the Bonferroni correction) for the two group discrimination
corresponds to the cingulate gyrus in the left parietal lobe and in
the right and left limbic lobe, sub-gyral in left and right frontal
and parietal lobe, right and left precuneus, right postcentral
gyrus, left inferior parietal lobule, angular gyrus, medial frontal
gyrus, and superior occipital gyrus. Finally, the important areas
(p < 6.361 ∗ 10−5 after the Bonferroni correction) at the scale of
5, 000 voxels were the left and right cerebellum in the posterior
lobe, right parahippocampal gyrus, right subcallosal gyrus, left
inferior middle, and superior frontal gyrus, sub-gyral in the left
frontal lobe, cingulate gyrus in the left limbic lobe, right and left
extra-nuclear white matter, and left insula.

To make more understandable the relationship between
patches and complex network features, in Figure 7, the
distribution of the reciprocal of the inverse participation ratio of a
patch, located in the left frontal lobe, is reported for both clinical
groups. In the same figure, the representation of such a patch
in a seizure-affected patient who has significant abnormalities in
that area and in a seizure-free patient who does not have visible
anomalies in that area is shown. The inverse participation ratio
relative to the patch represented in Figure 7 is an example of a
network feature which is important for the discrimination of the
two clinical groups. Indeed, from the box plot, we can notice that
the median of the distribution for the seizure-affected subjects is
significantly greater than the median of the distribution for the
seizure-free subjects.

4. DISCUSSION

In this work, an innovative multiplex network approach was
used to find informative complex network features that can be
used from machine learning systems for the identification of
patients who have developed a seizure after a TBI. To the best

FIGURE 5 | Classification performances in terms of area under the receiver

operating characteristics curve (AUC). Performaces obtained with the complex

network features at the the best three scales (red, orange, and green curves)

are significantly greater than those obtained with FreeSurfer (FS)

features (blue curves).

of our knowledge, this is the first study to distinguish seizure-
free subjects and seizure-affected subjects with an accuracy of
70% and an AUC of 76% by using T1-weighted MRI data.
In Messori et al. (2005), PTE prediction using human MRI is
based only on statistical evaluations. Classification performances
obtained in this work are comparable and even higher than those
found in La Rocca et al. (2019) and Garner et al. (2019) that
examine functional and structural alterations related to seizure
onset. All the network properties are proved to be useful to the
classification, however, features relative to conditional metrics
were selected less frequently in each cross-validation round.
Classification performances were computed as a function of the
patch volume, which was varied in an intermediate range (from
1,000 to 8,000 voxels) in order to avoid that the analysis was
affected by a low sensitivity to subtle pathological changes in
case of too large patches or by the ’curse of dimensionality’
and misregistration in case of too small patches. The best
classification performances were obtained at three different
scales: 1,000, 3,000, and 5,000 voxels, proving that the study
of seizure development in TBI patients requires multivariate
analyses. Although some of the important anatomical regions,
such as cingulate gyrus, sub-gyral, inferior central gyrus, and
cerebellar tonsil in the right cerebellum are accordant for the
three scales, we can notice that some morphological changes
between the two clinical groups can be detected only at specific
scales. This suggests that seizure development in TBI patients
cannot be studied considering a unique scale, which is reasonable
given the heterogeneity of the epileptogenesis process after a
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FIGURE 6 | Patches corresponding to the most important nodal complex network features for the discrimination of the two clinical groups (seizure-free and

seizure-affected) are underlined in green along the axial planes of the MNI 152 template. (A–C) Display the most significant patches relative to the scales of 5,000,

3,000, and 1,000 voxels, respectively.

FIGURE 7 | As an example, (A,B) show the details of a patch in two different TBI subjects. As shown in the green box plots on the right, this patch has an inverse

participation ratio that is significantly different (p < 2.2 ∗ 10−16) in the two clinical groups (seizure-free and seizure-affected patients). (B) Shows the patch pinpointing

an area where voxels intensity is altered by a lesion and the surrounding edema and (A) shows the patch covering a brain area that does not have evident alterations.

TBI and the fact that TBIs affect the brain in different areas
and at different scales. As a consequence, analyzing multiple
scales can give a more exhaustive detection of the MRI changes
related to seizure development after a TBI that a unique scale
is not able to provide. Therefore, our methodology can be very
useful to perform a multivariate analysis that take into account
multi-scale features. Conventional volumetric analyses are based

on manual segmentation of the Region-Of-Interest (ROI) that
is time-consuming and affected by personal bias. The modern
automated algorithms that allow the determination of volumes,
thickness, and shape of anatomical structures often fail because
of large lesion size and extensive tissue damage in TBI patients.
In this regard, we demonstrated that our approach (AUC of 76%)
is more effectiveness than a ROI-based approach like FS (AUC
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of 67%). EpiBioS4Rx is an ongoing study that will enroll 300
patients, therefore in upcoming years, with a larger and more
representative training sample, we will be able to fully exploit
machine learning potentialities and obtain conclusive results
about the generalization power of the model in predicting seizure
development in TBI patients (Figueroa et al., 2012). Once more
subjects will be enrolled and longitudinally examined, it will be
also interesting to see if the proposed methodology is able to
distinguish among immediate, early, and late seizures in order to
take into account also the temporal aspect of the epileptogenic
process. Besides, the completely automated complex network
approach used in this work can be really beneficial because it
allows an unsupervised identification of the important brain
areas without being affected by ROI segmentation mistakes
and time-consuming procedures. This methodology offers also
other two main advantages: (i) it allows the identification of
MRI changes which differentiate seizure-free and seizure-affected
patients and which cannot be underlined using only CT MRI
findings (see Table 1); (ii) it allows the identification of the
brain scales at which the pathological changes related to seizure
development occur. Indeed, as might be expected, given TBI
variability, epileptogenesis mechanism will depend on alterations
that happen at different scales (Cloots et al., 2013). It is interesting
to notice that at the scale of 1,000 voxels, most of the patches are
located at the periphery of the brain. This may be due to brain
surface deformations or to subdural and epidural hematomas
that are reported among the risk factors to develop epilepsy
and are present in many subjects of this cohort as reported
in Table 1 (Agrawal et al., 2006). An example of subdural
hemotoma is shown in Figure 7B in the left posterior part of
the brain. Most of the clinical results are in line with recent
studies about seizure development. Norden and Blumenfeld
(2002) states the increased likelihood of cerebellar alterations in
patients with epilepsy. In Shultz et al. (2013), MRI alterations
were found in hippocampus subfields of rodents with epilepsy
after a lateral fluid percussion injury. Tubi et al. (2019) showed
that subjects with lesions in the temporal lobe are at high risk
to develop epilepsy, suggesting that morphological alterations in
the temporal lobe may play a strategic role in seizure occurrence.
Hippocampus, cingulate gyrus, precentral gyrus, postcentral
gyrus, and middle and inferior frontal gyrus were proved to
be regions related to the epileptogenesis process also in studies
that apply machine learning techniques to fMRI and sMRI to
characterize patients with epilepsy (Zhang et al., 2012; Garner
et al., 2019; La Rocca et al., 2019). It is worthwhile to notice that
the highly correlated (> 0.95) features that were excluded in the
classification correspond to complex network metrics related to
the same patch and thus, to the same brain area. This ensures
that we did not exclude any important region in the clinical
validation and suggests that for some patches more complex
network metrics are accordant with each other.

5. CONCLUSION

We have demonstrated that the combined use of complex
networks and machine learning techniques can be useful to study

seizure development in TBI patients. Multiplex networks were
able to provide network features that allow us to distinguish
TBI patients who have developed epilepsy from those who
have not with an accuracy of 70%. In addition, a patch-based
approach used to build the multiplex networks made it possible
to identify, in an unsupervised way, the brain areas important
for the discrimination of the two clinical groups, even though
a perfect solution of optimum features is a challenging and still
open matter. EpiBioS4Rx is an ongoing study that will enroll 300
patients, thus in the near future, a larger dataset will be available,
and we will be able to obtain more conclusive results.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: access to data must be requested
and approved by the EpiBioS4Rx steering committee.
Requests to access these datasets should be directed to
epibiossteeringcommittee@loni.usc.edu.

ETHICS STATEMENT

This work was approved by the UCLA Institutional Review
Board (IRB# 16-001 576) and the local review boards at each
EpiBioS4Rx Study Group institution. Written informed consent
to participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

ML conceived and conducted the analyses. ML, RG, NA, EL,
MM, PV, AT, and DD analyzed the results and reviewed
the manuscript.

FUNDING

This study was conducted with the support of the National
Institute of Neurological Disorders and Stroke (NINDS) of the
National Institutes of Health (NIH) under award numbers U54
NS100064 (EpiBioS4Rx) and R01NS111744.

ACKNOWLEDGMENTS

Data used in the preparation of this article were obtained from
the The Epilepsy Bioinformatics Study for Antiepileptogenic
Therapy (EpiBioS4Rx) database (https://epibios.loni.usc.edu).
EpiBioS4Rx was funded by the National Institute of Neurological
Disorders and Stroke (NINDS) of the National Institutes of
Health (NIH) in 2017. EpiBioS4Rx is a large, international,
multi-site Center without Walls (CWOW) which has been
collecting longitudinal EEG, imaging, and blood data from
human patients and an animal model with the primary goal
to identify biomarkers of epileptogenesis after a traumatic
brain injury and then provide therapies and treatments that
may stop the development of post-traumatic epilepsy. The
Principal Investigators of this initiative are Jerome Engel Jr.,

Frontiers in Neuroscience | www.frontiersin.org 9 November 2020 | Volume 14 | Article 591662

https://epibios.loni.usc.edu
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


La Rocca et al. Multiplex Networks Characterize Seizure Development

MD, Ph.D., Ronald Reagan University of California Los Angeles
Medical Center; Aristea Galanopoulou, Ph.D., Albert Einstein
College of Medicine; Solomon L. Moshé, MD, Albert Einstein
College of Medicine; Terence O’Brien, MD, The University of
Melbourne; Asla Pitkänen, Ph.D., University of Eastern Finland,
Kuopio; AT Ph.D., University of Southern California; Paul M.
Vespa, MD, Ronald Regan University of California Los Angeles
Medical Center. EpiBioS4Rx is the result of efforts of many
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over

30 sites across the world. EpiBioS4Rx data are disseminated by
the Laboratory of Neuro Imaging at the University of Southern
California. A complete listing of EpiBioS4Rx investigators can be
found at: https://epibios.loni.usc.edu.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.591662/full#supplementary-material

REFERENCES

Agrawal, A., Timothy, J., Pandit, L., and Manju, M. (2006). Post-

traumatic epilepsy: an overview. Clin. Neurol. Neurosurg. 108, 433–439.

doi: 10.1016/j.clineuro.2005.09.001

Amoroso, N., La Rocca, M., Bellotti, R., Fanizzi, A., Monaco, A., Tangaro,

S., et al. (2018a). Alzheimer’s disease diagnosis based on the hippocampal

unified multi-atlas network (human) algorithm. Biomed. Eng. Online 17:6.

doi: 10.1186/s12938-018-0439-y

Amoroso, N., La Rocca, M., Bruno, S., Maggipinto, T., Monaco, A., Bellotti, R.,

et al. (2018b). Multiplex networks for early diagnosis of Alzheimer’s disease.

Front. Aging Neurosci. 10:365. doi: 10.3389/fnagi.2018.00365

Amoroso, N., La Rocca, M., Monaco, A., Bellotti, R., and Tangaro, S. (2018c).

Complex networks reveal earlyMRImarkers of Parkinson’s disease.Med. Image

Anal. 48, 12–24. doi: 10.1016/j.media.2018.05.004

Bharath, R. D., Panda, R., Raj, J., Bhardwaj, S., Sinha, S., Chaitanya, G., et al.

(2019). Machine learning identifies “rsfMRI epilepsy networks” in temporal

lobe epilepsy. Eur. Radiol. 29, 1–10. doi: 10.1007/s00330-019-5997-2

Bianconi, G. (2018).Multilayer Networks: Structure and Function. Oxford: Oxford

University Press. doi: 10.1093/oso/9780198753919.001.0001

Biau, G., and Scornet, E. (2016). A random forest guided tour. Test 25, 197–227.

doi: 10.1007/s11749-016-0481-7

Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123–140.

doi: 10.1007/BF00058655

Cloots, R. J., Van Dommelen, J., Kleiven, S., and Geers, M. (2013). Multi-scale

mechanics of traumatic brain injury: predicting axonal strains from head loads.

Biomech. Model. Mechanobiol. 12, 137–150. doi: 10.1007/s10237-012-0387-6

Diaz-Arrastia, R., Agostini, M. A., Madden, C. J., and Van Ness, P. C.

(2009). Posttraumatic epilepsy: the endophenotypes of a human model of

epileptogenesis. Epilepsia 50, 14–20. doi: 10.1111/j.1528-1167.2008.02006.x

Figueroa, R. L., Zeng-Treitler, Q., Kandula, S., and Ngo, L. H. (2012). Predicting

sample size required for classification performance. BMC Med. Inform. Decis.

Mak. 12:8. doi: 10.1186/1472-6947-12-8

Fischl, B. (2012). Freesurfer. Neuroimage 62, 774–781.

doi: 10.1016/j.neuroimage.2012.01.021

Floares, A., Ferisgan, M., Onita, D., Ciuparu, A., Calin, G., and Manolache, F.

(2017). The smallest sample size for the desired diagnosis accuracy. Int. J. Oncol.

Cancer Ther. 2, 13–19.

Garner, R., La Rocca, M., Barisano, G., Toga, A. W., Duncan, D., and Vespa,

P. (2019). “A machine learning model to predict seizure susceptibility from

resting-state fMRI connectivity,” in Proceedings of the Modeling and Simulation

in Medicine Symposium, 14 (Tucson, AZ: Society for Computer Simulation

International). doi: 10.23919/SpringSim.2019.8732859

Humphreys, I., Wood, R. L., Phillips, C. J., and Macey, S. (2013). The costs of

traumatic brain injury: a literature review. Clin. Econ. Outcomes Res. 5:281.

doi: 10.2147/CEOR.S44625

Immonen, R., Harris, N. G.,Wright, D., Johnston, L., Manninen, E., Smith, G., et al.

(2018). Imaging biomarkers of epileptogenecity after traumatic brain injury-

preclinical frontiers. Neurobiol. Dis. 123, 75–85. doi: 10.1016/j.nbd.2018.10.008

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M.W., and Smith, S. M.

(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kim, J. A., Boyle, E. J., Wu, A. C., Cole, A. J., Staley, K. J., Zafar,

S., et al. (2018). Epileptiform activity in traumatic brain injury predicts

post-traumatic epilepsy. Ann. Neurol. 83, 858–862. doi: 10.1002/ana.

25211

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., and Baker, C. I. (2009).

Circular analysis in systems neuroscience: the dangers of double dipping. Nat.

Neurosci. 12:535. doi: 10.1038/nn.2303

Kurland, D., Hong, C., Aarabi, B., Gerzanich, V., and Simard, J. M. (2012).

Hemorrhagic progression of a contusion after traumatic brain injury: a review.

J. Neurotrauma 29, 19–31. doi: 10.1089/neu.2011.2122

La Rocca, M., Amoroso, N., Monaco, A., Bellotti, R., Tangaro, S., Initiative,

A. D. N., et al. (2018). A novel approach to brain connectivity reveals

early structural changes in Alzheimer’s disease. Physiol. Measure. 39:074005.

doi: 10.1088/1361-6579/aacf1f

La Rocca, M., Garner, R., Jann, K., Kim, H., Vespa, P., Toga, A. W., et al. (2019).

“Machine learning of multimodal MRI to predict the development of epileptic

seizures after traumatic brain injury,” in Medical Imaging with Deep Learning

(MIDL) Abstract (London).

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas,

C. S., Rainey, L., et al. (2000). Automated talairach atlas labels

for functional brain mapping. Hum. Brain Mapp. 10, 120–131.

doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8

Lutkenhoff, E. S., Rosenberg, M., Chiang, J., Zhang, K., Pickard, J. D., Owen, A. M.,

et al. (2014). Optimized brain extraction for pathological brains (optibet). PLoS

ONE 9:e115551. doi: 10.1371/journal.pone.0115551

Lutkenhoff, E. S., Shrestha, V., Tejeda, J. R., Real, C., McArthur, D. L., Duncan, D.,

et al. (2020). Early brain biomarkers of post-traumatic seizures: initial report

of the multicentre epilepsy bioinformatics study for antiepileptogenic therapy

(epibios4rx) prospective study. J. Neurol. Neurosurg. Psychiatry. 91, 1154–1157.

doi: 10.1136/jnnp-2020-322780

Messori, A., Polonara, G., Carle, F., Gesuita, R., and Salvolini, U. (2005). Predicting

posttraumatic epilepsy with MRI: prospective longitudinal morphologic

study in adults. Epilepsia 46, 1472–1481. doi: 10.1111/j.1528-1167.2005.

34004.x

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in

medical research.Malawi Med. J. 24, 69–71. doi: 10.4314/mmj.v20i1.10949

Newcombe, R. G. (1998). Interval estimation for

the difference between independent proportions:

comparison of eleven methods. Stat. Med. 17, 873–890.

doi: 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I

Norden, A. D., and Blumenfeld, H. (2002). The role of subcortical

structures in human epilepsy. Epilep. Behav. 3, 219–231.

doi: 10.1016/S1525-5050(02)00029-X

Shah, P., Bassett, D. S., Wisse, L. E., Detre, J. A., Stein, J. M., Yushkevich, P. A., et al.

(2019). Structural and functional asymmetry of medial temporal subregions

in unilateral temporal lobe epilepsy: a 7T MRI study. Hum. Brain Mapp. 40,

2390–2398. doi: 10.1002/hbm.24530

Shultz, S. R., Cardamone, L., Liu, Y. R., Hogan, R. E., Maccotta, L., Wright, D.

K., et al. (2013). Can structural or functional changes following traumatic

brain injury in the rat predict epileptic outcome? Epilepsia 54, 1240–1250.

doi: 10.1111/epi.12223

Suk, H.-I., Lee, S.-W., Shen, D., and Alzheimers Disease Neuroimaging

Initiative. (2014). Hierarchical feature representation and multimodal fusion

with deep learning for AD/MCI diagnosis. NeuroImage 101, 569–582.

doi: 10.1016/j.neuroimage.2014.06.077

Frontiers in Neuroscience | www.frontiersin.org 10 November 2020 | Volume 14 | Article 591662

https://epibios.loni.usc.edu
https://www.frontiersin.org/articles/10.3389/fnins.2020.591662/full#supplementary-material
https://doi.org/10.1016/j.clineuro.2005.09.001
https://doi.org/10.1186/s12938-018-0439-y
https://doi.org/10.3389/fnagi.2018.00365
https://doi.org/10.1016/j.media.2018.05.004
https://doi.org/10.1007/s00330-019-5997-2
https://doi.org/10.1093/oso/9780198753919.001.0001
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/s10237-012-0387-6
https://doi.org/10.1111/j.1528-1167.2008.02006.x
https://doi.org/10.1186/1472-6947-12-8
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.23919/SpringSim.2019.8732859
https://doi.org/10.2147/CEOR.S44625
https://doi.org/10.1016/j.nbd.2018.10.008
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1002/ana.25211
https://doi.org/10.1038/nn.2303
https://doi.org/10.1089/neu.2011.2122
https://doi.org/10.1088/1361-6579/aacf1f
https://doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
https://doi.org/10.1371/journal.pone.0115551
https://doi.org/10.1136/jnnp-2020-322780
https://doi.org/10.1111/j.1528-1167.2005.34004.x
https://doi.org/10.4314/mmj.v20i1.10949
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
https://doi.org/10.1016/S1525-5050(02)00029-X
https://doi.org/10.1002/hbm.24530
https://doi.org/10.1111/epi.12223
https://doi.org/10.1016/j.neuroimage.2014.06.077
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


La Rocca et al. Multiplex Networks Characterize Seizure Development

Tubi, M. A., Lutkenhoff, E., Blanco, M. B., McArthur, D., Villablanca, P.,

Ellingson, B., et al. (2019). Early seizures and temporal lobe trauma predict

post-traumatic epilepsy: a longitudinal study. Neurobiol. Dis. 123, 115–121.

doi: 10.1016/j.nbd.2018.05.014

Vabalas, A., Gowen, E., Poliakoff, E., and Casson, A. J. (2019). Machine learning

algorithm validation with a limited sample size. PLoS ONE 14:e0224365.

doi: 10.1371/journal.pone.0224365

Verellen, R. M., and Cavazos, J. E. (2010). Post-traumatic epilepsy: an overview.

Therapy 7:527. doi: 10.2217/thy.10.57

Wilson, E. B. (1927). Probable inference, the law of succession,

and statistical inference. J. Am. Stat. Assoc. 22, 209–212.

doi: 10.1080/01621459.1927.10502953

Zhang, J., Cheng, W., Wang, Z., Zhang, Z., Lu, W., Lu, G., et al. (2012).

Pattern classification of large-scale functional brain networks: identification

of informative neuroimaging markers for epilepsy. PLoS ONE 7:e36733.

doi: 10.1371/journal.pone.0036733

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 La Rocca, Garner, Amoroso, Lutkenhoff, Monti, Vespa, Toga and

Duncan. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 November 2020 | Volume 14 | Article 591662

https://doi.org/10.1016/j.nbd.2018.05.014
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.2217/thy.10.57
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1371/journal.pone.0036733
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Multiplex Networks to Characterize Seizure Development in Traumatic Brain Injury Patients
	1. Introduction
	2. Materials and Methods
	2.1. Dataset
	2.2. MRI Processing
	2.3. Multiplex Network Pipeline
	2.4. Machine Learning Pipeline
	2.5. Important Feature Assessment

	3. Results
	3.1. Classification Performance and Feature Evaluation
	3.2. ROI vs. Patch-Based Network Approach
	3.3. Anatomical Regions Related to Seizure Development

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


