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Background: Studies regarding differentially expressed genes (DEGs) in Parkinson’s
disease (PD) have focused on common upstream regulators or dysregulated pathways
or ontologies; however, the relationships between DEGs and disease-related or cell
type-enriched genes have not been systematically studied. Meta-analysis of DEGs
(meta-DEGs) are expected to overcome the limitations, such as replication failure and
small sample size of previous studies.

Purpose: Meta-DEGs were performed to investigate dysregulated genes enriched with
neurodegenerative disorder causative or risk genes in a phenotype-specific manner.

Methods: Six microarray datasets from PD patients and controls, for which substantia
nigra sample transcriptome data were available, were downloaded from the NINDS data
repository. Meta-DEGs were performed using two methods, combining p-values and
combing effect size, and common DEGs were used for secondary analyses. Gene sets
of cell type-enriched or disease-related genes for PD, Alzheimer’s disease (AD), and
hereditary progressive ataxia were constructed by curation of public databases and/or
published literatures.

Results: Our meta-analyses revealed 449 downregulated and 137 upregulated
genes. Overrepresentation analyses with cell type-enriched genes were significant in
neuron-enriched genes but not in astrocyte- or microglia-enriched genes. Meta-DEGs
were significantly enriched in causative genes for hereditary disorders accompanying
parkinsonism but not in genes associated with AD or hereditary progressive ataxia.
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Enrichment of PD-related genes was highly significant in downregulated DEGs but
insignificant in upregulated genes.

Conclusion: Downregulated meta-DEGs were associated with PD-related genes,
but not with other neurodegenerative disorder genes. These results highlight disease
phenotype-specific changes in dysregulated genes in PD.

Keywords: meta-analysis, differentially expressed genes, Parkinson’s disease, disease-related genes, substantia
nigra

INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease. Loss of dopamine-producing neurons
in the substantia nigra (SN) and Lewy body pathology are the
pathological hallmarks of PD. Clinically, PD is characterized
by bradykinesia, resting tremors, rigidity, postural instability,
and gait disturbance, all of which can be reversed by dopamine
replacement therapy (Kalia and Lang, 2015). While most cases
of PD are sporadic, 10–15% of patients with PD have a family
history of the disease. Genome-wide association studies (GWAS)
and meta-GWAS of idiopathic PD led to the discovery of 90 PD
risk alleles across 78 genomic regions, which explain 16–36% of
the heritable risk of PD (Nalls et al., 2019). For familial PD, 17
causative genes, which were assigned the prefix “PARK,” were
identified. Studies on the molecular functions of these genes have
provided a comprehensive picture of PD pathogenesis, focusing
particularly on the degeneration of dopaminergic neurons.
Mutations in these familial PD genes cause changes in molecular
functions due to loss-of-function or toxic-gain-of-function,
which leads to alterations in cellular systems and pathways.
Altered gene expression is regarded as a secondary change
rather than the direct effect of mutations. Interestingly, the
downregulation of a few PARK genes was reported in microarray
studies (Moran et al., 2006; Simunovic et al., 2009). Moreover, a
recent study showed that not only PARK genes but also causative
genes for hereditary disorders accompanying a phenotype of
parkinsonism (non-PARK genes) were also dysregulated in
the SN (Kim et al., 2017). Whether dysregulated genes in the
SN of patients with PD are associated with disease-causing
or risk genes for other neurodegenerative disorders, such as
Alzheimer’s disease or hereditary progressive ataxia, has not
been investigated.

Genome-wide expression studies (GWES) to detect
differentially expressed genes (DEGs) in the blood or brain tissues
of animal models or patients with neurodegenerative disorders
have provided insights into genes, pathways, and molecular
mechanisms that are involved in neurodegeneration (Hauser
et al., 2005; Soreq et al., 2013; Hokama et al., 2014). However,
these studies were limited by small sample sizes and poor
replication of results, and meta-analyses of DEGs are expected to
overcome these limitations (Borrageiro et al., 2018). Such DEG
meta-analyses have confirmed that pathways involved in synaptic
vesicle cycling, dopamine receptor signaling, cellular respiration,
and mitochondrial dysfunction are dysregulated in PD (Soreq
et al., 2012; Glaab and Schneider, 2015; Mariani et al., 2016;

Wang et al., 2017; Su et al., 2018; Kelly et al., 2019). While some
GWES reported shared pathways among neurodegenerative
disorders (Wang et al., 2017; Kelly et al., 2019), at least one study
supports the involvement of disease-specific networks (Su et al.,
2018). For example, inflammation and microglial activation
are common pathological features among neurodegenerative
disorders (Stephenson et al., 2018); however, activation of
microglia-related genes is well documented in Alzheimer’s
disease GWES, but not in PD GWES. Recently, genes enriched
in particular central nervous system (CNS) cell types were also
identified by RNA sequencing after immunopanning (Zhang
et al., 2014, 2016). Nevertheless, analysis of DEGs in PD with
regard to cell type-enriched genes has not been performed.
Here, we performed a meta-analysis of DEGs (meta-DEG) in
the SN of patients with PD and characterized the corresponding
disease-related and cell type-enriched DEGs.

MATERIALS AND METHODS

Cohorts and Datasets
Six microarray datasets were downloaded from the NINDS
data repository after a systematic search was performed in
PubMed and the Gene Expression Omnibus1 on January 6, 2019
using the following search terms: “Parkinson’s disease AND
substantia nigra”; “Parkinson’s disease AND transcriptome”; and
“Parkinson’s disease AND microarray.” Only original datasets
obtained using Affymetrix chip platforms and comprising
samples derived from the SN tissue of healthy individuals
and patients with PD were included. The information in the
six datasets included in this study is summarized in Table 1
(Grunblatt et al., 2004; Hauser et al., 2005; Zhang et al.,
2005; Moran et al., 2006; Papapetropoulos et al., 2006; Duke
et al., 2007; Moran and Graeber, 2008; Zheng et al., 2010;
Durrenberger et al., 2012).

Meta-DEG
The meta-DEG workflow is summarized in Figure 1. Based
on the relative log expression plot, the outlier samples were
detected and removed using the R package (version 3.6)
arrayQualityMetrics v.3.44.0 (Kauffmann et al., 2009; Kauffmann
and Huber, 2010) (Supplementary Figure 1). The Affymetrix
Microarray Suite 5 algorithm was used to remove low-intensity
probes in each dataset that were identified as absent. Briefly,

1http://www.ncbi.nlm.nih.gov/geo
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TABLE 1 | Summary of the microarray datasets used in this study.

PMID Datasets Platform Total no. of
samples

No. of cases

Control Disease

15455214 GSE20333 HG-FOCUS 12 6 6

17193926 GSE7621 HG-U133_Plus_2 25 9 16

16344956 GSE8397 HG_U133A 39 15 24

15956162 GSE20164 HG_U133A 11 5 6

15965975;
20926834

GSE20292 HG_U133A 29 18 11

20926834 GSE20163 HG_U133A 17 9 8

PMID, PubMed ID; No, Number.

downloaded data were normalized using the R package gcRMA
v. 2.58.0 (Supplementary Figure 2). For probe-to-gene mapping,
each probe in each dataset was converted into the corresponding
gene. Probes mapped onto more than one gene were removed. To
combine the expression levels of multiple probes mapped onto
one gene, the median absolute deviation, which is a measure of
dispersion robust to outliers, was applied. After preprocessing,
common genes (n = 3,673) across all six datasets were used
for the main meta-analysis as previously (Cruz-Monteagudo
et al., 2016; Feng and Wang, 2017). Meta-DEGs were performed
using the R package MetaMA v. 3.1.2; this package consists of
12 functions and is designed specifically for microarray meta-
analysis (Marot et al., 2009). Meta-analyses were separately
performed by combining p-values and by combining effect size
in the random effect model. For combining p-values, a one-tailed
t-test was performed for each gene in each study to compute
the corresponding p-values. After the Benjamini–Hochberg
correction was used, the inverse normal method was applied to
combine the p-values. For combining effect size, the moderated
effect size and its variance were combined across multiple studies
using the EScombination function. P-values were calculated
from the combined statistics using a normal distribution and
adjusted using the Benjamini–Hochberg method. Fold change
was calculated as log2 ratio of the mean expression of the cases
and the controls. For secondary analyses, overlapping genes
obtained by using both the combining effect size and combining
p-value methods (SN-meta-DEGs) were used.

Gene Ontology and Pathway Analysis
To embed the SN-meta-DEGs within biological networks,
NetworkAnalystTM (Xia et al., 2015) was used. All, upregulated,
and downregulated SN-meta-DEGs, along with their meta
log fold change expression values, were separately analyzed.
Enrichment networks analyzed included Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Gene Ontology:
Biological process, Gene Ontology: Molecular function, and Gene
Ontology: Cellular component domains.

Overrepresentation Analysis
The enrichment of SN-meta-DEGs in a specific gene set of
interest, such as cell type-enriched genes or disease-related genes,
was tested using the hypergeometric test. Then, to examine the

trend of expression of cell type-enriched genes in the SN-meta-
DEGs, one-sample t-tests were performed from the log2 fold
change as previously described (Itoh and Voskuhl, 2017). Gene
sets of interest were curated as follows:

Cell Type-Enriched Genes
Cell type-enriched genes expressed in five types of cells
(astrocytes, microglia, oligodendrocytes, neurons, and
endothelial cells) in the human CNS were derived from
published data (Zhang et al., 2016). Differential expression was
calculated as the ratio of the fragments per kilobase of transcript
per million mapped reads (FPKM) of a given cell type to the
average FPKM of all other cell types. Genes with FPKM < 20
were excluded. A more than fourfold change in expression of
a gene in a given cell type was considered as cell type-enriched
gene expression (Zhang et al., 2014). For microglia-enriched
genes, an additional gene set derived from aged human brains
was used (Olah et al., 2018).

Mendelian Disorder Genes
Causative genes for Mendelian disorders were derived from
the Online Mendelian Inheritance in Man (OMIM) (Amberger
et al., 2015). Gene assigned phenotypes with a known molecular
basis (i.e., the phenotype mapping key “3” and the phenotype
symbol “#” for phenotype descriptions with a known molecular
basis) were extracted from morbidmap.txt and mimTitiles.txt.
Duplicated genes, genes on mitochondrial DNA or the Y
chromosome, or genes that were susceptible to a phenotype but
not causing any phenotype with a known molecular background
were all excluded. As a result, 4,210 genes for 6,172 Mendelian
disorders were obtained.

Genes Related to Neurodegenerative Disorders (PD,
Parkinsonism, Alzheimer’s Disease, or Hereditary
Progressive Ataxia)
For constructing these gene sets, first, a set of Mendelian genes
accompanying the phenotype of parkinsonism regardless of the
phenotype prefix, PARK (“hereditary parkinsonism genes”) was
constructed based on manual curation of the OMIM database and
the authors’ knowledge (Supplementary Table 1). In brief, genes
were systematically retrieved by using the keyword “parkinson∗”
in the OMIM database and then manually curating all retrieved
records by searching their text for keywords with the prefix “#.”
Three genes, DNAJC13, TMEM230 (which are controversial for
the PARK21 loci: OMIM ID,%616361), and LRP10, which were
recently reported in familial PD and dementia with Lewy bodies
without assignment of PARK loci (Giri et al., 2017; Quadri et al.,
2018), were not included in our custom gene set. Conversely, two
additional genes, ATM and OPA1, which have a well-documented
association with the parkinsonism phenotype in the literature
but were missed in the OMIM database, were included in the
hereditary parkinsonism gene set (Carelli et al., 2015; Levy
and Lang, 2018). As a result, a total of 92 genes belonging to
hereditary parkinsonism gene sets were curated. The second gene
set of PD risk genes was retrieved from the National Human
Genome Research Institute-European Bioinformatics Institute
(NHGRI-EBI) catalog of published GWAS (Buniello et al., 2019);
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FIGURE 1 | Workflow for the meta-analysis of differentially expressed Parkinson’s disease genes. Abbreviations: GEO, gene expression omnibus; FDR, false
discovery rate.

a total of 381 associated single nucleotide variants (SNVs) and
280 mapped genes were derived from 44 GWAS. Another PD
risk gene set, which consists of 90 variants and 86 genes, was
sourced from a meta-GWAS of 17 PD datasets (Nalls et al.,
2019). As a disease control gene set to test disease-phenotype
specificity, four sets of risk genes for Alzheimer’s disease were
used. First, the NHGRI-EBI catalog of published Alzheimer
GWAS was used (MacArthur et al., 2017), and a total of 805
genes in or near 1,101 SNVs derived from 66 GWAS were
curated. Next, three meta-GWAS for Alzheimer’s disease were
considered. The first meta-GWAS confirmed the associations
between nine previous GWAS-defined associations and 12 new
genome-wide loci, presenting a total of 23 genes (Lambert
et al., 2013). The second meta-GWAS for Alzheimer’s disease
identified 29 significantly associated regions presenting 33 genes
(Jansen et al., 2019). The third meta-GWAS for late-onset

Alzheimer’s disease presented 33 genes from 19 known risk loci
and 13 new risk loci (Kunkle et al., 2019). Last, a gene set for
hereditary progressive ataxia was derived from a recent study
in which a manually curated Mendelian gene set for progressive
ataxia (n = 71) was constructed based on PubMed and OMIM
(Eidhof et al., 2019). Since 12 genes were common between
our hereditary parkinsonism and hereditary progressive ataxia
gene sets, 59 ataxia genes were used for enrichment analyses
(Supplementary Table 1).

Statistical Analysis
Statistical analysis was performed using R statistical software. For
overrepresentation analysis, the hypergeometric test was used,
and p-values < 0.05 were considered statistically significant. The
Bonferroni correction was used for the correction of multiple
comparisons in the overrepresentation analyses of multiple
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gene sets. For pathway or Gene Ontology enrichment analysis,
adjusted p-values < 0.05 were considered significant.

RESULTS

Analyses of Pathways and Gene
Ontologies of the SN-Meta-DEGs
By using the meta-DEG p-value combining method, we found
911 DEGs across all datasets, with 637 downregulated and 274
upregulated genes. Using the meta-DEG effect size combining in
the moderation effects method, we identified 586 DEGs, with 449
downregulated and 137 upregulated genes. All DEGs identified
from the moderation effects method were shared with those
from the p-value combining method; therefore, 586 common
DEGs were targeted for use in the subsequent analyses (Figure 1
and Supplementary Table 2). A comparison of our SN-meta-
DEGs with those of a recent meta-DEG study (Kelly et al., 2019)
revealed 329 (67.6%) common genes. All the common DEGs had
the same direction of fold change. Analyses of enriched pathways
and gene ontologies for all, down-, or upregulated SN-meta-
DEGs are summarized in Supplementary Tables 3–6. Overall,
the enriched pathways and gene ontologies are similar to those
in the recent meta-DEG study (Kelly et al., 2019). Enriched
pathways for the up- and downregulated SN-meta-DEGs were
different from each other.

Relationships Between the
SN-Meta-DEGs and Cell Type-Enriched
Gene Expression
Recently, cell type-enriched gene expression in the CNS was
reported (Zhang et al., 2016). Analyses of cell type-enriched

genes using published human RNASeq transcriptome data
of 21,661 genes with a cutoff at fourfold increase revealed
300 neuron-enriched genes, 210 astrocyte-enriched genes, 323
microglia-enriched genes, 111 oligodendrocyte-enriched genes,
and 29 endothelial-enriched genes (Supplementary Table 7).
Overrepresentation analyses of SN-meta-DEGs in cell type-
enriched gene sets revealed that 477 genes (81.4%) were
not enriched in a specific cell type (Table 2). Among
the cell type-enriched SN-meta-DEGs (n = 127), 80 genes
were neuron enriched, suggesting that the SN-meta-DEGs
were overrepresented in terms of neuron-enriched genes
(hypergeometric test, p = 1.59E–11) (Figure 2 and Table 2).
Subgroup analysis after dividing the SN-meta-DEGs into up-
and downregulated DEGs showed that statistical significance
remained only in the downregulated SN-meta-DEGs. The
significant downregulation of 80 neuron-enriched SN-meta-
DEGs was confirmed by applying the one-sample t-test (p = 2.2E–
16) (Figure 3). Comparison of the SN-meta-DEGs with the
210 astrocyte-enriched genes revealed that there were seven
genes in common (hypergeometric test, p = 0.3709) (Figure 2
and Table 2). Further comparisons between the SN-meta-
DEGs and other cell type-enriched genes, such as microglia-,
oligodendroglia-, and endothelial cell-enriched genes, showed
no overrepresentation of the SN-meta-DEGs in these cell
types (Figure 2). To confirm the lack of association between
SN-meta-DEGs and microglia-enriched genes, we compared
the SN-meta-DEGs with another set of microglia-enriched
genes, the human aged brain microglial-enriched genes set
(N = 1,054), which was derived from gene expression profile
RNA-seq data of microglia isolated from aged brain samples
(Olah et al., 2018). There were 10 overlapping genes between
the two gene sets, suggesting that the SN-meta-DEGs are

TABLE 2 | Relationships between meta-DEGs in the substantia nigra and brain cell type-enriched genes.

Intersection of meta-DEGs with Upregulated DEGs Downregulated DEGs

Human neuron-enriched genes RELN TAC1, SYT1, INA, SCG2, STMN2, NELL2, GABBR2,
SNAP25, VSNL1, RTN1, CHGB, GRIA1, NSF, UCHL1,
SCN3B, CAP2, NSG1, PNMA2, DCLK1, NEFL, RGS4,
TAGLN3, AMPH, SCG5, HPCAL4, GNG3, ENO2,
CDK14, NSG2, RCAN2, RBFOX2, GOT1, STXBP1,
GUCY1B1, BASP1, MAP2, RAB6B, OXCT1, ATP6V1A,
MOAP1, PIP5K1B, MDH1, DNAJC12, KLC1, KIF3A,
SNCA, NPTN, SYNJ1, VDAC3, OLFM1, CMAS, CHL1,
CDO1, GSTA4, NDRG4, NDFIP1, MAPK9, PFN2, NDN,
SLC25A4, SUB1, PCMT1, NDUFAB1, SUCLA2, CHN1,
PTS, NDUFA5, IDS, MAPK10, KIFAP3, ATP6V1D,
SLC9A6, GOT2, NME1, AKAP6, COX7A2L, SLC30A9,
DYNLT3, G3BP2

Human astrocytes-enriched genes IL17RB, CAPN2 SLC1A4, ANOS1, ALDH1A1, SCG3, LMO3

Human mature microglia-enriched
genes

DUSP6, PELI1, TGIF1, NEDD9,
SPRY2

NR4A2, CCNH, MPP1

Human aged microglia-enriched genes H2BC5, TCF12, LPP, SNAP23,
RPS6KA1, DAPP1

PYGL, ASAH1, FUCA1, NR4A2

Human oligodendrocytes-enriched
genes

CRYAB, VCAN, RAPGEF5,
MAP4K4, SMARCC1

None

Human endothelial-enriched genes None None

DEGs, differentially expressed genes; meta-DEGs, differentially expressed genes found in our meta-analysis.
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FIGURE 2 | Venn diagrams illustrating the overlap between cell type-enriched genes and meta-DEGs in the substantia nigra. All p-values are nominal.

not enriched in microglia-enriched genes (hypergeometric
test, p = 0.99) (Figure 2 and Table 2). Although the
mean level of gene expression of microglia-enriched genes in
the SN-meta-DEGs was increased, no significant differential
expression was observed when the one-sample t-test was applied
(p = 0.96) (Figure 3). Re-analysis using published meta-DEG data

(Kelly et al., 2019) confirmed the lack of statistical significance
in terms of microglia-enriched genes (Figure 3). In the
subgroup analyses, after the SN-meta-DEGs were divided into
up- and downregulated DEGs, five genes (CRYAB, MAP4K4,
VCAN, RAPGEF5, and SMARCC1) in the upregulated meta-
DEGs overlapped with the oligodendrocyte-enriched genes
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FIGURE 3 | Trend of expression of cell type-enriched genes present in differentially expressed genes found in meta-analysis. Box plots for the log2 ratios of gene
expression levels between disease and control samples were plotted for neurons, astrocytes, and microglia. For comparison of results of our meta-DEGs
(SN-meta-DEGs), DEGs from a published study, PD DEGs (Kelly et al., 2019) were used. P-values for the one-sample t-test with these PD DEGs were 2.2E–16 for
neurons, 0.0603 for astrocytes, and 0.5752 for microglia.

(p = 0.0008). Overrepresentation analyses were marginally
significant in the upregulated DEGs (nominal p = 0.0433),
with genes enriched in mature microglia but not in aged
microglia. After correction for multiple comparisons, the
statistical significance remained in the neuron-enriched and
oligodendrocyte-enriched genes.

Enrichment of Disease-Related Genes in
Meta-DEG
We next explored whether the SN-meta-DEGs were enriched
with disease-related genes. Between the SN-meta-DEGs and
Mendelian disorder genes, there were 185 common genes (31.6%
of the SN-meta-DEGs) (hypergeometric test, p = 1.59E–11)
(Table 3 and Figure 4). Of these, 137 (74.1%) genes have
CNS phenotypes (hypergeometric test, p-value = 6.32E–19)
(Figure 4). Taken together, the SN-meta-DEGs were enriched
with Mendelian genes, particularly those with CNS phenotypes.
In the hereditary parkinsonism gene set, 12 genes were present
in the SN-meta-DEG set (hypergeometric test, p = 1.62E–06)
(Table 3 and Figure 4). Interestingly, all the overlapped genes
were downregulated (Figure 4). Overrepresentation analysis
with a set of PD risk genes from a meta-GWAS study
(Nalls et al., 2019) was marginally significant (p = 0.01), but
not with a set of pooled PD risk genes in the NHGRI-
EBI catalog (MacArthur et al., 2017) (p = 0.16) (Table 3
and Figure 4). Re-analyses of the overrepresentation test of
meta-GWAS PD risk genes in the down- or upregulated gene
subgroups revealed that statistical significance remained only
in the downregulated genes (Table 3 and Figure 4). None of
four gene sets for Alzheimer’s disease was significantly enriched

in the SN-Meta-DEGs: no gene in the Alzheimer’s disease
meta-GWAS gene set and 14 genes in the Alzheimer’s disease
NHGRI-EBI pooled risk genes overlapped with the SN-meta-
DEGs (hypergeometric test, p = 0.98) (Table 3 and Figure 4).
Last, there were three genes (ITPR1, ATP8A2, and ATXN10)
that overlapped with a gene set of hereditary progressive
ataxia (n = 59) and the SN-meta-DEGs (p = 0.4320). After
correction for multiple comparisons, statistical significance of
the overrepresentation analyses remained in the Mendelian genes
from the OMIM, and in those with CNS phenotypes and
hereditary parkinsonism genes.

DISCUSSION

By conducting a meta-analysis of six microarray datasets from
SN samples of controls and patients with PD, we identified 586
meta-DEGs, consisting of 499 downregulated genes and 137
upregulated genes. The meta-DEGs were overrepresented with
Mendelian genes, especially those with CNS phenotypes, and
those with causative genes for hereditary disorders accompanying
a phenotype of parkinsonism. Further, analyses of the cell
type-enriched genes showed that downregulated genes in the
meta-DEGs were overrepresented with neuron-enriched and
oligodendrocytes-enriched genes. Our meta-analysis protocol is
more stringent compared to previous meta-DEG studies because
the common genes included in all six datasets were subjected to
the meta-analyses, and we further used only the DEGs common
to both methods of combining results. Despite the stringency of
our method, our meta-DEG results are similar to those of a recent
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TABLE 3 | Relationships between disease-related genes and meta-DEGs in the substantia nigra of in Parkinson’s disease.

Gene sets Up-regulated DEGs Down-regulated DEGs

Mendelian genes from OMIM KCNJ2, INSR, KAT6A, PLOD3,
CREBBP, CRYAB, TCF12,
MYOT, RELN, PABPN1, CBS,
SMC1A, DHFR, PKD1,
MUTYH, ZIC1, CNOT2,
ATP8B1, RELA, TAZ, RAF1,
SOS2, LPP, ABL1, MEIS2,
TGIF1, DUSP6, VCAN, MSX1,
OPHN1, PPM1D, LBR,
CDKN1C, LRP2, TGFB3, XPC,
PKD2, ZBTB18, THRA, CRY1,
TRPS1, TCOF1, SPRY2,
SCARB1, DMPK

UGP2, COX7B, TACO1, IGSF1, USP9X, CRAT, SLC1A4,
MAGED2, UROD, ATP1A1, PPP2R5D, VPS33B, SRP72,
PCCB, SGSH, ACO2, GLRB, GYG1, CAMK2B, GNAO1,
BPGM, PPP2CA, MSH2, SLC12A5, PYGL, GCLM,
ATP6V1E1, GNAS, RRAS2, DNM1, SLC25A12, NNT,
DNAJC12, DIABLO, SUCLA2, AFF2, OXCT1, ANOS1,
GOT1, GOT2, NDUFV2, AUH, AMPD2, MRPS7, IDH3B,
STAT1, SC5D, PDHX, RAP1GDS1, SLC25A4, ACAT1, F8,
CSNK1D, AIMP2, NEFH, B4GAT1, UROS, OPTN, AFG3L2,
NEFL, DNM1L, KATNB1, STXBP1, AP3B2, PYROXD1,
SLC1A1, PEX11B, SNAP25, NDUFA10, SLC9A6, PSMB4,
PDHB, NDUFA2, SMARCA4, IDS, CHN1, PLCB4, TXNL4A,
TUBB4B, CACNA2D2, ATP8A2, ASAH1, GNAL, XK, PFKM,
SLC30A9, GABBR2, CHCHD2, PSMD12, GFPT1, EIF2B3,
ATP6V1A, FUCA1, NDN, UCHL1, TOR1A, GARS1, SPINT2,
GCH1, ATXN10, ATP6V1B2, KIF2A, TBCE, SLC25A32,
PLAA, PPP2R2B, NDUFS1, HARS1, TUBB3, PDXK, GSS,
L1CAM, MDH2, ITPR1, OCRL, SYT1, HK1, PTS, SYNJ1,
HPRT1, DLD, GALT, SNX10, CDC42, TRIM36, SNCA,
TRAPPC2L, PCSK1, FIBP, NDUFA9, SCN3B, SHOC2,
PRPS1, PTDSS1, RET, SLC6A3, AGTR1, GBE1, DDC,
SLC18A2

Mendelian Genes from OMIM with the
CNS phenotypes

KCNJ2, INSR, KAT6A, PLOD3,
CREBBP, TCF12, CBS,
SMC1A, DHFR, ZIC1, CNOT2,
TAZ, RAF1, SOS2, ABL1,
MEIS2, DUSP6, OPHN1,
PPM1D, LBR, CDKN1C, LRP2,
TGFB3, ZBTB18, THRA,
TRPS1, DMPK

UGP2, COX7B, TACO1, IGSF1, USP9X, CRAT, SLC1A4,
ATP1A1, PPP2R5D, VPS33B, PCCB, SGSH, ACO2, GLRB,
CAMK2B, GNAO1, PPP2CA, MSH2, SLC12A5, ATP6V1E1,
GNAS, RRAS2, DNM1, SLC25A12, NNT, DNAJC12,
SUCLA2, AFF2, ANOS1, GOT2, NDUFV2, AUH, AMPD2,
MRPS7, STAT1, SC5D, PDHX, SLC25A4, ACAT1, AIMP2,
NEFH, B4GAT1, AFG3L2, NEFL, DNM1L, KATNB1, STXBP1,
AP3B2, PYROXD1, PEX11B, SNAP25, NDUFA10, SLC9A6,
PSMB4, PDHB, NDUFA2, SMARCA4, IDS, CHN1, PLCB4,
TXNL4A, CACNA2D2, ATP8A2, ASAH1, GNAL, XK,
SLC30A9, GABBR2, CHCHD2, PSMD12, EIF2B3, ATP6V1A,
FUCA1, NDN, UCHL1, TOR1A, GCH1, ATXN10, ATP6V1B2,
KIF2A, TBCE, PLAA, PPP2R2B, NDUFS1, HARS1, TUBB3,
L1CAM, MDH2, ITPR1, OCRL, SYT1, HK1, PTS, SYNJ1,
HPRT1, DLD, CDC42, TRIM36, SNCA, TRAPPC2L, FIBP,
NDUFA9, SHOC2, PRPS1, PTDSS1, RET, SLC6A3, GBE1,
DDC, SLC18A2

The hereditary
Parkinsonism
genes

None DNAJC12, AFG3L2, CHCHD2, UCHL1, TOR1A, GCH1,
PPP2R2B, PTS, SYNJ1, SNCA, SLC6A3, SLC18A2

Risk genes for Parkinson’s disease:
NHGRI-EBI

MAP4K4, TRPS1 GBF1, PAM, VAMP4, CHL1, ALAS1, RIT2, GCH1, NSF,
SNCA

Risk genes for Parkinson’s disease from
meta-GWAS
(Nalls et al., 2019)

MAP4K4 GBF1, PAM, VAMP4, RIT2, GCH1, SNCA

Risk genes for Alzheimer’s disease:
NHGRI-EBI

RELN, ABCA8, MAP4K4,
FBXL7, SCARB1

CHST1, PSMA1, RRAS2, MTCH2, VSNL1, STAU2,
TSPAN13, NIT2, ACP2

Risk genes for Alzheimer’s disease:
meta-GWAS
(Lambert et al., 2013)

None None

Risk genes for Alzheimer’s disease:
meta-GWAS
(Jansen et al., 2019)

None None

Risk genes for Alzheimer’s disease:
meta-GWAS
(Kunkle et al., 2019)

None None

Hereditary progressive ataxia None ITPR1, ATP8A2, ATXN10

Common genes between specific disease phenotype gene sets and up- or down-regulated meta-DEGs are listed. OMIM, Online Mendelian Inheritance in Man; meta-
DEGs, differentially expressed genes found in our meta-analysis; meta-GWAS, meta-analysis of Genome wide association studies; NHGRI-EBI, The Catalog of human
genome-wide association studies produced by collaboration between EMBL-EBI and NHGRI. References: Lambert et al. (2013); Nalls et al. (2019), Kunkle et al. (2019,
and Jansen et al. (2019).
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FIGURE 4 | Venn diagrams illustrating the overlap between disease-related genes and meta-DEGs in the substantia nigra. All p-values are nominal. Abbreviations:
OMIM, Online Mendelian Inheritance in Man; CNS, central nervous system; NHGRI-EBI, the Catalog of human genome-wide association studies; meta-GWAS,
meta-analysis of genome-wide association studies.
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meta-DEG study (Kelly et al., 2019) in terms of individual genes,
directions of gene expression changes of common genes, enriched
pathways, and enriched gene ontologies.

Previous PD meta-DEG studies focused on analyzing
perturbed pathways or gene regulatory networks to find
upstream transcriptional regulators (Glaab and Schneider, 2015;
Mariani et al., 2016; Wang et al., 2017; Su et al., 2018).
However, none of these studies systematically analyzed the
relationships between Mendelian genes or neurodegenerative
disorder-related genes and meta-DEGs, except for one study
in which overrepresentation of DEGs in the GWAS protein–
protein interaction sub-network (Kelly et al., 2019). In contrast,
we performed overrepresentation analysis directly between DEGs
and gene sets of disease-related genes, which are either Mendelian
genes or risk genes. We observed significant enrichment of
DEGs with Mendelian genes for hereditary parkinsonism but
not PD risk genes from the meta-GWAS. Noticeably, 31.6% of
the SN-meta-DEGs were Mendelian disordered genes, and 74.1%
Mendelian disordered SN-meta-DEGs show CNS phenotypes.
Our observation that meta-DEGs were enriched in causative
genes for hereditary parkinsonism but not in those for hereditary
progressive ataxia or Alzheimer’s disease is novel. These results
are in contrast with the findings of a recent study that has
shown the shared pathways of meta-DEGs between PD and
Alzheimer’s disease (Kelly et al., 2019). Given that 67.6% of DEGs
are common between our study and the previous study (Kelly
et al., 2019), this may not be simply due to difference in DEGs.
In fact, shared pathways among neurodegenerative disorders do
not necessarily mean that risk genes or Mendelian genes for
neurodegenerative disorders are shared. Since purposes of two
studies were different (pathway analysis vs. overrepresentation
of disease-related genes), direct comparison is not possible.
A recent study on gene expression profiling of 71 hereditary
progressive ataxia genes showing differential expression in the
cerebellum (Eidhof et al., 2019) strongly supports our results
in terms of the disease phenotype specificity of meta-DEGs.
Taken together, our findings of a group of dysregulated genes
in the SN that is tightly linked with PD suggests that gene
expression changes may be associated with selective vulnerability
rather than ubiquitous gene alteration in neurodegenerative
disorders. A few previous gene expression studies showed the
presence of causative genes for familial PD genes in DEGs;
however, they were not meta-analyses, and there was no statistical
verification (Moran et al., 2006; Simunovic et al., 2009). The
results of our previous study (Kim et al., 2017) are partly
in line with those of the current study; however, there are
differences in terms of their purposes and methods. In the
previous study, gene set enrichment analysis was used to
prove a hypothesis that not only PARK genes but also non-
PARK genes are dysregulated in idiopathic PD. As control gene
sets for other neurodegenerative disorders, gene sets in the
KEGG database, which are not limited to Mendelian genes,
were used. Here, we explored whether meta-DEGs identified
stringently are related with causative or risk genes for three major
neurodegenerative disorder phenotypes (i.e., parkinsonism,
Alzheimer’s disease, and progressive ataxia). In this study,
gene sets for neurodegenerative disorders were either curated

manually using the OMIM database and published literature
or were derived from the results of GWAS meta-analyses.
Interestingly, among the three hereditary progressive ataxia genes
that overlapped with our meta-DEG gene set, mutations in
ATXN10 were reported to present with levodopa-responsive
parkinsonism, or reduction of dopamine transporter binding,
as documented by 99mTc-TRODAT-1 SPECT (Schüle et al.,
2017; Fabiani et al., 2019), although these findings were not
included in the OMIM database. Subgroup analyses after
dividing DEGs into up- and downregulated genes was only
possible in the current study. Similar to that of other DEG
studies in neurodegenerative disorders, we found a majority
of downregulated DEGs. Moreover, overrepresentation analyses
of PD-related genes showed stronger statistical significance in
downregulated DEGs but not in upregulated DEGs. These
findings suggest that dysregulated genes in the SN in PD might be
related to a model of system failure in defense pathways against
stress to maintain cellular integrity (Eidhof et al., 2019).

Only a few studies on neurodegenerative disorders have
investigated cell type enrichment of a group of genes derived
from DGE studies or GWAS (Itoh and Voskuhl, 2017; Mathys
et al., 2019; Nalls et al., 2019). In microarray gene expression
studies of brain tissue, an altered level of gene expression is
generally reflected by the sum of gene expression change among
different cell types. However, changes in the expression of genes
that are enriched in a particular CNS cell type may suggest that
pathways associated with a given cell type are involved in the
pathogenesis of a disease. In one microarray study investigating
cell type enrichment of DEGs in the brains of patients with
Alzheimer’s disease, PD, or multiple sclerosis, microglia-enriched
genes were upregulated, whereas neuron-enriched genes were
downregulated in all three diseases. Although our results
regarding neuron-enriched genes are consistent with this, those
regarding microglia-enriched genes are conflicting; microglia-
enriched genes were not overrepresented in PD meta-DEGs, and
the mean level of gene expression changes in the microglia-
enriched meta-DEGs were not significant. However, there are
a number of differences in the methods used. First, our results
are from meta-DEGs. Second, the brain regions studied are
different (SN vs. frontal cortex). Third, the methods of curating
cell type-enriched genes were different. We defined enriched
genes as those with a fourfold change (Zhang et al., 2016),
whereas the earlier study used the top 500 enriched genes in
CNS cell types. Our results are also supported by re-analysis
using published meta-DEG data (Kelly et al., 2019) which
confirmed lack of statistical significance in terms of microglia-
enriched genes. In a recent AD transcriptome study, cell type
enrichment of DEGs was shown to vary depending on two
different stages of the disease course (McQuade and Blurton-
Jones, 2019). In the early pathological stage, 96% of DEGs were
neuronal or microglia enriched, but this cell type enrichment
was lost in the late stage, as most DEGs were expressed
across cell types. Although the lack of microglia enrichment in
our meta-DEGs may be attributable to the late stages of PD
when the transcriptomes were obtained, our finding regarding
microglia is supported by recent studies on PD. Risk loci
from GWAS in Alzheimer’s disease are found in or near genes
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expressed most highly in microglia (McQuade and Blurton-
Jones, 2019). In contrast, a recent study of PD meta-GWAS
showed that genes near or in PD loci were enriched in
neuronal cells, especially those in the SN, while no enrichment
was found in microglia-enriched genes (Nalls et al., 2019).
Interestingly, upregulated meta-DEGs were overrepresented
with oligodendrocyte-enriched genes. The aggregation of alpha-
synuclein in oligodendrocytes is a pathological hallmark of
multiple system atrophy; however, studies on pathological
alteration of oligodendrocytes in PD are limited. A recent
single-cell transcriptome study of the human SN showed that
common genetic risk loci in PD are associated with alterations
in oligodendrocyte-specific gene expression (Agarwal et al.,
2020). Among the five overlapped genes between the meta-DEGs
and oligodendrocyte-enriched genes, upregulation of alphaB-
crystallin encoded by CRYAB in brain tissue of PD has been
reported (Braak et al., 2001). Taken together, these results suggest
that neuroinflammation may play a less causal role in PD. Our
study has the following limitations. First, transcriptome data of
the SN in PD is available only after an autopsy, and this may cause
an advanced stage selection bias. Second, gene expression changes
are snapshots and may be effects rather than causes. Third, the
stringency of our meta-DEG method might have reduced the
number of genes associated with PD.

In conclusion, we found that downregulated SN-meta-DEGs
were enriched in Mendelian genes with CNS phenotypes,
particularly with PD-related genes, but not with other
neurodegenerative disorders genes. Furthermore, neuron-
enriched genes were overrepresented in the dysregulated
genes. Our results highlight disease-phenotype specific
changes of DEGs rather than common pathways underlying
neurodegenerative disorders.
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