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Just as the human brain works in a Bayesian manner to minimize uncertainty regarding

external stimuli, a deafferented brain due to hearing loss attempts to obtain or “fill in”

the missing auditory information, resulting in auditory phantom percepts (i.e., tinnitus).

Among various types of hearing loss, sudden sensorineural hearing loss (SSNHL)

has been extensively reported to be associated with tinnitus. However, the reason

that tinnitus develops selectively in some patients with SSNHL remains elusive, which

led us to hypothesize that patients with SSNHL with tinnitus (SSNHL-T) and those

without tinnitus (SSNHL-NT) may exhibit different cortical activity patterns. In the

current study, we compared resting-state quantitative electroencephalography findings

between 13 SSNHL-T and 13 SSNHL-NT subjects strictly matched for demographic

characteristics and hearing thresholds. By performing whole-brain source localization

analysis complemented by functional connectivity analysis, we aimed to determine the

as-yet-unidentified cortical oscillatory signatures that may reveal potential prerequisites

for the perception of tinnitus in patients with SSNHL. Compared with the SSNHL-NT

group, the SSNHL-T group showed significantly higher cortical activity in Bayesian

inferential network areas such as the frontopolar cortex, orbitofrontal cortex (OFC), and

pregenual anterior cingulate cortex (pgACC) for the beta 3 and gamma frequency bands.

This suggests that tinnitus develops in a brain with sudden auditory deafferentation only

if the Bayesian inferential network updates the missing auditory information and the

pgACC-based top-down gatekeeper system is actively involved. Additionally, significantly

increased connectivity between the OFC and precuneus for the gamma frequency band

was observed in the SSNHL-T group, further suggesting that tinnitus derived from

Bayesian inference may be linked to the default mode network so that tinnitus is regarded
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as normal. Taken together, our preliminary results suggest a possible mechanism for the

selective development of tinnitus in patients with SSNHL. Also, these areas could serve

as the potential targets of neuromodulatory approaches to preventing the development

or prolonged perception of tinnitus in subjects with SSNHL.

Keywords: tinnitus, sudden sensorineural hearing loss, bayes, cingulate gyrus, electroencephalography

INTRODUCTION

Non-pulsatile tinnitus is a common otologic symptom
characterized by conscious auditory perception in the absence
of an external stimulus. This is often called a “phantom sound”
because there is no corresponding genuine physical source
of the sound (Vanneste et al., 2018b; Lee et al., 2019; Han
et al., 2020). Although the exact mechanism of tinnitus has
yet to be elucidated, peripheral auditory deafferentation has
been suggested as the most important factor in increased
spontaneous neuronal firing in the central auditory system
and cortical maladaptive plasticity between auditory and
non-auditory brain regions, leading to the development of
tinnitus (Eggermont and Roberts, 2012; Elgoyhen et al.,
2015). Hearing loss has been strongly implicated in tinnitus,
as demonstrated by a relationship between tinnitus pitch
and maximum hearing loss frequency, which suggests that
tinnitus is a fill-in phenomenon (Schecklmann et al., 2012).
Recently, growing evidence has shown that the brain works
in a Bayesian manner to minimize perceptual uncertainty
regarding external stimuli. If the brain is deprived of auditory
input, it attempts to “fill in” the missing auditory information
from auditory memory, leading to the perception of auditory
phantoms (i.e., tinnitus) (Friston et al., 2014; Eggermont and
Kral, 2016; Lee et al., 2017, 2020a). Specifically, according to the
theoretical multiphase compensation model, the brain attempts
to overcome missing auditory information input, generating
predictions via increasing topographically restricted tones,
widening receptive fields, rewiring dendrites and axons, and
retrieving auditory memories, resulting in brain reorganization
(De Ridder et al., 2014b).

Sudden sensorineural hearing loss (SSNHL), a complex and
challenging emergency in the otology field, is typically defined
as a sensorineural hearing loss of more than 30 dB across three
consecutive frequencies in a pure-tone audiogram occurring
within a 72-h period. Importantly, tinnitus was reportedly
accompanied by SSNHL in 66–93% of cases (Ding et al.,
2018). Similar to ordinary progressive sensorineural hearing loss,
the Bayesian brain model may explain how sudden auditory
deprivation (i.e., SSNHL) elicits auditory phantom percepts,
namely by increasing the need to compensate for prediction
errors by upregulating neural firing in specific tonotopic regions
and retrieving extant memories from the parahippocampal gyrus
(Lee et al., 2017), depending on the amount of hearing loss
(Vanneste and De Ridder, 2016). However, why not all patients
with SSNHL experience tinnitus remains unexplained. That is,
although tinnitus persists in some patients with SSNHL even after
treatment, other patients do not experience tinnitus, or tinnitus

is perceived temporarily but resolves spontaneously afterward.
This, in turn, led us to hypothesize that tinnitus may develop in
subjects with SSNHL only if the requisite cortical changes occur
secondary to SSNHL.

Zhang et al. demonstrated altered white matter integrity in
the auditory neural pathway of patients with SSNHL, which
may be associated with the severity of tinnitus (Zhang et al.,
2020). Furthermore, a recent study by Cai et al. showed more
specific inhibition of neural activity and functional connectivity
in patients with SSNHL and tinnitus compared with healthy
controls (Cai et al., 2019), shedding further light on the putative
association between SSNHL and tinnitus from the perspective
of brain activity. However, neural substrates for selective
development of tinnitus have thus far not been investigated
among patients with SSNHL.

To test this hypothesis, we investigated neural substrates
accounting for the development of tinnitus exclusively in
patients with SSNHL by comparing resting-state quantitative
electroencephalography (rs-qEEG) findings between SSNHL
patients with and others without tinnitus (SSNHL-T and
SSNHL-NT). Using whole-brain source localization analysis
complemented by functional connectivity analysis, we aimed to
determine the as-yet-unidentified cortical oscillatory signatures
that could reveal the prerequisites for tinnitus development and
to discuss the possible mechanism of the selective development
of tinnitus in patients with SSNHL. Although this study
includes a relatively small number of patients, which may
have weakened the clinical implications of the results and
statistical power, the results presented herein seem a more
significant undertaking than we initially envisioned. Indeed,
there is currently no consensus on the neurobiological markers
for selective development of tinnitus in patients with SSNHL.
Overall, our study stands out in this precision medicine era for
incorporating neuroimaging in a tinnitus study to establish a
future guide for the treatment of tinnitus in patients with SSNHL
that incorporates neuroimaging as the “new normal.”

MATERIALS AND METHODS

Participants
We performed a retrospective review of the medical records
of patients with unilateral idiopathic SSNHL who visited the
outpatient clinic at Seoul National University Bundang Hospital
(SNUBH) between January 2014 and March 2020. For the
SSNHL-NT group, we were able to identify only 18 patients
who met the criteria for unilateral SSNHL with no complaint
of tinnitus. Two of the 18 were excluded due to an insufficient
follow-up period (i.e., <2 months). Of the remaining 16 patients,
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3 were disqualified due to delayed emergence of tinnitus or
significant hearing improvement during the follow-up period of
at least 2months after the onset of SSNHL. Ultimately, 13 patients
were enrolled in the SSNHL-NT group. No patients in this group
were diagnosed with Meniere’s disease, vestibular schwannoma,
or psychiatric/neurological disorders.

As outlined in Table 1, 51 SSNHL-T patients whose Tinnitus
Handicap Index (THI) score was ≤36 (grades 1 or 2), which
was administered to minimize potential bias caused by distress-
induced changes in cortical activity, were initially selected
from the SNUBH database (1,196 rs-qEEG-available subjects).
Subsequently, 13 subjects matched for sex, laterality, and
audiogram (i.e., >70 dB HL in the affected ear and <40 dB
HL in the unaffected ear) with the SSHL-NT subjects but
blinded to rs-qEEG findings were finally enrolled in the SSNHL-
T group. None of the subjects in the SSNHL-T group had
a history of objective tinnitus or etiologies such as Meniere’s
disease, head injuries, brain surgery, or neurological disorders.
The study was approved by the Institutional Review Board of the
Clinical Research Institute at Seoul National University Bundang
Hospital and was conducted in accordance with the Declaration
of Helsinki (IRB-B-2006-621-105).

Audiological and Psychoacoustic
Evaluation
The hearing thresholds for seven different octave frequencies
(0.25, 0.5, 1, 2, 3, 4, and 8 kHz) were evaluated using pure-tone
audiometry in a soundproof booth. The mean hearing threshold
was calculated using the average of the hearing thresholds at 0.5,
1, 2, and 4 kHz (Han et al., 2019; Shim et al., 2019; Bae et al.,
2020; Huh et al., 2020; Lee et al., 2020b; Song et al., 2020). At
each subject’s initial visit, we obtained a structured history of the
characteristics of tinnitus including its presence, laterality, and
psychoacoustic nature (pure-tone or narrow-band noise).

EEG Recording
We performed qEEG data acquisition and pre-processing
procedures according to a previously reported protocol (Kim
et al., 2016; Song et al., 2017; Han et al., 2018; Vanneste
et al., 2018b; Lee et al., 2019). Prior to EEG recording, we
instructed the enrolled patients not to drink alcohol for 24 h and
to avoid caffeine on the day of recording to exclude alcohol-
induced changes in the EEG signal (Korucuoglu et al., 2016) and
caffeine-induced reductions in alpha and beta power (Siepmann
and Kirch, 2002). EEGs were recorded with the patient seated
upright with the eyes closed for 5min using a tin-electrode cap
(ElectroCap, Eaton, OH, USA), a Mitsar amplifier (EEG-201;
Mitsar, St. Petersburg, Russia), and WinEEG software, version
2.84.44 (Mitsar) in a fully lit room insulated from sound and
stray electric fields. The EEG data were obtained using WinEEG
software (ver. 2.84.44; Mitsar) (available at http://www.mitsar-
medical.com). The impedances of all electrodes were maintained
below 5 k�. Data were obtained at a sampling rate of 1,024Hz
and filtered using a high-pass filter with a cutoff of 0.15Hz
and a low-pass filter with a cutoff of 200Hz. After initial
data acquisition, the raw data were resampled at 128Hz and
band-pass filtered using a fast Fourier transform filter with a

TABLE 1 | Demographics and clinical characteristics.

SSNHL-NT group SSNHL-T group P-value

(N = 13) (N = 13)

Age

Median 70 62 0.129

Range 30–81 30–74

Sex

Male 6 6 1.000

Female 7 7

Laterality

Right 8 8 1.000

Left 5 5

Duration (months)a

Median 16 11 0.696

Range 3–84 3–106

Hearing threshold (dB HL)

250Hz 71.15 ± 24.93 60.00 ± 29.86 0.597

500Hz 80.00 ± 22.82 72.31 ± 24.12 0.037

1 kHz 86.15 ± 14.74 77.31 ± 22.04 0.400

2 kHz 85.00 ± 16.20 83.46 ± 26.09 0.024

3 kHz 89.23 ± 15.53 85.38 ± 27.27 0.588

4 kHz 89.62 ± 15.34 90.77 ± 21.30 0.240

8 kHz 90.77 ± 14.56 94.23 ± 18.53 0.101

Average hearing threshold (dB HL)b

Mean (SD) 80.96 ± 20.38 85.19 ± 14.83 0.551

THI scoreb

Mean (SD) NA 26.46 ± 8.37 NA

Range 8–36

SSNHL-NT, sudden sensorineural hearing loss without tinnitus; SSNHL-T, sudden

sensorineural hearing loss with tinnitus; SD, standard deviation; HL, hearing loss; THI,

tinnitus handicap inventory; NA, not available.
aNote that duration refers to the period between SSNHL onset and EEG acquisition.
bNote that the mean hearing threshold was calculated using the average of the hearing

thresholds at 0.5, 1, 2, and 4 kHz.

Hanning window at 2–44Hz. After importing the data into
Eureka! Software (Sherlin and Congedo, 2005), all episodic
artifacts were evaluated manually and removed from the EEG
stream. We eliminated additional artifacts using independent
component analysis with ICoN software (http://sites.google.com/
site/marcocongedo/software/nica) (Koprivova et al., 2011; White
et al., 2012). All subjects’ vigilance levels, including slowing of
alpha rhythm or emergence of sleep spindles, were meticulously
monitored. No patients included in this study exhibited any
abnormal EEG patterns during the measurements.

Source Localization Analysis
Standardized low-resolution brain electromagnetic tomography
(sLORETA) was employed to estimate the scalp-recorded
electrical activity in each of the eight frequency bands (i.e.,
intracerebral sources). The sLORETA software includes a toolbox
for the functional localization of standardized current densities
based on electrophysiological and neuroanatomical constraints
(Pascual-Marqui, 2002). We identified the cortical sources that
generated the activities recorded by the scalp electrodes in
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each of the following eight frequency bands: delta (2–3.5Hz),
theta (4–7.5Hz), alpha 1 (8–10Hz), alpha 2 (10–12Hz), beta 1
(13–18Hz), beta 2 (18.5–21Hz), beta 3 (21.5–30Hz), and gamma
(30.5–44Hz). sLORETA computes neuronal electrical activity as
current density (A/m2) without assuming a predefined number
of active sources. The sLORETA solution space consists of 6,239
voxels (voxel size: 5 × 5 × 5mm) and is restricted to the
cortical gray matter and hippocampus, as defined by the digitized
Montreal Neurological Institute (MNI) 152 template (Fuchs et al.,
2002). Scalp electrode coordinates on the MNI brain are derived
from the International 5% System (Jurcak et al., 2007). A total of
5,000 random permutations, with correction for multiple testing
(i.e., for tests performed for all electrodes and/or voxels and for all
time samples and/or different frequencies) were carried out; thus,
further correction for multiple comparisons was unnecessary.
The locations of significant clusters were confirmed using a
LORETA-KEY toolbox, such as the Anatomy toolbox, and the
Talairach and Tournoux atlas (Talairach and Tornoux, 1988).

Functional Connectivity Analysis
As for the functional connectivity analysis, a total of 16 regions of
interest, defined by their respective Brodmann areas (BAs) and
known to relate to tinnitus according to previously published
literature (Vanneste et al., 2018b), were selected as possible
nodes. These included the bilateral superior parietal lobule
(BA7), the bilateral frontopolar cortices (BA10), the bilateral
orbitofrontal cortices (BA11), the bilateral posterior cingulate
cortices (BA27), the bilateral pregenual cortices (BA32), the
bilateral parahippocampi (BA36), and the bilateral primary
auditory cortices (BA41 and BA42).

Statistical Analyses
Statistical non-parametric mapping (SnPM) was adopted
for permutation tests for source localization and functional
connectivity. To identify between-group differences in resting-
state cortical oscillatory activities, sLORETA built-in voxel-wise
randomization tests (5,000 permutations) were used to perform
nonparametric statistical analyses of functional images with
a threshold P < 0.05. We also employed a between-groups
t-statistic with a threshold of P < 0.05. Correction for multiple
comparisons in SnPM using random permutations has been
shown to yield similar results to those obtained from a statistical
parametric mapping approach using a general linear model
with multiple-comparison corrections (Nichols and Holmes,
2002). For lagged linear connectivity differences, we assessed
between-group differences for each contrast using a paired t-test
with a threshold of P < 0.05. We also corrected for multiple
comparisons using sLORETA’s built-in voxel-wise randomization
tests for all of the voxels included in the 16 regions of interests
for connectivity analysis (5,000 permutations). Although the
between-groups t-statistic was used for source localization
and the paired t-test was used for connectivity analysis, these
are nonparametric analyses based on 5,000 permutations. All
analyses were done and illustrated using the R statistical package
(version 3.3.2, R Foundation for Statistical Computing, Vienna,
Austria). All statistical tests were two-tailed, and P < 0.05 was
considered significant.

RESULTS

Demographics and Clinical
Characteristics: SSNHL-T vs. SSNHL-NT
The demographic and clinical characteristics of the two groups
are summarized in Figure 1. The laterality of the hearing loss
and sex distribution were matched between the SSNHL-NT and
SSNHL-T groups. No significant differences in age at onset of
SSNHL or duration of hearing loss (from the onset of SSNHL to
the timepoint at rs-qEEG measurement) were observed between
the two groups. Furthermore, hearing thresholds across all
frequencies for the affected- and non-affected ears did not differ
between the two groups. The median THI score of the SSNHL-T
group was 12 (range, 4–36).

Source-Localization Analysis: SSNHL-T vs.
SSNHL-NT
Compared with the SSNHL-NT group, the SSNHL-T group
showed significantly increased cortical activity in the frontopolar
cortex (FPC, BA10), the orbitofrontal cortex (OFC, BA11), and
the pregenual anterior cingulate cortex (pgACC, BA32) for the
beta 3 and gamma frequency bands (P < 0.05) (Figure 2). No
significant effects were observed for the delta, theta, alpha 1, alpha
3, beta 1, and beta 2 frequency bands.

Connectivity Analyses: SSNHL-T vs.
SSNHL-T
Compared with the SSNHL-NT group, the SSNHL-T group
showed significantly increased functional connectivity between
the left OFC and the right precuneus (BA7) for the gamma
frequency band (P < 0.05) (Figure 3). For the other seven
frequency bands, there were no significant between-group
differences in functional connectivity among ROIs.

DISCUSSION

This is the first study to explore cortical activity and connectivity
differences between SSNHL subjects with and those without
tinnitus and to attempt to reveal the cortical oscillatory signatures
for selective development of tinnitus among patients with
SSNHL. In this study, the SSNHL-T group had abnormally
increased activity in the FPC, OFC, and pgACC for the beta
3 and gamma frequency bands compared with the SSNHL-
NT group. These findings suggest that auditory phantom
percepts may develop when the brain experiences sudden
decreased peripheral auditory input as the Bayesian inferential
network updates the missing auditory information with the
involvement of the pgACC-based top-down gatekeeper system.
Furthermore, the lagged linear connectivity between the left
OFC and the right precuneus was significantly increased for the
gamma frequency band in the SSNHL-T group compared with
the SSNHL-NT group, indicating that tinnitus deriving from
Bayesian updating seems to involve the default mode network
(DMN); thus, tinnitus seemed to be perceived as normal by the
SSNHL-T group.
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FIGURE 1 | Comparison of hearing thresholds across all frequencies between patients with sudden sensorineural hearing loss with and without tinnitus (SSNHL-T

and SSNHL-NT, respectively). Air conduction pure-tone audiometry (PTA) revealed nearly matched hearing thresholds across all frequencies between the two groups

in both the affected and the non-affected ear.

FIGURE 2 | Source-localized cortical power comparison in sudden sensorineural hearing loss with and without tinnitus (SSNHL-T and SSNHL-NT, respectively)

groups using resting-state quantitative electroencephalography data. The SSNHL-T group showed increased activity in the frontopolar cortex, orbitofrontal cortex,

and pregenual anterior cingulate cortex for the gamma and beta 3 frequency bands compared with the SSNHL-NT group.

The Bayesian Inferential Network Updates
Missing Auditory Information via
Bottom-Up Deafferentation
The Bayesian brain model, an extension of a predictive
brain model, has been suggested as an explanation for the
development of tinnitus. According to this model, tinnitus is

a response to peripheral auditory deafferentation that aims

to reduce perceptual uncertainty (Morcom and Friston, 2012;

De Ridder et al., 2014b). In other words, deafferentation-

induced auditory phantom percepts, namely tinnitus, are

preceded by peripheral auditory input-based memory, and

tinnitus develops when prediction error occurs due to peripheral
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FIGURE 3 | Functional connectivity analysis with regard to selective development of tinnitus in subjects with sudden sensorineural hearing loss (SSNHL). Increased

functional connectivity between the left orbitofrontal cortex and the right precuneus for the gamma frequency band was significant in the SSNHL with tinnitus

(SSNHL-T) compared with the SSNHL without tinnitus (SSNHL-NT) group.

hearing loss (De Ridder et al., 2014a; Lee et al., 2017). In the
same context, we have recently reported that approximately
70% of patients with unilateral SSNHL experience ipsilesional
tinnitus (Lee et al., 2017), indicating that missing auditory
information (i.e., prediction error) may stimulate neural circuit
interactions between lower-order (peripheral auditory input) and
higher-order (prediction-driving process of auditory perception)
auditory systems to reduce uncertainty in a bottom-up fashion
due to sudden hearing deterioration. In this regard, significantly
increased source-localized activity in the OFC and FPC in the
SSNHL-T group in the current study may reflect the role of
active Bayesian inferential prefrontal cortical processes (Donoso
et al., 2014) in tinnitus generation in the context of a sudden
decrease in peripheral auditory input. The prefrontal cortices
are considered to employ probabilistic inferential processes (i.e.,
Bayesian inferences), enabling optimizing behavioral adaptations
in uncertain situations based on available information (Koechlin,
2016; Parr et al., 2018). In particular, polar to lateral prefrontal
cortices such as the OFC and FPC are involved in making
probabilistic inferences and exploring new strategies formed
from long-term memory in uncertain environments (Donoso
et al., 2014). Therefore, increased source-localized activity in the

prefrontal cortices (i.e., OFC and FPC) in the SSNHL-T group
may reflect the Bayesian inferential processes of updating sensory
prediction and thereby adopting new strategies (phantom
auditory perception) based on stored auditory memory in the
context of suddenly decreased peripheral auditory input. Of note,
we have recently revealed significantly increased information
inflow in cortical areas associated with Bayesian inference in
progressive sensorineural hearing loss patients with tinnitus
as compared to those without tinnitus (unpublished data), in
accordance with the current findings.

The OFC has also been suggested as responsible for the
emotional processing of sounds (Blood et al., 1999), and is
connected to other limbic areas involved in emotion processing
(Beauregard, 2007; Vanneste and De Ridder, 2012). In an
integrative model of tinnitus (De Ridder et al., 2014c), once the
aberrant activity that causes tinnitus percepts is deemed salient,
the autonomic nervous system, the limbic system, and their
interaction could be further involved in distributing tinnitus-
related distress signals across the brain. Indeed, the OFC has been
reported to play a pivotal role in the top-down modulation of
autonomic and peripheral physiological responses accompanying
emotional experiences (Ohira et al., 2006), supporting neural

Frontiers in Neuroscience | www.frontiersin.org 6 November 2020 | Volume 14 | Article 596647

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lee et al. Tinnitus in Sudden Sensorineural Hearing Loss

activity in the OFC might link to biopsychosocial processes
of disease (Hänsel and von Känel, 2008). Furthermore, neural
activity in the OFC extending to the FPC in beta 1 and
beta 2 has shown to differ between sex during emotional
processing and emotional regulation (Vanneste et al., 2012).
Additionally, tinnitus perception and tinnitus-related distress are
closely associated with these brain areas (Schlee et al., 2009),
and correlated with the audiological handicap associated with
unilateral SSNHL.

Additionally, tinnitus loudness and distress are correlated
with the audiological handicap associated with unilateral
SSNHL (Chiossoine-Kerdel et al., 2000). Although we attempted
to minimize distress-related cortical changes by recruiting
SSNHL-T subjects with only mild distress, distress cannot be
completely eliminated in tinnitus. In this regard, the activity
changes in the FPC and OFC may also reflect the emotional
weight attached to aberrant auditory perception (i.e., tinnitus) in
patients with SSNHL.

A Top-Down Gatekeeper System Is
Activated to Cancel Internally Generated
Auditory Phantoms
Recent studies have suggested that auditory phantom percepts
can be associated with bottom-up (ascending) deafferentation
as well as with a dysfunctional top-down (descending) noise-
canceling mechanism (De Ridder et al., 2014b; Song et al.,
2015; Vanneste et al., 2019). This top-down mechanism is
a putative central gatekeeper that functions as an “auditory
gate,” evaluating the relevance and affective meaning of sensory
stimuli andmodulating information transmission via descending
inhibitory pathways to the thalamic reticular nucleus (Hullfish
et al., 2019; Vanneste et al., 2019). In previous pain studies, the
degree of improvement after spinal cord stimulation depended
on activation of the pgACC (Moens et al., 2012), which is a
part of the descending pain inhibitory pathway (Fields, 2004;
Kong et al., 2010), the somatosensory analog of the noise
canceling system. Additionally, Vanneste et al. demonstrated
that altered neural activity of the pgACC likely increases
tinnitus loudness in patients who are Met carriers (i.e., COMT
Val158Met polymorphism), probably due to reduced canceling-
out of irrelevant auditory input. Furthermore, increased activity
in the parahippocampus and the pgACC for the theta and gamma
frequency bands, as well as decreased activity in the auditory
cortex, is found exclusively in tinnitus patients with hearing
loss compared with those who have hearing loss but without
tinnitus (Vanneste et al., 2018a). While the activation of a top-
down noise-canceling mechanism works predominantly in the
alpha frequency band during the resting state, dysfunctional
noise canceling resulting in tinnitus is hypothesized to be linked
to the theta and gamma frequency bands (Vanneste et al., 2019).
These findings are consistent with our data showing increased
source-localized activity in the pgACC for the gamma frequency
band in the SSNHL-T group. That is, the pgACC, which normally
functions as a central gatekeeper, is activated to abate behaviorally
irrelevant phantom auditory signals that stem from Bayesian
updating via bottom-up deafferentation.

Overall, our data suggest that auditory phantom percepts
may develop in a brain with suddenly decreased peripheral
auditory input when the Bayesian inferential network actively
updates the missing auditory information. Furthermore, as an
attempt to minimize this auditory phantom, the pgACC-based
top-down gatekeeper system may be activated in brains with
sudden auditory deafferentation.

Tinnitus Percepts May Be Considered the
Norm When Bayesian Updating-Based
Tinnitus Is Actively Linked to the Default
Mode Network
As shown in Figure 3, a significant increase in connectivity
between the OFC (BA11) and the precuneus (BA7) was observed
in the SSNHL-T group compared with the SSNHL-NT group.
The posterior cingulate cortex and precuneus are considered
critical nodes of the brain’s DMN, a specific group of brain
regions activated when people are occupied with an internally
focused task (i.e., the task-negative mode) (Vanneste and De
Ridder, 2012). Therefore, our data may indicate that patients
with SSNHL perceive tinnitus when Bayesian updating-based
tinnitus is actively linked to the DMN. The DMN may regard
the salient but irrelevant auditory information (i.e., tinnitus)
arising from the Bayesian updating as normal, ultimately leading
to continuous tinnitus perception. We have recently shown
that localized activation of brain areas involved in the DMN
may act as a negative predictor of improvement in tinnitus
after partial auditory reafferentation by the use of hearing aids
or cochlear implants, as tinnitus perception may already seem
normal due to activation of DMN-related brain areas (Song et al.,
2013; Han et al., 2020). Collectively, these findings reinforce the
existing notion that the brain regions involved in generating
tinnitus may become integrated into the DMN in patients with
tinnitus (De Ridder et al., 2011; Vanneste and De Ridder, 2012).
Based on the literature as well as the current findings, our
results justify the evaluation of localized activity and functional
connectivity using functional neuroimaging in patients with
SSNHL. The rationale behind such an effort lies in the
expectation that altered brain activity and connectivity, including
that of the DMN, may predict the prognosis with regard to
the chronification of tinnitus or treatment responses in subjects
with tinnitus.

Limitations and Future Perspectives
Taken together, the results of the present study merit
special attention in that they are grossly in line with the
recently proposed Bayesian brain model for the generation
of tinnitus and offer a key to unraveling the conundrum
of the selective development of tinnitus in patients with
SSNHL. Our study also raises an important issue that
may stimulate further research incorporating customized
neuromodulation approaches based on the status of neural
substrates responsible for the perception of tinnitus in patients
with SSNHL.

Nevertheless, there are some limitations that should be
addressed in future studies. First, the results presented here
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are limited by the relatively small number of subjects in both
groups, mainly due to the difficulty of recruiting SSNHL patients
without tinnitus. Future follow-up studies in a larger number
of subjects should be performed to replicate the current results.
Additionally, the current study was designed as a cross-sectional
evaluation, which, along with the retrospective study design, may
weaken the clinical implications of our results. These limitations
require future prospective and longitudinal follow-up studies
to determine the origination of these differences of cortical
activity and connectivity between SSNHL subjects with and
those without tinnitus. Particularly, recruiting patients showing
immediate tinnitus following sudden auditory deprivation but
improved thereafter, as negative plasticity compensates for itself,
would be important to elicit more significant findings. Second,
confounding related to distress-induced cortical activity changes
was minimized by including SSNHL subjects with tinnitus
who had low THI scores; however, such confounding was
not completely eliminated because tinnitus with no distress
is almost nonexistent. A future prospective study including
SSNHL with “very minimally” distressing tinnitus should be
conducted to confirm the reproducibility of the current findings.
Third, this study did not consider the possibility of combined
hyperacusis in the SSNHL-T group. A recent study using
rs-qEEG showed that increased “circuit-breaker” activity was
associated with hyperacusis-related neural substrates (Han et al.,
2018), which suggests that cortical activity may be biased
if tinnitus subjects with combined hyperacusis are included.
Future studies recruiting a SSNHL-T group without combined
hyperacusis should be performed to address this limitation.

CONCLUSION

Our preliminary study explored cortical activity and connectivity
differences between SSNHL subjects with and without tinnitus,
shedding light on the cortical oscillatory signatures for selective
development of tinnitus among patients with SSNHL. These
areas could serve as potential targets of neuromodulatory
approaches to prevent the development or prolonged perception
of tinnitus in subjects with SSNHL.
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