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Electroencephalographic (EEG) recordings are often contaminated by electromyographic

(EMG) artifacts, especially when recording duringmovement. Existingmethods to remove

EMG artifacts include independent component analysis (ICA), and other high-order

statistical methods. However, these methods can not effectively remove most of EMG

artifacts. Here, we proposed a modified ICA model for EMG artifacts removal in the EEG,

which is called EMGRemoval by Adding Sources of EMG (ERASE). In this new approach,

additional channels of real EMG from neck and head muscles (reference artifacts) were

added as inputs to ICA in order to “force” the most power from EMG artifacts into a

few independent components (ICs). The ICs containing EMG artifacts (the “artifact ICs”)

were identified and rejected using an automated procedure. ERASE was validated first

using both simulated and experimentally-recorded EEG and EMG. Simulation results

showed ERASE removed EMG artifacts from EEG significantly more effectively than

conventional ICA. Also, it had a low false positive rate and high sensitivity. Subsequently,

EEG was collected from 8 healthy participants while they moved their hands to test the

realistic efficacy of this approach. Results showed that ERASE successfully removed

EMG artifacts (on average, about 75% of EMG artifacts were removed when using

real EMGs as reference artifacts) while preserving the expected EEG features related

to movement. We also tested the ERASE procedure using simulated EMGs as reference

artifacts (about 63% of EMG artifacts removed). Compared to conventional ICA, ERASE

removed on average 26% more EMG artifacts from EEG. These findings suggest that

ERASE can achieve significant separation of EEG signal and EMG artifacts without a

loss of the underlying EEG features. These results indicate that using additional real

or simulated EMG sources can increase the effectiveness of ICA in removing EMG

artifacts from EEG. Combined with automated artifact IC rejection, ERASE alsominimizes

potential user bias. Future work will focus on improving ERASE so that it can also be used

in real-time applications.
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1. INTRODUCTION

Electroencephalographic (EEG) signals are often contaminated
by surface electromyographic (EMG) signals and can make it
difficult to appropriately interpret EEG signals or use them
in various neuroengineering applications. There are many
approaches to remove EMG artifacts from EEG signals, which

can be broadly classified in the following categories (Fatourechi
et al., 2007; Muthukumaraswamy, 2013; Urigüen and Garcia-
Zapirain, 2015; Minguillon et al., 2017): (1) filtering (e.g.,
adaptive filtering, Wiener filtering, and Bayes filtering; Morbidi
et al., 2007; Guerrero-Mosquera and Vazquez, 2009; Sweeney
et al., 2012b), (2) linear regression method (Gratton et al.,

1983; Gwin et al., 2010; De Vos et al., 2014), (3) blind source
separation (BSS) methods which includes principal component
analysis (PCA) (Berg and Scherg, 1991; Ille et al., 2002),
independent component analysis (ICA) (Comon, 1994; James
and Hesse, 2004; Nolan et al., 2010; Mognon et al., 2011),
canonical correlation analysis (CCA) (Safieddine et al., 2012;
Sweeney et al., 2012a; Chen et al., 2015; Mowla et al., 2015),
sparse component analysis (SCA) (Gribonval and Lesage, 2006),
singular spectrum analysis (SSA) (Teixeira et al., 2006), and etc.
(4) source decomposition, including discrete wavelet transform
(DWT) (Donoho and Johnstone, 1995; Unser and Aldroubi,
1996; Safieddine et al., 2012; Peng et al., 2013), empirical
mode decomposition (EMD) (Mijovic et al., 2010; Mourad and
Niazy, 2013; Zeng et al., 2013), stationary wavelet transform
(SWT) (Zikov et al., 2002; Krishnaveni et al., 2006), and
ensemble empirical mode decomposition (EEMD) (Wu and
Huang, 2009; Sweeney et al., 2012a; Chen et al., 2014a,b), (5)
neural networks (NN) (Nguyen et al., 2012; Burger and van den
Heever, 2015) and adaptive neural fuzzy inference systems
(ANFIS) (Hu et al., 2015; Suja Priyadharsini et al., 2016). In
the setting of a plethora of EMG artifacts removal algorithms,
previous surveys (Muthukumaraswamy, 2013; Urigüen and
Garcia-Zapirain, 2015) suggest that BSS methods are the most
commonly used and outperform other approaches at EMG
artifacts removal from EEG. Among the BSS methods mentioned
above, Urigüen and Garcia-Zapirain (2015) states that 45% of
work in their bibliography use ICA to remove the EMG artifact
from EEG. CCA is another widely employed method for the
removal of EMG artifacts from EEG in recent years (Chen et al.,
2015, 2017). However, it does not outperform ICA at removing
EMG artifacts from EEG (McMenamin et al., 2010; Escudero
et al., 2011; Safieddine et al., 2012) or at removing ocular and
cardiac artifacts (Romero et al., 2008, 2009; Pham et al., 2011;
Delorme et al., 2012; Evans et al., 2012; Daly et al., 2013).

Despite the popularity of ICA for EMG artifact rejection in
EEG, its use is still affected by several issues (Tran et al., 2004;
Delorme et al., 2007; Muthukumaraswamy, 2013). For example,
nearly all EEG channels are typically contaminated by EMG, and
there is a high spatiotemporal overlap between EMG artifacts
and EEG signal (Shackman et al., 2009). Therefore, conventional
ICA algorithms are usually unable to separate EMG artifacts from
the EEG signal—that is, it is difficult to “force” all of the EMG
artifacts into an isolated set of independent components. Hence,
post-ICA-treated data may still include residual EMG (Shackman

et al., 2009; Olbrich et al., 2011). Also, since the EMGs could
have multiple source locations and show a large overlap with
the higher frequency components (>20 Hz) of EEG signals, it
is difficult to assign a universal operational definition for EMG
components (Mammone et al., 2012; Gross et al., 2013). Hence,
rejection of EMG artifact components is typically performed
manually when no prior knowledge about artifacts is available.
This leads to potential over- or under-rejection of components as
users attempt to distinguish between neurogenic and myogenic
components in common ICA. Further, rejecting components
manually is cumbersome/time-consuming and can introduce
subjectivity. Additionally, accurate extraction of source signals
in the ICA model is another issue since the global optimum in
these algorithms is typically affected by the contrast function.
Some approaches, which are presented in further detail below,
were developed to solve these issues.

Some studies demonstrated that prior knowledge about
artifacts or source signals can improve the effectiveness of
ICA at removing artifacts (Akhtar et al., 2012; Urigüen and
Garcia-Zapirain, 2015). Therefore, constrained ICA (cICA) or
ICA with reference (ICA-R) which incorporate prior knowledge
about the artifact and/or source signals were developed (James
and Hesse, 2004). This is performed by imposing temporal or
spatial constraints on the source mixture model. In temporally
constrained ICA, prior knowledge about artifacts can be
introduced into the ICA model to identify the artifact IC/ICs
by solving a constrained optimization problem (James and
Gibson, 2003; James and Hesse, 2004; Lu and Rajapakse, 2005;
Lin et al., 2007; Romero et al., 2008). Temporally constrained
ICA can only be used for the removal of EOG and ECG,
but is not highly effective for EMG artifacts (James and
Gibson, 2003; Lu and Rajapakse, 2005; Romero et al., 2008).
EMG artifacts sources, which are more time-varying and non-
stationarity, are too complicated to characterize for optimization
constraints. Hence, no prior studies have adequately addressed
the separation of spatiotemporal overlap between EMG and
EEG by using temporally constrained ICA. Spatially constrained
ICA incorporates prior knowledge or assumption of spatial
topographies of some source projections acting as a spatial filter,
and limit the degree to which some of the columns of the
mixing matrix may deviate from the known projections (Ille
et al., 2001, 2002; Hesse and James, 2006; Akhtar et al., 2012).
As mentioned above, EMG artifacts are time-varying and highly
overlapped with EEG. Hence, known spatial topographies of
EMG source projections derived from previous data recording
or mathematically simulated model are usually inaccurate and
difficult to achieve. Although some work on EMG artifact
removal utilized spatially constrained ICA with EEG during
seizures (Hesse and James, 2006), the performance of spatially
constrained ICA on these ictal EEG, where the ground truth
of EMG artifacts is actually unknown, has not been fully and
rigorously established. Hence, using spatially constrained ICA to
remove the EMG artifacts from real EEG is still unsubstantiated.
Additionally, running ICA iteratively is required for both types of
constrained ICA to reject the artifacts, which is time-consuming
and hard to achieve real-time application. Even so, when the prior
knowledge about artifacts or source signal is available, some form
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of spatially constrained ICA is preferred as compared to using
ICA alone (Akhtar et al., 2012; Urigüen and Garcia-Zapirain,
2015).

Another important issue associated with removing EMG
artifacts from EEG via ICA is automated EMG artifact rejection.
Generally, when reference waveforms are available, there is one
method to achieve automated rejection based on ICA in previous
studies (Urigüen and Garcia-Zapirain, 2015). Specifically, cICA
compares spatial and temporal statistical characteristics of ICs
to those from background EEG or artifacts. Subsequently, a
combination of thresholds for those statistical characteristics is
used in an automated algorithm to reject the artifacts (Delorme
et al., 2001, 2007; Nolan et al., 2010; Mognon et al., 2011; Daly
et al., 2012). This method has been demonstrated to reliably
remove EOG and ECG artifacts, particularly since these signals
drastically differ from EEG in spatial and temporal statistical
characteristics (Wallstrom et al., 2004; Romero et al., 2008, 2009).
However, using this method for EMG artifact removal is still
inadequate due to the spatiotemporal overlap between EMG
artifacts and EEG signals (i.e., EMG artifacts always introduce a
large number of unique scalp maps, leaving few ICs available for
capturing brain sources). Therefore, it is necessary to develop an
automated technique that can more effectively and systematically
remove EMG artifacts while not affecting any of the underlying
signal features.

In order to improve the effectiveness and reliability of ICA
in removing the EMG artifacts from EEG and establish an
effective automated artifacts rejection procedure, we introduce
a novel method, termed as EMG Removal by Adding Sources
of EMG (ERASE) and subject it to rigorous mathematical and
experimental validation. ERASE combines the advantages of
two types of cICA. It aims to improve upon ICA by adding
either real or simulated EMG artifacts as extra “reference”
channel signals into the EEG data. We mathematically
demonstrated that if the reference EMG artifacts were not
independent of the contaminant EMG artifacts in EEG, a
larger proportion of the artifacts could be identified by several
specific independent components (ICs) after running ICA.
Also, we proposed criteria based on the mixing matrix to
automatically identify and reject the artifacts components.
Our results revealed that ERASE had higher effectiveness in
removing the EMG artifacts compared to conventional ICA.
In summary, this study developed an effective EMG rejection
approach, which can provide more confidence for the utilization
of EEG in applications such as physiological studies underlying
motor behaviors.

2. METHODS

2.1. Description of ERASE ICA Model
Based on Added EMG Sources
2.1.1. Model Description
To facilitate more effective removal of EMG artifacts from the
EEG data, we combined EMG artifacts (here, either simulated
EMG or recorded EMG) with EEG datasets and applied a
modified ICA model as follows:

(

X̂cE

n∗cM

)

= AcE+cM × ScE+cM

(

XcE + bcE · NcE

n∗cM

)

= AcE+cM ×

(

scE +mcE

m∗
cM

)
(1)

where cE is the number of the EEG channels (cE dimension); cM
is the number of the reference EMG channels (cM dimension),
X̂cE = XcE + bcE · NcE , and XcE is the uncontaminated EEG
data; NcE is the contaminant EMG artifacts, which usually is the
real EMG artifacts inside of EEG; bcE is the linear coefficients;
n∗cM is the reference EMG artifacts, which are extra channels
containing EMG signals from muscles or simulation; AcE+cM is
the mixing matrix of dimension (cE + cM)× (cE + cM); ScE+cM is
the independent component sources with cE + cM dimension, in
which scE is the sources representing the uncontaminated EEG;
mcE are the sources representing the contaminant EMG artifacts,
and the use of mcE in the formula can help to differ our model
from conventional ICA model and explain the conditions where
our model is true;m∗

cM
are the reference EMG sources.

Theorem: Given that the reference EMG sources are
independent, and n∗cM is only dependent with NcE , thenmcE = 0.

Proof: We considered NcE , n
∗
cM
, mcE , and m∗

cM
as stochastic

variables, and assume that mcE 6= 0. In this model, NcE = a1 ×
mcE+a2×m∗

cM
and n∗cM = a3×mcE+a4×m∗

cM
(a1, a2, a3 and a4

are the corresponding submatrices of themixingmatrix, of which
dimensions are cE×cE, cE×cM , cM×cE, and cM×cM , respectively).
Since NcE is dependent with n∗cM , dependence between NcE and
n∗cM can be defined as follows:

fNcEn
∗
cM
(NcE , n

∗
cM
) 6= fNcE

(NcE ) · fn∗cM
(n∗cM ) (2)

where × denotes matrix multiplication, · denotes element-wise
multiplication, fNcE

is the probability density function for NcE ,
fn∗cM

is the probability density function for n∗cM , and fNcEn
∗
cM

is the

joint probability density function of NcE and n∗cM .
This expression of NcE and n∗cM can be combined as follows:

fNcEn
∗
cM
((a1×mcE + a2×m∗

cM
), (a3×mcE + a4×m∗

cM
))

6= fNcE
(a1×mcE + a2×m∗

cM
) · fn∗cM

(a3×mcE + a4×m∗
cM
)

(3)
We changed the expression above withmcE andm∗

cM
:

fmcEm
∗
cM
(mcE ,m

∗
cM
) 6= fmcE

(mcE ) · fm∗
cM
(m∗

cM
) (4)

where fmcE
is the probability density function of mcE , fm∗

cM
is

the probability density function of m∗
cM
, and fmcEm

∗
cM

is the

joint probability density function of mcE and m∗
cM
. From the

Equation (4), we know that mcE is dependent with m∗
cM
. This

represents reference EMG sources being dependent with sources
representing contaminant EMG artifacts. Since this violates the
ICA principle of component independence,mcE must equal 0.

Two key assumptions are made in our model. The first
assumption is the independence among the reference EMG
sources and the second assumption is the dependence between
the contaminant EMG artifacts and the reference EMG artifacts.
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This means if the simulated EMG can meet these two
assumptions, in situations where real EMG was not collected, or
the situation does not allow for EMG recordings, simulated EMG
can also act as the reference EMG artifacts.

2.1.2. Rejection Criteria
We define the (cE + cM) × (cE + cM) mixing matrix AcE+cM in
equation (1) as below:

AcE+cM =

























a1,1 a1,2 · · · a1,cE+cM

a2,1 a2,2 · · · a2,cE+cM
...

...
. . .

...
acE ,1 acE ,2 · · · acE ,cE+cM

acE+1,1 acE+1,2 · · · acE+1,cE+cM
...

...
. . .

...
acE+cM ,1 acE+cM ,2 · · · acE+cM ,cE+cM

























(5)

where the first cE rows are the coefficients corresponding to the
EEG channels, the last cM rows are the coefficients corresponding
to the reference EMG channels, the coefficients in each column
represent the weights of this IC to all EEG/EMG channels.

To develop an automatic method of identifying and rejecting
the independent components related to EMG artifacts (referred
to as “artifact ICs”) in real EEG data after running ICA, two
criteria were defined:

• First, a threshold was established based on the root mean
square (RMS) values of coefficients in the mixing matrix rows
corresponding to the EMG channels, which was defined as:

Rms =

√

∑cE+cM
n=1 a2cE+1,n

cE+cM
+ . . . +

√

∑cE+cM
n=1 a2cE+cM ,n

cE+cM

cM

(6)

where Rms is the average RMS value across all the reference
EMG artifact channels, acE+1,n is the n

th coefficient in (cE+1)th

row in the mixing matrix, and acE+cM ,n is the n
th coefficient in

(cE + cM)th row in the mixing matrix. The true threshold was
calculated by RMS value times gain. Gain is a constant which
was empirically set between 0.4 and 3. The ICs whose absolute
value of coefficients in the corresponding EMG rows were above
the threshold were defined to be artifact ICs.

• Second, the ICs whose maximal absolute value of coefficients
(max(|a1,i|, . . . , |acE+cM ,i|), 1 ≤ i ≤ (cE + cM)) corresponds
to a hat band electrode, were rejected. Note that hat band
electrodes were defined as all the EEG electrodes which were
on the outermost circumference of the head, as defined by
Yamada and Meng (2012) (Supplementary Figure 8).

In order to find the proper threshold, we changed the gain set
with 0.1 intervals so that a threshold set was limited to 0.4–3
times RMS value. The threshold was automatically set at the value
which simultaneously minimizes high-frequency band (40–100
Hz) synchronization for all the EEG channels and maximizes
µ (8–12 Hz) desynchronization in the EEG channel of interest
(e.g., C3/C4 for hand movements). Specifically, the threshold
was decided automatically by finding the minimal value from

the summated high-frequency band synchronization and µ band
desynchronization vector (an example of finding the proper gain
was shown in Figure 2).

2.2. Validation With Simulated EEG/EMG
Data
To mathematically verify ERASE, simulated EMG and EEG were
generated, subjected to ERASE, and its performance was assessed
by several metrics as follows. Here, simulated EMG was also used
as reference EMG artifacts for the experimental data processing.

2.2.1. Generating Simulated EMG
Simulated EMG was generated as the reference EMG artifacts,
using the approach below (Li et al., 2018):

1. TheHodgkin-Huxleymodel was used to simulate extracellular
current/action potentials (AP). For skeletal muscles, the
Hodgkin-Huxley model is a widely accepted model for
simulating extracellular current (Hodgkin and Huxley, 1952).

2. Single fiber action potentials (SFAP) were generated with a
volume conduction model, defined as follows (Duchene and
Hogrel, 2000):

VE(z, y) = K{

∫

S1

∂e(z)

∂z
·
1

r
dS+

∫

S
dS

∫ +∞

−∞

∂2e(z)

∂z2
·
1

r
dz

−

∫

S2

∂e(z)

∂z
·
1

r
dS} (7)

where VE is the SFAP, e(z) is the extracellular current (from
step 1 above), z and y are the axial and radial directions,
respectively, S1 and S2 are the fiber sections at the fiber
ends, and r is the distance between the surface element,
and dS is the observation point. The equation above was
discretized to generate the SFAP using known parameter
values from the literature, including fiber length, endplate
position, observation position, etc. (Stegeman and Linssen,
1992; Muthukumaraswamy, 2013).

3. A Gaussian distribution with 0 mean and standard deviation
(SD) = 2.5 mm (Stegeman and Linssen, 1992) was used
to depict the endplate positions. The voltage propagation
velocities were considered as a Gaussian distribution with an
average of 4 m/s and SD = 0.125 (Stegeman and Linssen,
1992). A total of 100 SFAPs were first generated and their
average served as one activation of the motor unit action
potential (MUAP).

4. A Poisson process was employed tomodel the firing rate of the
MUAPs (as defined in Stegeman and Linssen, 1992). The EMG
firing rate and amplitude were assumed to increase during
the movements. Hence, different firing rates were applied to
each state (idle vs. movement). Specifically, two constant firing
rates were used for idle (40 spikes/second) and movement
(100 sipkes/second), respectively, in both experimental and
simulation verification. For each muscle, the new Poisson
process with the same initial firing rate (20 spikes/second) was
launched to generate the time points of the firing of MUAP.

5. Eight different facial muscles, including bilateral frontalis,
temporalis, masseter, and trapezius were simulated for each
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FIGURE 1 | Diagram of simulation validation for ERASE. (A) Diagram for generating simulated EMG. (B) Diagram for generating simulated EEG. (C) Diagram for

effectiveness test. (D) Diagram for false positive test. (E) Diagram for sensitivity test. (F) Diagram for data processing of real EEG. AP, action potential; SFAP, single

fiber action potential; MUAP, motor unit action potential.

session (one session denoted one record, which included
several trials). Eachmuscle’s simulated EMGwas filtered based
on its frequency characteristics (spectra) as described in the
literature (Muthukumaraswamy, 2013).

This approach was also summarized in Figure 1A. The above
approach ensured that the simulated reference EMG was
dependent on the contaminant EMG artifacts to some degree.
Therefore, the effectiveness in removing EMG artifacts by using
the simulated EMG should be similar with that obtained by using
the real EMG.

These simulated EMG artifacts were then combined with the
simulated EEG data (as described below) as separate channels
(the “EMG channels”). These separate channels were located
at different positions on the edge of brain topographic map
(Supplementary Figure 8). The coordinates of these positions
corresponded to the approximate muscle locations on the head.

2.2.2. Generating Simulated EEG
Simulated EEG data was generated (in Figure 1B) by using the
approach in (Grouiller et al., 2007):

1. Simulated EEG was created using a linear mixture of five
Gaussian noises. Each Gaussian noise was bandpass filtered in
different frequency bands (1–30, 20–40, 40–80, 80–100, and
100–200 Hz). The amplitude and variance of each Gaussian
noise were adjusted to fit the average values of real EEG data.

2. Tomimic the spatial correlation between EEG channels due to
volume conduction, a smoothing convolution was performed
across channels to increase the spatial correlation amongst
adjacent channels. The smoothing convolution kernel was a
Gaussian function with a standard deviation equal to four
channels. We considered the last channels on the list were
correlated with the first channels on the list. Note that this
resulted in consecutive channels being highly correlated (i.e.,
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channel 1 becomes highly correlated to channel 2, channel 2
to 3, etc).

Simulated EEG data sets were generated with a temporal
structure similar to real EEG. More specifically, each simulated
dataset contained 32 channels, the maximal amplitude was set
to 60 µV with a variance of 30 µV2, and the sampling rate
was set to 2,000 Hz. A total of 5 min of simulated EEG was
generated. Theoretically, the number of EEG channels (still meet
the minimum for ICA run) has no effect on our approach, so
we can select any number of EEG channels as long as we feel it
is appropriate.

2.2.3. Performance Assessment
The performance of ERASE was assessed in two simulated
scenarios. In Scenario 1, ERASE was tested across an increasing
number of contaminated EEG channels. Here, three types
of simulated EMG (frontalis, temporalis, and masseter) were
generated (as in section 2.2.1). In the first iteration, 200 sets of
simulated EEG (32 channels) were generated (6 channels were
contaminated). Specifically, pairs of simulated EEG channels
were then contaminated by a single simulated EMG type, and this
was repeated until all 3 types were exhausted. Simulated EMG
was multiplied by a randomly generated weight factor and added
to the simulated EEG. For each simulated EMG, 2 normally
distributed pseudorandomnumbers were generated (mean: 0 and
standard deviation: 1) and normalized to act as weight factors.
Subsequently, the simulated EMG without multiplication was
combined with the contaminated EEG set as separate channels.
This combined dataset was subjected to ICA. This process was
repeated with 12, 18, 24, and 30 simulated EEG channels,
in which groups of 4, 6, 8, and 10 simulated EEG channels,
respectively, were contaminated with a single EMG type.

For Scenario 2, ERASE was tested on simulated EEG across
an increasing burden of EMG contamination. Here, 1 set of
simulated EMG was generated for each of the following types:
frontalis, temporalis, masseter, trapezius, and eye blinks (as in
section 2.2.1). Also, 200 sets of simulated EEG were generated
as described above. For each set of simulated EEG, 6 randomly
chosen simulated EEG channels were contaminated by a single
EMG type. More specifically, the simulated EMG was multiplied
by a randomly generated weight factor and then added to the
simulated EEG. For each simulated EMG, 6 normally distributed
pseudorandom numbers were generated (mean: 0 and standard
deviation: 1) and normalized to act as weight factors. Likewise,
the simulated EMG without multiplication were combined with
the contaminated set of EEG as separate channels, thereby
acting as reference EMG artifacts (e.g., there were 32 EEG
channels, the simulated EMGwas the 33rd, 34th,. . . 37th channel,
depending on how many simulated EMG channels were used).
This combined dataset was subjected to ICA. This process was
repeated, each time incrementally adding another simulated
EMG type to an additional six randomly chosen simulated
EEG channels, until all EMG types were exhausted. Note
that to simplify the process, one simulated EEG channel was
contaminated with no more than one type of simulated EMG in
both scenarios.

Each combined simulated EEG/EMG set was then subjected
to the ICA algorithm (FastICA). The performance was assessed
by calculating the effectiveness, false positive rate and sensitivity
(described below) across all of the above data sets. Note that
simulated EEG (section 2.2.2), does not include any physiological
brain features and therefore is easier to be distinguished from
simulated EMG as compared to real EEG and EMG. Therefore,
a threshold was not necessary to define artifact ICs. Instead, for
each reference EMG channel, the IC with the highest coefficient
was defined as an artifact IC.

2.2.3.1. Effectiveness
To compare how well EMG artifacts were removed between
ERASE and the conventional ICA, the effectiveness of both
methods were compared. Here, effectiveness was defined as the
ratio of the amount of simulated EEG signal in the artifact ICs.
Effectiveness was expressed as artifact index (AI), which was
defined as the following:

AI =
(|a∗

i+1,l
| + . . . + |a∗

i+j,l
|)/j

(|a1,l| + . . . + |ai,l|)/(32− j)

(6 ≤ j ≤ 30, i+ j = 32, 1 ≤ l ≤ 37) (8)

where l is the lthmixing matrix column corresponding to artifact
ICs (refer to Equation 9), a is the coefficients corresponding to
uncontaminated channels (the “non-artifacts coefficients”), a∗

is the coefficients corresponding to contaminated channels
(“artifacts coefficients”), and i and j are the number of
uncontaminated channels, and contaminated channels,
respectively. Equation (8) denotes the ratio of the average
mixing matrix coefficient values in the contaminated rows and
those in the uncontaminated rows in the artifact IC columns
(referred to Equation 9). A larger artifact index indicated that this
identified artifact IC contained more artifacts, but less simulated
EEG signal.

We applied ERASE to two conditions of EMG-artifacts
contaminated simulated EEG: with and without separate
channels (Figure 1C). Generally, we referred to this latter case as
“conventional ICA” condition. The artifact indices calculated for
the conditions with and without simulated EMGwere statistically
compared in order to verify the effectiveness of our model. Note
that only criteria 2 from the rejection criteria above was employed
in the conventional ICA condition.

2.2.3.2. False Positive Rate
To determine how frequently ERASE would erroneously detect
sources that were independent of the reference EMG artifacts, a
false positive rate was designed. More specifically, false positive
rate determined how often contaminant artifacts (NcE , Equation
1) that were independent of the reference EMG artifacts (n∗cM ,
equation 1) were erroneously “pushed” into the artifact ICs. To
assess this, NcE , composed of Gaussian random noise (mean 0,
S.D. 30), was used to further contaminate the simulated EEG.
Simulated EMG was still used as reference EMG artifacts, n∗cM ,
and combined with the contaminated EEG data sets and acted
as separate channels as described above. To simplify the process,
only one type of (independent) Gaussian random artifacts was
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FIGURE 2 | Effectiveness, false positive, and sensitivity of ERASE on the simulated data. (A,B) Artifact indices, i.e., effectiveness in Scenario 1 and 2, respectively.

(C,D) False positive for Scenario 1 and 2, respectively. (E,F) Sensitivity results for Scenario 1 and 2, respectively. Scenario 1 was considered as the fact that the

number of contaminated EEG was changed for the performance assessment of ERASE. Here, the number of contaminated EEG channels were chosen from 2 to 10

for each simulated EMG artifacts (three EMG artifacts were used here, so numbers are 6–30 in figures). We increased the number of added EMG channels in Scenario

2 for the performance assessment of ERASE. The number of added EMG channel was chosen from 1 to 5. Asterisks indicate a significant difference between two

data sets (Wilcoxon Rank-Sum Test), and the significance level = ***p<0.001.

employed for both scenarios. These steps are summarized in
Figure 1D.

Here, we define the mixing matrix column corresponding to
the artifact IC (the “artifact IC column”) as follows:

V =(a1,l, . . . , ai,l, a
∗
i+1,l, . . . , a

∗
i+j,l, ãi+j+1,l, . . . , ãi+j+k,l)

T

(6 ≤ j ≤ 30, i+ j = 32, 1 ≤ l ≤ 37, 1 ≤ k ≤ 5, )
(9)

where a, a∗, i, j, and l are defined in Equation (8), V is the
“artifact IC column,” ã denotes the coefficients corresponding to
the EMG channels, k are the number of EMG channels. Given
that the ICs were normalized to unit variance, the coefficients
contained in a given column of the mixing matrix (Equation 5)
can be interpreted as relative loads by which this IC contributed
to the mixed signals. Therefore, in the artifact IC columns,
large coefficient values are usually associated with the channels
that were contaminated by artifacts, whereas uncontaminated
channels would have relatively smaller coefficients. Satisfying
this inequality (10) meant that the corresponding artifacts were
detected in these artifact ICs. After running ERASE on the
combined simulated EEG data sets, all the artifact ICs, which

were decided by the position of the maximal absolute values in
the corresponding mixing matrix rows representing the EMG
channels, were found. A false positive was formally defined as:

(|a∗
i,l
| + . . . + |a∗

i+j,l
|)

j
−

(|a1,l| + . . . + |ai,l|)

32− j

> max(|ãi+j+1,l|, . . . , |ãi+j+k,l|) ∗ 5% (10)

where max(|ãi+j+1,l|, . . . , |ãi+j+k,l|) is defined as the maximal
artifacts coefficient. If this inequality was satisfied in any artifact
ICs, i.e., contaminated channels coefficients exceeded those for
the uncontaminated channels by 5% of the maximal artifacts
coefficient (denoted as the threshold in Figure 2), a false positive
event occurred. The ratio of those false positive events in 200
simulated data sets was the false positive rate.

2.2.3.3. Sensitivity
A sensitivity was designed to assess if contaminant EMG
artifacts NcE were accurately “pushed” into the artifact ICs, when
contaminant EMG artifacts, NcE , were dependent on reference
EMG artifacts n∗cM . Sensitivity was defined as the ratio of events
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in which the contaminant EMG artifacts NcE were detected in
the artifact ICs after running ERASE. The simulated EMG which
served as both contaminant EMG artifacts and reference EMG
artifacts here, were used to contaminate the simulated EEG data
as described above and also acted as separate channels. These
combined simulated EEG data sets were subjected to ICA. These
steps are summarized in Figure 1E. Referring to the artifact ICs
columns, the sensitivity in our study was calculated by the ratio of
events in which the inequality (10) was satisfied in all the artifact
ICs columns in corresponding 200 simulated data sets.

2.3. Validation With Real EEG
The ability of ERASE to automatically reject real EMG artifacts
from real EEG was assessed as follows.

2.3.1. Experiments
This study was approved by the Institutional Review Boards of
the University of California, Irvine. Healthy subjects with no
history of neurological conditions were recruited for this study.
Subjects were fitted with a 64-channel EEG cap (ActiCap, Brain
Products, Gilching, Germany) and asked to perform repetitive
fist clenching and unclenching of the dominant hand while their
EEG signals were acquired by two, linked NeXus-32 systems
(MindMedia, Herten, Netherlands). EMGwas recorded from the
bilateral frontalis, left temporalis to masseter, right temporalis to
masseter and bilateral trapezius using a MP150 system (BIOPAC,
Goleta CA), respectively. The subjects were asked to sit in front
of a computer screen, which prompted them to alternate between
idling (for 5 s) or hand fist-clenching (for 2 s). This was repeated
for a total of 10 trials over a 100 s-long session. At least 2 sessions
were performed by each subject. The EEG and EMG data were
recorded at 2,048 and 4,000 Hz sampling rates, respectively.

2.3.2. Experimental Data Processing
The whole data processing for real EEG was summarized in
Figure 1F. For the experimental EEG, both real and simulated
EMG artifacts acted as separate channels and were not mixed to
any EEG channels. The combined EEG/EMG data were bandpass
filtered from 3 to 100 Hz (3rd order, forward-backward filter
with no phase distortion). Note that the 100 Hz upper cutoff
was chosen since the amplifiers attached to MP150 have a 100
Hz low-pass filter in hardware. Each trial, comprised 1-s idle
time followed by 2-s movement, was identified and extracted
from the combined EEG. Due to the non-stationarity of EEG,
ICA decomposition was just applied to concatenated EEG trial
datasets for each session (each run). The FastICA version in
the EEGLAB toolbox (Delorme and Makeig, 2004) was used
to run ICA on the EEG trials data for all the subjects in the
three conditions (simulated EMG, real EMG, and conventional
ICA conditions). The artifact ICs were rejected as above. Short-
time Fourier transform was applied to EEG trials and the signal
power in different frequency bands [µ band: 8–12 Hz, high
frequency (HF) band: 40–100 Hz] was compared across all ICA
conditions. All the data were z-scored after the time-frequency
decomposition, which were separately normalized to the statistics
of the EEG during the idling epochs.

The z-scored power of the µ and high-frequency bands
during idle and movement was statistically compared for all
the EEG channels using a Wilcoxon rank-sum test. The z-
scored power of µ/high-frequency band for each channel was
then topographically mapped. For channels where there was no
significant difference between idle and movement, these values
were nulled (set to 0).

Given that the absolute power at any frequency bands was
reduced after artifact ICs were rejected from the original signal,
we used the z-scored power of high-frequency band to calculate
the decrease of high frequency after removal of EMG artifacts for
each subject. The percent reduction was defined as below:

PD =
|
∑C

c=1

∑N
n=1 P

b
z (X

c
n)−

∑C
c=1

∑N
n=1 P

a
z (X

c
n)|

∑C
c=1

∑N
n=1 P

b
z (X

c
n)

× 100%

(11)
where Pbz is the z-scored power of high frequency in baseline, Paz
is the z-scored power of high frequency after removal of EMG
artifacts, X are the EEG trials data, n is the nth trial, N is the total
number of available trials for each subject, c is the cth channel,
C is the total number of EEG channels. The rationale for this
approach is that the high-frequency signal is dominated by EMG
in EEG and any reduction in the high-frequency band power was
considered as the reduction in EMG. The Wilcoxon rank-sum
test was also employed to examine the difference of the µ band
power in the C3/C4 channel and the high-frequency band power
in all of the channels during movement between all combinations
of the four conditions (baseline, after ERASE with simulated
EMG, after ERASE with real EMG, and after conventional ICA).

3. RESULTS

3.1. Simulation Verification
a. Effectiveness: The artifact indices for ERASE and

conventional ICA were summarized in Figures 2A,B.
Across all parameters, the artifact indices calculated by
equation 8 in ERASE were significantly larger than those
in the conventional ICA model (Wilcoxon rank-sum test,
P<0.001). This indicates that ERASE has better effectiveness
in removing the EMG artifacts compared to the conventional
ICA model.

b. False Positive Rate: The artifacts and non-artifacts
coefficients for the false positive were summarized in
Figures 2C,D. Across all parameters, there was a 0% rate of
false positive, as defined by Inequality 10 (details regarding
thresholds are in Supplementary Table 1). Furthermore, the
values of artifacts and non-artifacts coefficients were small
and were not significantly different from one another. This
indicates that signals independent of the reference artifacts
were not erroneously “pushed” into artifact ICs by ERASE.

c. Sensitivity: The artifacts and non-artifacts coefficients for
the sensitivity were summarized in Figures 2E,F. Across all
parameters, there was a 100% rate of sensitivity, as defined
by Equation (10) (details about threshold were shown in
Supplementary Table 2). Furthermore, the values of artifacts
and non-artifacts coefficients were significantly different from
one another (Wilcoxon rank-sum test, P<0.001) and the
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FIGURE 3 | Representative z-scored µ and high-frequency band power from Subject 1 after running ICA (as in section 2.3.2), using simulated EMG and real EMG. (A)

Average of z-scored µ power in the C3 channel in the real EMG condition. (B) Average of z-scored high-frequency band power for all the EEG channels in the real

EMG condition. (C) Values added by z-scored high-frequency band and µ power in the real EMG condition. (D) Average of z-scored µ power in the C3 channel in the

simulated EMG condition. (E) Average of z-scored high-frequency band power for all the EEG channels in the simulated EMG condition. (F) Values added by z-scored

high-frequency band and µ power in the simulated EMG condition. After running ICA on the combined EEG/EMG data, the artifact ICs were rejected based on the

criteria depicted above for each threshold. After the joint consideration, the final threshold was 1.5 for real EMG condition, and 0.4 for simulated EMG, which were

denoted by arrows.

values of non-artifacts coefficients were always significantly
lower. This indicates that contaminant EMG artifacts can be
accurately identified by ERASE.

3.2. Experimental Verification
A total of eight subjects gave their informed consent to participate
in the study. All subjects were healthy male volunteers between
20 and 50 years old. A total of 12 sessions (120 trials) were
performed across all subjects.

An example of selecting the proper threshold for ERASE was
shown in Figure 3. Table 1 summarized the effect of ERASE on
the µ-band and high-frequency band across all subjects. Overall,
the high-frequency band power, typically dominated by EMG
artifacts, was reduced by 75.31% using ERASE with real EMG, by
63.46% through ERASE with simulated EMG and only by 48.88%
with the conventional ICA approach (Table 1). At the group
level (Figure 4A), the z-scored power of the high-frequency
band during movement was significantly reduced after running
ERASE. Furthermore, the high-frequency band power in the real

EMG and simulated EMG conditions were both significantly
lower than that in the conventional ICA (Figure 4A). However,
there was no difference between running ERASE with either the
real EMG or simulated EMG. At the group level, there was no
change in the µ band (only for C3/C4 channel) among the four
conditions based on all trials (Figure 4B). This indicates that
the expectedµ-band desynchronization phenomenon during the
fist-clenching task was not adversely affected by ICA.

A representative example of significant changes in z-
scored power of µ and high-frequency bands during idle
and movement is shown in Figure 5. The z-scored power
of high-frequency band during movement was reduced
after running ERASE, and the power in both ERASE
conditions was smaller than that in the conventional ICA
(Figures 5E–H, Supplementary Figures 1E–H–7E–H). A
representative example of time series also showed the same
findings (Supplementary Figure 9). In Figures 5A–D, the µ

desynchronization during right hand movement was well-
preserved after running ICA in all the conditions and was
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TABLE 1 | Change of HF band power in different conditions for each subject [mean ± standard deviation (S.D)].

Subject S1 S2 S3 S4∗ S5 S6 S7 S8∗

Baseline

Z-scored HF band 0.35 ± 0.26 0.18 ± 0.14 0.35 ± 0.24 0.24 ± 0.16 0.04 ± 0.04 0.18 ± 0.13 0.50 ± 0.19 0.71 ± 0.25

Z-scored µ band −0.86 ± 0.58 −0.13 ± 0.04 −0.01 ± 0.07 −0.91 ± 0.58 −0.48 ± 0.18 −0.97 ± 0.72 −0.57 ± 0.49 0.04 ± 0.32

After ERASE with real EMG

Z-scored HF band 0.12 ± 0.06 0.06 ± 0.07 0.03 ± 0.02 0.11 ± 0.06 0.40 × 10−4 ±0.01 0.02 ± 0.30 ×10−2 0.10 ± 0.08 0.31 ± 0.03

Z-scored µ band −0.78±0.38 −0.43±0.18 −0.40 ± 0.25 −1.03 ± 0.39 −0.48 ± 0.26 −1.03 ± 0.48 −0.67 ± 0.18 −0.82 ± 0.56

Reduction percentage (%) 64.42 67 90.96 54.19 99 91.4 79.94 55.57

After ERASE with simulated EMG

Z-scored HF band 0.12 ± 0.16 0.08 ± 0.08 0.06 ± 0.06 0.12 ± 0.10 0.50 × 10−4 ±0.50 × 10−2 0.03 ± 0.08 0.15 ± 0.08 0.31 ± 0.12

Z-scored µ band −0.92 ± 0.44 −0.31 ± 0.24 −0.32 ± 0.13 −0.90 ± 0.49 −0.33 ± 0.34 −0.90 ± 0.59 −0.50 ± 0.12 −0.84 ± 0.35

Reduction percentage (%) 65.77 56.16 83.62 50 99 83.08 69.79 56.45

Conventional ICA

Z-scored HF band 0.17 ± 0.14 0.09 ± 0.07 0.17 ± 0.11 0.17 ± 0.12 0.70 × 10−2 ±0.8×10−2 0.08 ± 0.01 0.19 ± 0.09 0.41 ± 0.13

Z-scored µ band −0.57 ± 0.72 −0.21 ± 0.35 0.10 ± 0.12 −0.58 ± 0.35 −0.39 ± 0.29 −0.58 ± 0.72 −0.50 ± 0.17 −0.70 ± 0.30

Reduction percentage (%) 51.8 52.96 52.54 26.76 82.06 56.99 61.92 41.99

• HF, high frequency.

• z-scored HF band: the average z-scored power during movement over all the available sessions.

• Reduction percentage: the difference between high-frequency band power in baseline and after ERASE or conventional ICA was divided by high-frequency band power in the baseline.

• Twenty trials were employed for calculation for Subject 4 and 8 (denoted by asterisks). Ten trials were used for the remaining subjects.

localized to the C3 channel and surrounding electrodes. This
localized µ desynchronization was also present around the C3
channel for Subjects 3–7 (Supplementary Figures 2A–D–6A–D)
and around the C4 channels for Subjects 2 and 8
(Supplementary Figures 1A–D–7A–D). The channels
exhibiting µ desynchronization were always contralateral
to the hand movement except Subjects 2 and 8
(Supplementary Figures 1, 7). Combined with the findings
above, this indicates that ERASE did not disturb the spatial
distribution of the expected brain features underlying the motor
task of interest.

4. DISCUSSION

Here, we proposed a modified ICA model that combined
reference EMG artifacts with EEG data to facilitate an enhanced
automated removal of EMG artifacts. We tested and validated
this method using both simulated and actual EEG during
hand movement. We found that it had high sensitivity at
detecting EMG artifacts and an extremely low false positive
rate (Figures 2C–F, Supplementary Tables 1, 2).With simulated
data, ERASE effectively removed a large proportion of the
EMG artifacts (Figures 2A,B). It also removed EMG artifacts
in real EEG recordings, while preserving the expected µ

desynchronization associated with movement (Figure 5 and
Supplementary Figures 1–7). This may also indicate that our
approach can remove any potential confounding overlap between
EMG and EEG and thereby improves the confidence that low-
frequency brain features extracted from ERASE are mostly EMG-
free (which cannot be achieved by a simple low pass filter).

These results suggest that using reference EMG artifacts can
force ICA to “learn” and detect the EMG artifacts by forcing
the contaminant EMG within EEG into a minimal number
of ICs. We established an operational definition (rejection
criteria) for identifying EMG artifacts components to enable
automated component rejection and thereby minimizing user
bias. Compared to conventional ICA, results showed that
ERASE removed on average 26% more EMG artifacts from
EEG data than conventional ICA (Figure 4 and Table 1), which
indicated that ERASE improved the ICA algorithm. Although
this approach may require slightly more preparation time to
record real EMG, it is still possible to use it in situations
where real EMG recordings were either not possible or not
available by substituting it with simulated EMG (Figure 4). The
process to generate simulated EMG mimics a typical situation
where a subject will likely generate increased EMG activity
during movements. Although this process cannot perfectly
emulate the time-varied EMG signals, it simulates the firing
rate, amplitude and spectrum of each muscle to ensure the
statistical parameters of EMG signals in different states to some
extent. Those statistical parameters are exactly required for
successfully running ERASE/ICA, and as such, may explain why
the effectiveness at removing EMG artifacts by using simulated
EMG was found to be similar to that obtained by using the real
EMG. The advantages and novelty of ERASE are discussed in
further detail below.

First, ERASE directly introduces reference EMG artifacts
into the ICA model as prior knowledge to more accurately
maximize the separation between EMG and EEG ICs as well as
to minimize the computational complexity of removing EMG
with respect to existing cICA approaches. On the other hand,
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FIGURE 4 | Comparison of z-scored power of µ/high-frequency band during

movement in different conditions. (A) z-scored power of high-frequency band

during the movement for all the EEG channels under different conditions. (B)

z-scored power of µ band during movement in the C3/C4 channel under

different conditions. Data were from all the subjects with a total of 120 trials.

***Significant differences between the two datasets (p < 0.001).

previously reported forms of reference ICA, such as spatially
cICA (Hesse and James, 2006; Akhtar et al., 2012), involves
first performing an initial run of ICA on a previous EEG
data segment, followed by manually selecting ICs believed to
represent EMG sources as EMG reference. Subsequently, ICA
is run iteratively on current EEG data to find all the ICs which
have a strong correlation with pre-defined EMG reference. By
comparison, ERASE real EMG (where available) or simulated
EMG as the reference. Since such references are expected to
provide a more reliable representation of the ground truth for
EMG sources, ERASE is likely more reliable and systematic than
other forms of ICA. In addition, ERASE utilizes properties of
mixing matrix for identification of artifact ICs to avoid the
complicated computation of optimization problem, which is
employed in temporally cICA (James and Gibson, 2003; James
and Hesse, 2004; Lu and Rajapakse, 2005). When combined with
the use of a simulated or simultaneously recorded real EMG used
in ERASE, it is not necessary to perform iterative run for the
ICA process. Our results (Figures 4, 5 and Table 1) showed that
ERASE can remove most of EMG artifacts and preserve expected
brain features just after a single ICA run.

Unlike previously reported versions of ICA, ERASE does
not require manual intervention. More specifically, ICA is
typically run directly on EEG, and the operator manually
rejects the artifact ICs. The effectiveness of this step depends

substantially on the experience of researchers and may be
biased due to subjectivity. Hence, ERASE can minimize the
biases of researchers and improve the efficiency of artifacts
rejection. As mentioned in the introduction, automated rejection
is not necessarily unique to ERASE (Delorme et al., 2001, 2007;
Nicolaou and Nasuto, 2007; Nolan et al., 2010; Mognon et al.,
2011; Daly et al., 2012, 2013; Wu et al., 2018; Vaidya et al.,
2019), given that other methods, such as cICA can also involve
automatic IC rejection when prior knowledge of EMG signals is
available (Hesse and James, 2006; Akhtar et al., 2012; Urigüen
and Garcia-Zapirain, 2015). Previously reported EMG artifacts
removal methods also proposed automated rejection techniques,
in which some classifiers were built to classify the ICs into EMG
sources and EEG sources based on ICs statistical features (Nolan
et al., 2010; Gabsteiger et al., 2014; Wu et al., 2018). However,
one unique aspect of ERASE compared to these prior reports
is that rejection criteria are based on physiological features of
both EEG and EMG for automated EMG artifacts rejection
procedure (section 2.1.2), which makes ERASE more focused
on preserving relevant EEG phenomenon. In addition, although
we used µ band as the physiological feature of interest due
to its known modulation during human motor behaviors, this
automated rejection technique can be adjusted to other bands of
interest in other EEG studies (e.g., β band from pre-frontal areas
in cognitive studies).

ERASE was validated with both simulated and behavioral
EEG data, whereas the physiological information and properties
of EEG are completely overlooked in other EMG artifact
removal studies using ICA, cICA, or other BSS methods.
Researchers typically employ simulated or synthetic EEG data
to validate corresponding artifacts removal algorithms. Based
on various metrics (discussed in the paragraph below), all of
these algorithms have declared themselves effective at removing
EMG artifacts, but have not answered a critical question as
to whether the information encoded in EEG is retained after
artifact removal. Here, we show that EEG µ band modulation
that typically underlies hand movement is preserved or even
enhanced after ERASE. Combined with the reduction of EMG
elsewhere in the EEG, these findings unequivocally demonstrate
that meaningful EEG is retained. Such a demonstration has been
generally absent from the validation of other ICA approaches.
Note that the high-frequency band in EEG is assumed to be
EMG artifact since the skull filters out all neurogenic high-
frequency information (Whitham et al., 2007; Dannhauer et al.,
2011; Lanfer et al., 2012). Therefore, any attenuation of the
high-frequency band in EEG can be considered as removal of
EMG artifacts. Also, µ desynchronization in EEG and ECoG
signals is a well-known modulation underlying motor behavior
(Pfurtscheller and Da Silva, 1999; Miller et al., 2007; Schalk et al.,
2007; Jiang et al., 2020). Therefore, these two bands are used
jointly as an indicator that our approach is effective at removing
EMG artifacts while preserving the brain physiological features
underlying human movement.

ICA was selected as the basis of ERASE due to the fact that
ICA has typically been shown to have superior performance
to most other artifact removal methods. For example, CCA, a
popular algorithm for artifact removal, does not outperform ICA
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FIGURE 5 | Brain topography maps for Subject 1 displaying the z-scored power of µ band and high-frequency band in different conditions [baseline, after ERASE

with real EMG and with simulated EMG and after conventional ICA, (A–D) for µ band and (E–H) for high-frequency band] on the Subject 1. Channels whose z-scored

power of µ/high-frequency band were not significantly different between idle and movement states (Wilcoxon rank-sum test) were nulled (values were set to zero). The

significance threshold was P < 0.01 for µ band and P < 0.05 for high-frequency band.

at removing EMG artifacts from EEG (McMenamin et al., 2010;
Escudero et al., 2011; Safieddine et al., 2012; Urigüen and Garcia-
Zapirain, 2015) as well as at removing ECG and EOG artifacts
(Romero et al., 2008, 2009; Pham et al., 2011; Delorme et al.,
2012; Evans et al., 2012; Daly et al., 2013). Some BSS methods
and source decomposition methods have been combined for
removal of EMG artifacts (e.g., EEMD-CCA Chen et al., 2015,
2017; Mucarquer et al., 2019, as well as EEMD-ICAMijovic et al.,
2010). Both EMD and EEMD are single-channel techniques, so
EEMD-CCA and EEMD-ICA are only tested on the fact that a
few channels of EEG recording are involved. Since running ICA
or CCA sometimes is time-consuming, EEMD-CCA or EEMD-
ICA probably is typically less than ideal. While the ideas of using
EMG data to make the EMG rejection method more systematic
were presented before (i.e., cICA mentioned above), to the best

of our knowledge, there were no prior attempts to fundamentally
improve the separation of EMG artifacts from EEG by adding
extra reference artifacts to the ICA process as in current study.
The closest to this was our initial preliminary report on this
technique (Li et al., 2018), followed by Richer et al. (2019). In
Richer et al. (2019), extra EMG channels were also used and
combined with EEG to “force” ICA algorithm to detect more
EMG artifact. However, the EMG artifact ICs were arbitrarily
rejected manually, there was no rigorous mathematical proof
or experimental verification for the approach and there was no
assessment to ensure that meaningful EEG data was preserved
during this process.

There are no uniformly accepted performance metrics for
artifacts removal algorithm in practical EEG. In most studies
(Crespo-Garcia et al., 2008; McMENAMIN et al., 2009; Vos
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et al., 2010), the performance of EMG artifact removal is
typically assessed, in part, by visual inspection. Although highly
subjective, it may give an indication with respect to whether
the algorithm has improved the quality of the EEG signal or
has distorted one or more time intervals or frequency bands.
This is also performed in our study and the results are showed
in Supplementary Figure 9. For simulated and synthetic EEG,
there are many metrics employed for the assessment of the
performance of artifact removal approaches, since the “ground
truth” in such scenarios are explicitly known (De Clercq et al.,
2006; Mijovic et al., 2010; Akhtar et al., 2012; Albera et al.,
2012; Safieddine et al., 2012; Zhang et al., 2012). The most
widely used metrics for performance assessment are listed in the
literature (Urigüen and Garcia-Zapirain, 2015) [e.g., the relative
root mean squared error (RRMSE), the signal to artifact ratio
(SAR), etc.]. In our work, we used standard statistical metrics
(false positive, sensitivity, effectiveness) to validate our approach
in simulated EEG. Meanwhile, time-series validation results are
shown in Supplementary Figures 10–12 in the Appendix. It
should also be emphasized that since researchers in each study
used different data sets, a head-to-head performance comparison
across various artifact removal approaches in EEG studies is
difficult. Therefore, we further validated our novel approach
by using and assessing both the elimination of EMG and the
preservation of the EEG features underlying motor behaviors.
We propose that such an evaluation is employed for validation
of effectiveness of any new artifact rejection approaches in future
studies, as it is otherwise not possible to know whether the
methodology aggressively removed EMG as well as erroneously
eliminating the signals of interest if real brain signals underlying
behavioral experiments are not collected. In order to further
evaluate ERASE, we employed ERASE on EEG recorded from
traumatic brain injury (TBI) patients with hemicraniectomy, and
ERASE can show a better effectiveness compared to conventional
ICA (Li et al., 2020).

The main limitations of ERASE are that it is still impossible
to remove all EMG from EEG. The main reason originates from
the assumptions of our theoretical model. Namely, our model
requires that the reference EMG artifacts and contaminant EMG
artifacts are completely dependent. However, contaminant EMG
artifacts in EEG data cannot have complete dependence on
the real EMG sources due to several reasons. For example, the
signal propagation path between the true source and recording
electrodes may significantly distort observed EMG. It is also
not possible to include all the reference EMG artifacts which
could be contributing to EEG, because some head and neck
muscles are not easily recorded at the surface. In addition,
another assumption in our theoretical derivation is that the
reference EMG artifacts are independent of EEG. Also, the
reference EMG electrodes are close to potential EEG sources
(such as EMG reference electrodes located over the frontalis and
temporalis muscles), so it is difficult to ensure that the reference
EMG artifacts channels in this study are fully independent of
EEG. Hence, the identified artifact ICs may still contain some
contribution from EEG. However, EEG from these areas is not
highly involved in motor tasks in our studies. Finally, this was
only tested using EEG from 8 healthy subjects, and future more

rigorous experimental validation can be performed on an even
larger cohort, with EEG underlying other types of behaviors (e.g.,
cognitive tasks), or in those with neurological conditions.

5. CONCLUSION

Here, we proposed a modified ICA model that can automatically
remove EMG artifacts by combining reference EMG artifacts
with EEG. This new approach can more effectively remove EMG
artifacts from EEG while preserving the expected brain features
underlying motor behavior. Also, the approach proposed in this
work is automated, which minimizes experimenter bias and
speeds up analysis. The utilization of the simulated EMG as
the reference EMG source potentially extends the application of
this approach. The EEG recovered by our approach can provide
more confidence for further neuroscience analysis. Meanwhile,
future work will focus on testing ERASE on EEG from patient
populations, and adapting it for real-time applications, such as in
the BCI system.
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filtered with 40–100 Hz for one trial in different conditions
(Supplementary Figure 9), time series validation results by using
simulated EEG with simulated EMG (Supplementary Figure 10)
and real EMG (Supplementary Figure 11), and performance
comparison between ERASE and conventional ICA by

a common metric. Also, Supplementary Tables 1, 2 list
the average thresholds for false positive and sensitivity
test, respectively. Supplementary Table 3 lists the average
artifact indices for the simulated EMG and conventional
ICA conditions.

REFERENCES

Akhtar, M. T., Mitsuhashi, W., and James, C. J. (2012). Employing spatially

constrained ICA and wavelet denoising, for automatic removal of

artifacts from multichannel EEG data. Signal Process. 92, 401–416.

doi: 10.1016/j.sigpro.2011.08.005

Albera, L., Kachenoura, A., Comon, P., Karfoul, A.,Wendling, F., Senhadji, L., et al.

(2012). ICA-based EEG denoising: a comparative analysis of fifteen methods.

Bull. Pol. Acad. Sci. 60, 407–418. doi: 10.2478/v10175-012-0052-3

Berg, P., and Scherg, M. (1991). Dipole modelling of eye activity and its application

to the removal of eye artefacts from the EEG and MEG. Clin. Phys. Physiol.

Measure. 12:49. doi: 10.1088/0143-0815/12/A/010

Burger, C., and van den Heever, D. J. (2015). Removal of EOG artefacts by

combining wavelet neural network and independent component analysis.

Biomed. Signal Process. Control 15, 67–79. doi: 10.1016/j.bspc.2014.09.009

Chen, X., He, C., and Peng, H. (2014a). Removal of muscle artifacts from

single-channel EEG based on ensemble empirical mode decomposition

and multiset canonical correlation analysis. J. Appl. Math. 2014:261347.

doi: 10.1155/2014/261347

Chen, X., Liu, A., Chiang, J., Wang, Z. J., McKeown, M. J., and Ward, R. K.

(2015). Removing muscle artifacts from EEG data: multichannel or single-

channel techniques? IEEE Sensors J. 16, 1986–1997. doi: 10.1109/JSEN.2015.25

06982

Chen, X., Liu, A., Peng, H., and Ward, R. (2014b). A preliminary study of

muscular artifact cancellation in single-channel EEG. Sensors 14, 18370–18389.

doi: 10.3390/s141018370

Chen, X., Xu, X., Liu, A., McKeown, M. J., and Wang, Z. J. (2017). The use

of multivariate EMD and CCA for denoising muscle artifacts from few-

channel EEG recordings. IEEE Trans. Instrument. Measure. 67, 359–370.

doi: 10.1109/TIM.2017.2759398

Comon, P. (1994). Independent component analysis, a new concept? Signal

Process. 36, 287–314. doi: 10.1016/0165-1684(94)90029-9

Crespo-Garcia, M., Atienza, M., and Cantero, J. L. (2008). Muscle artifact removal

from human sleep EEG by using independent component analysis. Ann.

Biomed. Eng. 36, 467–475. doi: 10.1007/s10439-008-9442-y

Daly, I., Nicolaou, N., Nasuto, S. J., and Warwick, K. (2013). Automated artifact

removal from the electroencephalogram: a comparative study. Clin. EEG

Neurosci. 44, 291–306. doi: 10.1177/1550059413476485

Daly, I., Pichiorri, F., Faller, J., Kaiser, V., Kreilinger, A., Scherer, R., et al. (2012).

“What does clean EEG look like?” in 2012 Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (San Diego, CA: IEEE),

3963–3966. IEEE. doi: 10.1109/EMBC.2012.6346834

Dannhauer, M., Lanfer, B., Wolters, C. H., and Knösche, T. R. (2011). Modeling

of the human skull in EEG source analysis. Hum. Brain Mapp. 32, 1383–1399.

doi: 10.1002/hbm.21114

De Clercq, W., Vergult, A., Vanrumste, B., Van Paesschen, W., and Van Huffel,

S. (2006). Canonical correlation analysis applied to remove muscle artifacts

from the electroencephalogram. IEEE Trans. Biomed. Eng. 53, 2583–2587.

doi: 10.1109/TBME.2006.879459

De Vos, M., Gandras, K., and Debener, S. (2014). Towards a truly mobile auditory

brain-computer interface: exploring the p300 to take away. Int. J. Psychophysiol.

91, 46–53. doi: 10.1016/j.ijpsycho.2013.08.010

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Delorme, A., Makeig, S., and Sejnowski, T. (2001). “Automatic artifact rejection for

EEG data using high-order statistics and independent component analysis,” in

Proceedings of the Third International ICA Conference (Washington, DC), 9–12.

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S.

(2012). Independent EEG sources are dipolar. PLoS ONE 7:e30135.

doi: 10.1371/journal.pone.0030135

Delorme, A., Sejnowski, T., and Makeig, S. (2007). Enhanced detection of artifacts

in EEG data using higher-order statistics and independent component analysis.

Neuroimage 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004

Donoho, D. L., and Johnstone, I. M. (1995). Adapting to unknown

smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224.

doi: 10.1080/01621459.1995.10476626

Duchene, J., and Hogrel, J.-Y. (2000). A model of EMG generation. IEEE Trans.

Biomed. Eng. 47, 192–201. doi: 10.1109/10.821754

Escudero, J., Hornero, R., Abásolo, D., and Fernández, A. (2011). Quantitative

evaluation of artifact removal in real magnetoencephalogram signals

with blind source separation. Ann. Biomed. Eng. 39, 2274–2286.

doi: 10.1007/s10439-011-0312-7

Evans, I. D., Jamieson, G., Croft, R., and Pham, T. T. (2012). “Empirically validating

fully automated EOG artifact correction using independent components

analysis,” in ACNS-2012 Australasian Cognitive Neuroscience Conference

(Brisbane, QLD), e30135.

Fatourechi, M., Bashashati, A.,Ward, R. K., and Birch, G. E. (2007). EMG and EOG

artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118,

480–494. doi: 10.1016/j.clinph.2006.10.019

Gabsteiger, F., Leutheuser, H., Reis, P., Lochmann, M., and Eskofier, B. M. (2014).

“ICA-based reduction of electromyogenic artifacts in EEG data: comparison

with and without EMG data,” in 2014 36th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (Chicago, IL), 3861–3864.

doi: 10.1109/EMBC.2014.6944466

Gratton, G., Coles, M. G., and Donchin, E. (1983). A new method for off-line

removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484.

doi: 10.1016/0013-4694(83)90135-9

Gribonval, R., and Lesage, S. (2006). “A survey of Sparse Component Analysis

for blind source separation: principles, perspectives, and new challenges,”

in ESANN’06 Proceedings - 14th European Symposium on Artificial Neural

Networks (Bruges: d-side publication), p. 323–330.

Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., et al.

(2013). Good practice for conducting and reportingMEG research.Neuroimage

65, 349–363. doi: 10.1016/j.neuroimage.2012.10.001

Grouiller, F., Vercueil, L., Krainik, A., Segebarth, C., Kahane, P., and David,

O. (2007). A comparative study of different artefact removal algorithms

for EEG signals acquired during functional MRI. Neuroimage 38, 124–137.

doi: 10.1016/j.neuroimage.2007.07.025

Guerrero-Mosquera, C., and Vazquez, A. N. (2009). “Automatic removal of ocular

artifacts from eeg data using adaptive filtering and independent component

analysis,” in 2009 17th European Signal Processing Conference (Glasgow),

2317–2321.

Gwin, J. T., Gramann, K., Makeig, S., and Ferris, D. P. (2010). Removal of

movement artifact from high-density EEG recorded during walking and

running. J. Neurophysiol. 103, 3526–3534. doi: 10.1152/jn.00105.2010

Hesse, C.W., and James, C. J. (2006). On semi-blind source separation using spatial

constraints with applications in EEG analysis. IEEE Trans. Biomed. Eng. 53,

2525–2534. doi: 10.1109/TBME.2006.883796

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hu, J., Wang, C.-S., Wu, M., Du, Y.-X., He, Y., and She, J. (2015). Removal of

EOG and EMG artifacts from EEG using combination of functional link neural

network and adaptive neural fuzzy inference system. Neurocomputing 151,

278–287. doi: 10.1016/j.neucom.2014.09.040

Frontiers in Neuroscience | www.frontiersin.org 14 January 2021 | Volume 14 | Article 597941

https://doi.org/10.1016/j.sigpro.2011.08.005
https://doi.org/10.2478/v10175-012-0052-3
https://doi.org/10.1088/0143-0815/12/A/010
https://doi.org/10.1016/j.bspc.2014.09.009
https://doi.org/10.1155/2014/261347
https://doi.org/10.1109/JSEN.2015.2506982
https://doi.org/10.3390/s141018370
https://doi.org/10.1109/TIM.2017.2759398
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1007/s10439-008-9442-y
https://doi.org/10.1177/1550059413476485
https://doi.org/10.1109/EMBC.2012.6346834
https://doi.org/10.1002/hbm.21114
https://doi.org/10.1109/TBME.2006.879459
https://doi.org/10.1016/j.ijpsycho.2013.08.010
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0030135
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1109/10.821754
https://doi.org/10.1007/s10439-011-0312-7
https://doi.org/10.1016/j.clinph.2006.10.019
https://doi.org/10.1109/EMBC.2014.6944466
https://doi.org/10.1016/0013-4694(83)90135-9
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1016/j.neuroimage.2007.07.025
https://doi.org/10.1152/jn.00105.2010
https://doi.org/10.1109/TBME.2006.883796
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1016/j.neucom.2014.09.040
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. ERASE for Removing EMG Artifacts

Ille, N., Berg, P., and Scherg, M. (2002). Artifact correction of the ongoing EEG

using spatial filters based on artifact and brain signal topographies. J. Clin.

Neurophysiol. 19, 113–124. doi: 10.1097/00004691-200203000-00002

Ille, N., Beucker, R., and Scherg, M. (2001). Spatially constrained independent

component analysis for artifact correction in EEG andMEG.Neuroimage 6:159.

doi: 10.1016/S1053-8119(01)91502-2

James, C. J., and Gibson, O. J. (2003). Temporally constrained ICA: an application

to artifact rejection in electromagnetic brain signal analysis. IEEE Trans.

Biomed. Eng. 50, 1108–1116. doi: 10.1109/TBME.2003.816076

James, C. J., and Hesse, C. W. (2004). Independent component analysis for

biomedical signals. Physiol. Measure. 26:R15. doi: 10.1088/0967-3334/26/1/R02

Jiang, T., Pellizzer, G., Asman, P., Bastos, D., Bhavsar, S., Tummala, S., et al.

(2020). Power modulations of ECOG alpha/beta and gamma bands correlate

with time-derivative of force during hand grasp. Front. Neurosci. 14:100.

doi: 10.3389/fnins.2020.00100

Krishnaveni, V., Jayaraman, S., Anitha, L., and Ramadoss, K. (2006). Removal of

ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J.

Neural Eng. 3:338. doi: 10.1088/1741-2560/3/4/011

Lanfer, B., Scherg, M., Dannhauer, M., Knösche, T. R., Burger, M., and Wolters,

C. H. (2012). Influences of skull segmentation inaccuracies on EEG source

analysis. NeuroImage 62, 418–431. doi: 10.1016/j.neuroimage.2012.05.006

Li, Y., Wang, P. T., Vaidya, M. P., Flint, R. D., Liu, C. Y., Slutzky, M. W.,

et al. (2020). Refinement of high-gamma EEG features from TBI patients with

hemicraniectomy using an ICA informed by simulated myoelectric artifacts.

Front. Neurosci. 14:599010. doi: 10.3389/fnins.2020.599010

Li, Y., Wang, P. T., Vaidya, M. P., Liu, Y. C., Slutzky, M. W., and Do, A. H. (2018).

“A novel algorithm for removing artifacts from EEG data,” in 2018 40th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (Honolulu, HI), 6014–6017. doi: 10.1109/EMBC.2018.8513658

Lin, Q.-H., Zheng, Y.-R., Yin, F.-L., Liang, H., and Calhoun, V. D. (2007).

A fast algorithm for one-unit ICA-R. Inform. Sci. 177, 1265–1275.

doi: 10.1016/j.ins.2006.09.011

Lu,W., and Rajapakse, J. C. (2005). Approach and applications of constrained ICA.

IEEE Trans. Neural Netw. 16, 203–212. doi: 10.1109/TNN.2004.836795

Mammone, N., La Foresta, F., and Morabito, F. C. (2012). Automatic artifact

rejection from multichannel scalp EEG by wavelet ICA. IEEE Sensors J. 12,

533–542. doi: 10.1109/JSEN.2011.2115236

McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R.,

Koppenhaver, A. M., Greischar, L. L., et al. (2010). Validation of ICA-based

myogenic artifact correction for scalp and source-localized EEG. Neuroimage

49, 2416–2432. doi: 10.1016/j.neuroimage.2009.10.010

McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Greischar, L. L., and

Davidson, R. J. (2009). Validation of regression-based myogenic correction

techniques for scalp and source-localized EEG. Psychophysiology 46, 578–592.

doi: 10.1111/j.1469-8986.2009.00787.x

Mijovic, B., De Vos, M., Gligorijevic, I., Taelman, J., and Van Huffel, S. (2010).

Source separation from single-channel recordings by combining empirical-

mode decomposition and independent component analysis. IEEE Trans.

Biomed. Eng. 57, 2188–2196. doi: 10.1109/TBME.2010.2051440

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D.

W., et al. (2007). Spectral changes in cortical surface potentials during motor

movement. J. Neurosci. 27, 2424–2432. doi: 10.1523/JNEUROSCI.3886-06.2007

Minguillon, J., Lopez-Gordo, M. A., and Pelayo, F. (2017). Trends in EEG-BCI for

daily-life: requirements for artifact removal. Biomed. Signal Process. Control 31,

407–418. doi: 10.1016/j.bspc.2016.09.005

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). Adjust: an automatic

EEG artifact detector based on the joint use of spatial and temporal features.

Psychophysiology 48, 229–240. doi: 10.1111/j.1469-8986.2010.01061.x

Morbidi, F., Garulli, A., Prattichizzo, D., Rizzo, C., Manganotti, P., and

Rossi, S. (2007). Off-line removal of tms-induced artifacts on human

electroencephalography by Kalman filter. J. Neurosci. Methods 162, 293–302.

doi: 10.1016/j.jneumeth.2006.12.013

Mourad, N., and Niazy, R. K. (2013). “Automatic correction of eye blink artifact in

single channel EEG recording using EMD and OMP,” in 21st European Signal

Processing Conference (EUSIPCO 2013) (Marrakech), 1–5.

Mowla, M. R., Ng, S.-C., Zilany, M. S., and Paramesran, R. (2015).

Artifacts-matched blind source separation and wavelet transform for

multichannel EEG denoising. Biomed. Signal Process. Control 22, 111–118.

doi: 10.1016/j.bspc.2015.06.009

Mucarquer, J. A., Prado, P., Escobar, M.-J., El-Deredy,W., and Za nartu, M. (2019).

Improving EEG muscle artifact removal with an EMG array. IEEE Trans.

Instrum. Meas. 69, 815–824. doi: 10.1109/TIM.2019.2906967

Muthukumaraswamy, S. (2013). High-frequency brain activity andmuscle artifacts

in MEG/EEG: a review and recommendations. Front. Hum. Neurosci. 7:138.

doi: 10.3389/fnhum.2013.00138

Nguyen, H.-A. T.,Musson, J., Li, F.,Wang,W., Zhang, G., Xu, R., et al. (2012). EOG

artifact removal using a wavelet neural network. Neurocomputing 97, 374–389.

doi: 10.1016/j.neucom.2012.04.016

Nicolaou, N., and Nasuto, S. J. (2007). Automatic artefact removal from event-

related potentials via clustering. J. VLSI Signal Process. Syst. Signal Image Video

Technol. 48, 173–183. doi: 10.1007/s11265-006-0011-z

Nolan, H., Whelan, R., and Reilly, R. (2010). Faster: fully automated statistical

thresholding for EEG artifact rejection. J. Neurosci. Methods 192, 152–162.

doi: 10.1016/j.jneumeth.2010.07.015

Olbrich, S., Jödicke, J., Sander, C., Himmerich, H., and Hegerl, U. (2011). ICA-

basedmuscle artefact correction of EEG data:What is muscle and what is brain?

Neuroimage 54, 1–3. doi: 10.1016/j.neuroimage.2010.04.256

Peng, H., Hu, B., Shi, Q., Ratcliffe, M., Zhao, Q., Qi, Y., et al. (2013). Removal

of ocular artifacts in EEG-an improved approach combining DWT and

ANC for portable applications. IEEE J. Biomed. Health Inform. 17, 600–607.

doi: 10.1109/JBHI.2013.2253614

Pfurtscheller, G., and Da Silva, F. L. (1999). Event-related EEG/MEG

synchronization and desynchronization: basic principles. Clin. Neurophysiol.

110, 1842–1857. doi: 10.1016/S1388-2457(99)00141-8

Pham, T. T., Croft, R. J., Cadusch, P. J., and Barry, R. J. (2011). A test of

four eog correction methods using an improved validation technique. Int. J.

Psychophysiol. 79, 203–210. doi: 10.1016/j.ijpsycho.2010.10.008

Richer, N., Downey, R. J., Nordin, A. D., Hairston, W. D., and Ferris, D. P.

(2019). “Adding neck muscle activity to a head phantom device to validate

mobile EEG muscle and motion artifact removal,” in 2019 9th International

IEEE/EMBS Conference on Neural Engineering (NER) (San Francisco, CA),

275–278. doi: 10.1109/NER.2019.8716959

Romero, S., Ma nanas, M., and Barbanoj, M. J. (2009). Ocular reduction

in EEG signals based on adaptive filtering, regression and blind source

separation. Ann. Biomed. Eng. 37, 176–191. doi: 10.1007/s10439-008-

9589-6

Romero, S., Ma nanas, M. A., and Barbanoj, M. J. (2008). A comparative study of

automatic techniques for ocular artifact reduction in spontaneous EEG signals

based on clinical target variables: a simulation case. Comput. Biol. Med. 38,

348–360. doi: 10.1016/j.compbiomed.2007.12.001

Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu,

A., et al. (2012). Removal of muscle artifact from EEG data: comparison

between stochastic (ICA and CCA) and deterministic (EMD and

wavelet-based) approaches. EURASIP J. Adv. Signal Process. 2012:127.

doi: 10.1186/1687-6180-2012-127

Schalk, G., Kubanek, J., Miller, K., Anderson, N., Leuthardt, E., Ojemann,

J., et al. (2007). Decoding two-dimensional movement trajectories

using electrocorticographic signals in humans. J. Neural Eng. 4:264.

doi: 10.1088/1741-2560/4/3/012

Shackman, A. J., McMenamin, B. W., Slagter, H. A., Maxwell, J. S.,

Greischar, L. L., and Davidson, R. J. (2009). Electromyogenic artifacts

and electroencephalographic inferences. Brain Topogr. 22, 7–12.

doi: 10.1007/s10548-009-0079-4

Stegeman, D. F., and Linssen, W. H. (1992). Muscle fiber action potential changes

and surface EMG: a simulation study. J. Electromyogr. Kinesiol. 2, 130–140.

doi: 10.1016/1050-6411(92)90010-G

Suja Priyadharsini, S., Edward Rajan, S., and Femilin Sheniha, S. (2016). A novel

approach for the elimination of artefacts from EEG signals employing an

improved artificial immune system algorithm. J. Exp. Theor. Artif. Intell. 28,

239–259. doi: 10.1080/0952813X.2015.1020571

Sweeney, K. T., McLoone, S. F., and Ward, T. E. (2012a). The use of ensemble

empirical mode decomposition with canonical correlation analysis as a

novel artifact removal technique. IEEE Trans. Biomed. Eng. 60, 97–105.

doi: 10.1109/TBME.2012.2225427

Frontiers in Neuroscience | www.frontiersin.org 15 January 2021 | Volume 14 | Article 597941

https://doi.org/10.1097/00004691-200203000-00002
https://doi.org/10.1016/S1053-8119(01)91502-2
https://doi.org/10.1109/TBME.2003.816076
https://doi.org/10.1088/0967-3334/26/1/R02
https://doi.org/10.3389/fnins.2020.00100
https://doi.org/10.1088/1741-2560/3/4/011
https://doi.org/10.1016/j.neuroimage.2012.05.006
https://doi.org/10.3389/fnins.2020.599010
https://doi.org/10.1109/EMBC.2018.8513658
https://doi.org/10.1016/j.ins.2006.09.011
https://doi.org/10.1109/TNN.2004.836795
https://doi.org/10.1109/JSEN.2011.2115236
https://doi.org/10.1016/j.neuroimage.2009.10.010
https://doi.org/10.1111/j.1469-8986.2009.00787.x
https://doi.org/10.1109/TBME.2010.2051440
https://doi.org/10.1523/JNEUROSCI.3886-06.2007
https://doi.org/10.1016/j.bspc.2016.09.005
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1016/j.jneumeth.2006.12.013
https://doi.org/10.1016/j.bspc.2015.06.009
https://doi.org/10.1109/TIM.2019.2906967
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.1016/j.neucom.2012.04.016
https://doi.org/10.1007/s11265-006-0011-z
https://doi.org/10.1016/j.jneumeth.2010.07.015
https://doi.org/10.1016/j.neuroimage.2010.04.256
https://doi.org/10.1109/JBHI.2013.2253614
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/j.ijpsycho.2010.10.008
https://doi.org/10.1109/NER.2019.8716959
https://doi.org/10.1007/s10439-008-9589-6
https://doi.org/10.1016/j.compbiomed.2007.12.001
https://doi.org/10.1186/1687-6180-2012-127
https://doi.org/10.1088/1741-2560/4/3/012
https://doi.org/10.1007/s10548-009-0079-4
https://doi.org/10.1016/1050-6411(92)90010-G
https://doi.org/10.1080/0952813X.2015.1020571
https://doi.org/10.1109/TBME.2012.2225427
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. ERASE for Removing EMG Artifacts

Sweeney, K. T., Ward, T. E., and McLoone, S. F. (2012b). Artifact removal in

physiological signals-practices and possibilities. IEEE Trans. Inform. Technol.

Biomed. 16, 488–500. doi: 10.1109/TITB.2012.2188536

Teixeira, A. R., Tomé, A. M., Lang, E. W., Gruber, P., and Da Silva, A.

M. (2006). Automatic removal of high-amplitude artefacts from single-

channel electroencephalograms. Comput. Methods Prog. Biomed. 83, 125–138.

doi: 10.1016/j.cmpb.2006.06.003

Tran, Y., Craig, A., Boord, P., and Craig, D. (2004). Using independent

component analysis to remove artifact from electroencephalographic

measured during stuttered speech. Med. Biol. Eng. Comput. 42, 627–633.

doi: 10.1007/BF02347544

Unser, M., and Aldroubi, A. (1996). A review of wavelets in biomedical

applications. Proc. IEEE 84, 626–638. doi: 10.1109/5.488704

Urigüen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact

removal-state-of-the-art and guidelines. J. Neural Eng. 12:031001.

doi: 10.1088/1741-2560/12/3/031001

Vaidya, M., Flint, R. D., Wang, P. T., Barry, A., Li, Y., Ghassemi, M., et al.

(2019). Hemicraniectomy in traumatic brain injury: a noninvasive platform

to investigate high gamma activity for brain machine interfaces. IEEE Trans.

Neural Syst. Rehabil. Eng. 27, 1467–1472. doi: 10.1109/TNSRE.2019.2912298

Vos, D. M., Riés, S., Vanderperren, K., Vanrumste, B., Alario, F.-X.,

Huffel, V. S., et al. (2010). Removal of muscle artifacts from EEG

recordings of spoken language production. Neuroinformatics 8, 135–150.

doi: 10.1007/s12021-010-9071-0

Wallstrom, G. L., Kass, R. E., Miller, A., Cohn, J. F., and Fox, N. A. (2004).

Automatic correction of ocular artifacts in the EEG: a comparison of

regression-based and component-based methods. Int. J. Psychophysiol. 53,

105–119. doi: 10.1016/j.ijpsycho.2004.03.007

Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless,

S., et al. (2007). Scalp electrical recording during paralysis: quantitative

evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin.

Neurophysiol. 118, 1877–1888. doi: 10.1016/j.clinph.2007.04.027

Wu, W., Keller, C. J., Rogasch, N. C., Longwell, P., Shpigel, E., Rolle, C. E., et al.

(2018). Artist: A fully automated artifact rejection algorithm for single-pulse

TMS-EEG data. Hum. Brain Mapp. 39, 1607–1625. doi: 10.1002/hbm.23938

Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition:

a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41.

doi: 10.1142/S1793536909000047

Yamada, T., and Meng, E. (2012). Practical Guide for Clinical Neurophysiologic

Testing: EEG. Philadelphia, PA: Lippincott Williams &Wilkins.

Zeng, H., Song, A., Yan, R., and Qin, H. (2013). EOG artifact correction

from EEG recording using stationary subspace analysis and empirical mode

decomposition. Sensors 13, 14839–14859. doi: 10.3390/s131114839

Zhang, C., Yang, J., Lei, Y., and Ye, F. (2012). Single channel blind source separation

by combining slope ensemble empirical mode decomposition and independent

component analysis. J. Comput. Inf. Syst. 8, 3117–3126.

Zikov, T., Bibian, S., Dumont, G. A., Huzmezan, M., and Ries, C. (2002).

“A wavelet based de-noising technique for ocular artifact correction

of the electroencephalogram,” in Proceedings of the Second Joint 24th

Annual Conference and the Annual Fall Meeting of the Biomedical

Engineering Society, Vol. 1 (Houston, TX), 98–105. doi: 10.1109/IEMBS.2002.11

34407

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Li, Wang, Vaidya, Flint, Liu, Slutzky and Do. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2021 | Volume 14 | Article 597941

https://doi.org/10.1109/TITB.2012.2188536
https://doi.org/10.1016/j.cmpb.2006.06.003
https://doi.org/10.1007/BF02347544
https://doi.org/10.1109/5.488704
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1109/TNSRE.2019.2912298
https://doi.org/10.1007/s12021-010-9071-0
https://doi.org/10.1016/j.ijpsycho.2004.03.007
https://doi.org/10.1016/j.clinph.2007.04.027
https://doi.org/10.1002/hbm.23938
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.3390/s131114839
https://doi.org/10.1109/IEMBS.2002.1134407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE)—A Novel ICA-Based Algorithm for Removing Myoelectric Artifacts From EEG
	1. Introduction
	2. Methods
	2.1. Description of ERASE ICA Model Based on Added EMG Sources
	2.1.1. Model Description
	2.1.2. Rejection Criteria

	2.2. Validation With Simulated EEG/EMG Data
	2.2.1. Generating Simulated EMG
	2.2.2. Generating Simulated EEG
	2.2.3. Performance Assessment
	2.2.3.1. Effectiveness
	2.2.3.2. False Positive Rate
	2.2.3.3. Sensitivity


	2.3. Validation With Real EEG
	2.3.1. Experiments
	2.3.2. Experimental Data Processing


	3. Results
	3.1. Simulation Verification
	3.2. Experimental Verification

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


