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Surface electromyography (EMG) measurements are affected by various noises such
as power source and movement artifacts and adjacent muscle activities. Hardware
solutions have been found that use multi-channel EMG signal to attenuate noise signals
related to sensor positions. However, studies addressing the overcoming of crosstalk
from EMG and the division of overlaid superficial and deep muscles are scarce. In this
study, two signal decompositions—independent component analysis and non-negative
matrix factorization—were used to create a low-dimensional input signal that divides
noise, surface muscles, and deep muscles and utilizes them for movement classification
based on direction. In the case of index finger movement, it was confirmed that the
proposed decomposition method improved the classification performance with the least
input dimensions. These results suggest a new method to analyze more dexterous
movements of the hand by separating superficial and deep muscles in the future using
multi-channel EMG signals.

Keywords: finger movement, electromyography, muscle synergy, independent component analysis, deep muscle

INTRODUCTION

Electromyography (EMG) measures the electrical impulses from the muscle contraction induced
by the central nervous system for voluntary body movement. The surface EMG signal contains
different muscle signals and various noises such as baseline noise and movement artifacts (De Luca
et al., 2010). These noises and crosstalk between muscles can misguide EMG analysis leading to
erroneous interpretation; hence, there are various studies that focus on attenuating undesirable
signals (De Luca et al., 2010). However, it is still challenging to detect single muscle activity from
EMG (Schieber, 1995; Keen and Fuglevand, 2004). Gazzoni et al., 2014 applied non-negative matrix
factorization (NMF) to multi-channel EMG signals and distinguished the position on each forearm
per movement of the wrist and single finger joint. Their study investigated deep muscle activities
under singular joint movement and confirmed the feasibility of multi-channel EMG signals-based
muscles synergy so as to identify deep muscle region. However, they did not dig deep into the
dexterous finger movement and nor the structure of muscle synergy per joint movement. Finger
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movement of high dexterity can be achieved through multiple
muscle movements; however, this causes significant crosstalk in
the forearm EMG measurements. Thereby, additional steps need
to be taken in dexterous finger movements estimation using
multi-channel EMG signal.

Independent component analysis (ICA) is a general-purpose
statistical technique that can linearly transform random data
into independent components (ICs) (Hyvärinen and Oja, 2000).
Hence, it is often employed in biomedical signal processing,
especially for EEG, where noise and various movement artifacts
are removed through ICA before signal analysis (Jung et al.,
2000). In EMG analysis, it was confirmed that ICA reduces the
root mean squared error of the monopolar EMG signals that
measure muscle force (Staudenmann et al., 2007).

Muscle synergy originated from the idea that the brain would
not control individual muscles and commands a high degree of
complexity to control our daily movements (d’Avella et al., 2003).
In addition, the NMF algorithm by Lee and Seung (2001) has
established a standard method for muscle synergy calculation.
Since then several EMG studies have proposed low-dimensional
input-based myoelectric models using muscle synergy. Of these,
the fast type NMF computation algorithm (Cichocki and Phan,
2009) was used to calculate muscle synergy in this study.

This study tests how well multichannel EMG signals can
estimate the direction of index finger movements using two signal
decomposition ICA and NMF. We examined the following three
parameters to compare EMG-based synergy (EMG-synergy) and
ICs-based synergy (ICA-synergy): (1) robustness of the synergy
structure calculation in the two elbow posture, (2) preferred
direction compared with anatomical basis, and (3) classification
performance on the eight direction finger movements using
convolutional neural network (CNN).

MATERIALS AND METHODS

Experimental data were obtained from the study of Yoshimura
et al. (2017). The data were taken from six right-handed healthy
participants (two females and four males, aged 40.67± 7.23). The
research protocol was approved by the University of California
San Diego Ethics Committee (approval number 14353) and
was conducted in accordance with the Helsinki Declaration.
Written consent was obtained from each participant prior to
the experiment (Yoshimura et al., 2017). This study focused
on 96 channel EMG signals acquired from Biosemi active
Two amplifier system with active sensors (Biosemi, Amsterdam,
Netherlands), and its analysis with respect to cursor movement
directions. The EMG signals were sampled at 2,048 Hz and
Cursor movement at 100 Hz.

Before the EMG acquisition, the coordinate positions of
the EMG sensors and the hand and elbow joint were
measured. The coordinate positions, measured using a posture
functional capacity evaluation system (zebris Medical GmbH,
Isny, Germany) and the placement of 96 channel-EMG electrodes
are shown in Figure 1A.

The participants made finger movements by shifting the
cursor in eight different directions, at two elbow angles (0◦

and 90◦) as shown in Figure 1B. The numbering of directions
per posture was constant to extract the extrinsic coordinate
reaction. The participants performed 80-time repetitions on each
posture and direction.

EMG Preprocessing
The entire EMG data were loaded into MATLAB and digitally
filtered by notch and bandpass filters of 50 and 10–1,000 Hz
respectively. The ground reference was fixed as the least vibrating
point based on standard deviation parameters (all participants
had the same measurement points on the hand). Therefore only
95 channels were considered for evaluation.

ICA and NMF Signal Processing
Figure 2 shows the signal flow of EMG signals with respective
processing after such preprocessing. Similar to the case of
Yoshimura et al. (2017), the adaptive mixture independent
component analysis (AMICA)1 from EEGLAB (Delorme and
Makeig, 2004) was used as an algorithm for ICA.

Independent component analysis is one of the representative
blind source separation method for cocktail party problem like
condition. In this study, multi-channel EMG signals are mixed
with mutually different muscle activity signals with numerous
noises. Thereby, ICA analysis is demanding to derive deep muscle
activities. The basic method of ICA is deriving:

X = AS.

Where X is C by N matrix of EMG sensor signals with C is the
number of input channels and N is time points; S is C by N
matrix of the independent source signals which are hypothesized
mutually independent, and A is C by C mixing matrix showing
how the source signal S is composed in each sensor. ICA derive
the basic vectors in the way minimizing the mutual information
and maximizing the non-Gaussianity. Each trial had a duration
of 2 s, which is 2 s of the post-onset recording after target
onset. Among outputs from AMICA, ICs that had white noise
characteristics on the trials were excluded from further analysis.
The ICA analysis of the 95 channel EMG signals on 1,280 trials
from the six participants yielded between 22 to 36 ICs depending
on the participants [mean: 29.8, standard deviation (SD): 5.1].

Muscle synergy derivation was also conducted using output
from AMICA followed by additional preprocessing. The
signals were normalized with mean activation among the
whole movements (Halaki and Ginn, 2012), then rectified
and filtered using a second-order Butterworth low-pass filter
with 5 Hz cutoff frequency, to make a pseudo-joint-torque
parameter from EMG signals (Koike and Kawato, 1995). The
muscle synergy computation was performed on two different
input signals, EMG signals, and ICs after filtering them into
pseudo-joint-torque parameters. As a signal decomposition
tool for synergy derivation, the HALS method was used
(Cichocki and Phan, 2009). That is,

E = TM.

1http://sccn.ucsd.edu/~jason/amica_web.html
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FIGURE 1 | Experimental Design. (A) EMG signals with respective channel positions on the upper limb. The red channel on the back of the hand is used as the
ground reference and not for ICA or muscle synergy. (B) Eight target directions for the two different elbow angles (0◦ and 90◦).

Where E is a m by n matrix of EMG signals or selective ICs
with n is the number of sensors or ICs and m is time points;
T = [t1, ..., ts] is the time series activation coefficient of the
synergies in m by s matrix where s is the number of synergies;
M = [e1, ..., es]T is the muscle synergy set in s by n matrix,
and e1 = [c1, ..., cn] represent a single vector of muscle synergy.
Each T and M are computed iteratively under the rule of
minimizing the Euclidean difference between original signal (E)
and reconstructed signal (TM) while having non-negativity.

Three to fifteen ICA-synergy sets and 3–30 EMG-synergy were
computed per participant. The smallest number, each different
per participant, that satisfied the following two conditions was
selected as the number of muscle synergy: more than 0.9
Variance Account For (VAF) which was commonly used in
other studies (Cheung et al., 2005); Clark et al., 2010; Santuz
et al., 2017) and less than 10−4 mean squared error of the
linear regression of VAF per muscle synergy number (d’Avella
et al., 2006). Figure 3 shows two condition parameters with
the number of ICA-synergy in six participants. From these
conditions, 10–26 EMG-synergy (mean: 18.2, SD: 5.5) and 9–
18 ICA-synergy (mean: 12.2, SD: 3.2) were derived from the
whole dataset and used depending on the participants throughout
the study. The same number of synergies was used when

using posture dependent synergy to see the consistency of the
synergy structure.

Muscle Synergy Modulization From
Postures
To investigate the difference of muscle synergies depending on
the posture, muscle synergies were derived from three different
conditional data (Elbow 0◦, Elbow 90◦, and Total dataset). The
synergies from the three conditions were clustered and grouped
similar structures depending on the mutual scalar product
(SP) (Cheung et al., 2012; Matsunaga et al., 2017) using the
Unweighted Pair-Group Method with Arithmetic mean (Nei and
Kumar, 2000). Muscle synergies, having SP > 0.75, were assumed
to form the same synergy module. The preferred direction was
calculated using cosine tuning using the mean amplitude of
muscle (or synergy) signal m(θ) in eight direction θ with a
linear regression m(θ) = a0a1 cos (θ)+ a2 sin (θ) (Gentner et al.,
2013). Then the resultant preferred directions are compared
to see the consistency of the signal in two elbow postures.
The preferred directions of the synergy in Elbow 90 were
compensated by shifting 90◦ clockwise. In cosine tuning linear
regression under normalized form, cosine tuning weight is
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FIGURE 2 | Signal flow diagram of EMG signals. The 95ch preprocessed EMG signal convert to four different type of inputs (EMG-input, IC-input, EMG-synergy, and
ICA-synergy) and applied in CNN for eight finger movement direction classification.

defined as W =
√

a2
1 + a2

2 that shows the ratio of muscle activation
for target finger movements.

The Classification Model and Truncation
of Input Data per Trial
For classification, the input signal was down-sampled to 50 Hz.
In the case of EMG, it is difficult to grasp a precise onset due to
noise, so the data was sorted based on the cursor movements. The
timing of cursor moving more than 2% of movement compared
to the final position was set to onset. Based on the cursor onset,
0.5-s data (25 time-points) from −0.2 to 0.3 s was used for each
trial. The classification was conducted using four different types
of muscle activity signals: EMG-input, IC-input, EMG-synergy,
and ICA-synergy. Twenty-five-time points of each signal were
used to classify the eight directional finger movements using
CNN (Krizhevsky et al., 2012). Multi-channel muscle activities

with time interval per trial was implemented as input signals for
CNN, and 3 by 3 32 filters were applied for feature extraction. The
classification was conducted in fivefold cross-validation on to the
whole datasets dividing each elbow posture individually.

RESULTS

When modulating synergies from different elbow posture
conditions, the number of EMG-synergy modules is in
proportion to the EMG-synergy number (e.g., the ratio between
module and synergy is 14.4:18.2 in six participants), and
ICA-synergy modules were selected between eight and ten
independently to the ICA-synergy number (9–18). Figure 4
shows the EMG channel activations between EMG-synergy and
ICA-synergy modules from an individual participant. Between
EMG-synergy (Figure 4A) and ICA-synergy (Figure 4B)
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FIGURE 3 | Mean Variance Account For (VAF) and slope of VAF of ICA-synergy in the six participants.

modules, some EMG channel activation are similar with
SP > 0.75, but their inclination for each finger movement is
significantly different. Cosine tuning weight W within ICA-
synergy is bigger than that of EMG-synergy module (p < 0.0001,
W_ICA = 0.34 ± 0.11, W_EMG = 0.18 ± 0.12, and n = 35).
As in Figure 4A, most EMG-synergy modules do not show any
inclined activation toward specific finger movement direction
and even some pointed to different preferred directions per
posture. The average preferred direction error within EMG-
synergy module is 24.4 ± 25.8◦. As in Figure 4B, ICA-synergy
modules are more likely to indicate one clear direction than
responding in all directions so that the average preferred
direction error within the modules is 13.4± 18.1◦. In both cases,
the standard deviation was higher than the mean. Nevertheless,
the coherence of the preferred direction differed statistically
significant between the two cases for the t-test (p = 0.0069,
n_EMG = 87, and n_ICA = 54).

The EMG-synergy and ICA-synergy modules are roughly
categorized in two different types, i.e., (i) parallel type wherein
the EMG activations are structured alongside the forearm, and
(ii) local type wherein the EMG activations are structured in
the cross-sectional region of the forearm. Figure 5 shows the
comparison between the local and parallel muscles synergies
in EMG-synergy and ICA-synergy with corresponding EMG
channel activations. For parallel types, both EMG-synergy and
ICA-synergy with corresponding EMG channel activations have
similar preferred direction toward specific finger movement

direction, which is the flexion of the index finger. In local type,
EMG-synergy causes an inconsistent preferred direction between
Elbow 0 and Elbow 90 conditions on the basis of anatomical point
of view while EMG has anatomically consistent activation in two
elbow postures. ICA-synergy in this type points to the similar
movement direction with corresponding EMG activations, but
a clearer preferred direction toward the ulnar abduction of
the index finger.

In the CNN classification of each individual input (EMG-
input, IC-input, EMG-synergy, and ICA-synergy) per coordinate
(i.e., extrinsic and intrinsic coordinates), classification
performances of the intrinsic coordinate are higher than
those of the extrinsic coordinate for all inputs. (Extrinsic vs.
Intrinsic: p_EMG-input < 0.0001, p_IC-input = 0.0013, p_EMG-
synergy = 0.0034, p_ICA-synergy = 0.011, and n = 30). Therefore,
the estimations of the eight movements of the index finger are
compared under intrinsic coordinate and are shown in Figure 6
as confusion matrices. The results show that there is no statistical
difference between EMG-input vs. EMG-synergy and ICA-input
vs. ICA-synergy (EMG-input vs. EMG-synergy, p = 0.18, IC-
input vs. ICA-synergy, p = 0.86, n = 30), and the differences
between EMG-input vs. IC-input and EMG-synergy vs. ICA-
synergy are significant (EMG-input vs. IC-input, p < 0.0001,
EMG-synergy vs. ICA-synergy, p < 0.0001, n = 30). When
the modules from two elbow postures are applied as another
synergy, the intrinsic classification performance decreased a bit
but there was no statistical difference when compared with the
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FIGURE 4 | Synergy Modules with corresponding preferred directions. The preferred direction was expressed in different colors according to the trial. Red
represents total data, Green represents Elbow 0 trial, Blue represents Elbow 90 trial. (A) EMG-synergy Modules with preferred directions. (B) ICA-synergy Modules
with preferred directions.

classification performance from the synergies derived from the
whole data (EMG-synergy vs. EMG-synergy module, p = 0.35,
ICA-synergy vs. ICA-synergy module, p = 0.20, n = 30).

DISCUSSION

The primary goal of this study is to elucidate the effects of
ICA and NMF in muscle identification from finger movement.
In finger movement, both superficial and deep muscles activate
simultaneously. Therefore, recognition of deep muscle and their
response is necessary. We used preferred direction calculation
and finger movement direction decoding under two postures

to evaluate the effect between with and without ICA and NMF
through comparisons.

As for the EMG-synergy modules, they show robustness
EMG channel activation region across the elbow postures
which is similar with those of the ICA-synergy. However,
these characteristics do not improve finger movement direction
classification performance. Moreover, the EMG-synergy modules
activation per finger movement direction showed that NMF
computation merely grouped the EMG signal co-activation
without any noise reduction. Thereby, the EMG-synergy may be
contaminated by noise or noise itself.

On the other hand, the ICA-synergy activation per finger
movement direction showed that ICA computation magnified
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FIGURE 5 | Comparison of horizontal (alongside of the forearm) and vertical (cross-sectional side of the forearm) structure synergy in participants. Based on the
physical placement of the muscles, horizontal series of synergy was assumed to be a superficial muscle activity and vertical series a deep muscle activity. The
horizontal structure synergy (Red) had equivalent preferred direction both in EMG-synergy and ICA-synergy computation while vertical structure synergy (Green) had
distinctive preferred direction change between EMG-synergy and ICA-synergy.

the inclination of synergy structure toward the preferred
direction. This result is similar to findings of the past research
wherein noise in muscle force estimation was reduced through
ICA (Staudenmann et al., 2007). ICA clearly discriminate the
muscle crosstalk on the same channel and more importantly, set
apart the noise component signals.

The experiment conducted index finger-based cursor
movements in eight directions resulting in both deep and
superficial muscle coactivation. Due to physical constraints, it
is not possible to measure the actual activity of superficial and
deep muscles and the resulting muscle signals simultaneously.
However, as shown in the left-up side of Figure 5, in the case
of superficial muscle activity, the myoelectric signal from the

nearby skin surface would be large and the signal is not well
received in other areas. On the premise that the signal from
deep muscle activity would be evenly captured throughout
the cross-sectional region of the muscle. Thereby the parallel
and local type of EMG-synergy and ICA-synergy modules
were designated to be superficial and deep muscle activity as
follows. The superficial muscle modules have a high signal-noise
ratio so that the preferred direction has a distinct inclination
toward the index finger flexor as shown in Figure 5. However,
multichannel EMG sensors collect mixed signals from several
muscle co-activities with a multi-layer structure on the forearm
muscles (Blanc and Dimanico, 2010). with the crosstalk and
other heterogeneous noise in EMG after preprocessing, the
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FIGURE 6 | Confusion Matrix of four different input types on Intrinsic Coordinate eight finger movements estimation. (A) EMG 95ch inputs, (B) EMG-synergy inputs
(mean: 18.2, SD: 5.5), (C) ICs inputs [mean: 29.8, standard deviation (SD): 5.1], and (D) ICA-synergy inputs (mean: 12.2, SD: 3.2).

preferred directions from each sensor become vague and such
trends could hide deep muscle signals. In Figure 5, the cross-
sectional EMG-synergy module and corresponding EMG inputs
that are regarded as deep muscle activities do not incline to
any of eight directions, and only ICA-synergy inclined to ulnar
abduction of the index finger. Here, ICA performed sensor
configuration (Staudenmann et al., 2006) or replacement of
temporal whitening (Clancy and Hogan, 1995), separating
noise and artifacts of multiple EMG signals and even dividing
muscle activities, maximizing their dimensionality to input
signal dimension. Muscle synergy computation on the selective
ICs reassembled the same muscle activation by adjusting
their dimensionality in minimized form. Thus, ICA-synergy
succeeded in discriminating the deep and superficial muscles
that led to higher classification performance with fewer input
signal synergies than other control inputs. Therefore, clear
preferred direction and improved classification performance
of ICA-synergy represent the necessity of ICA before muscle
synergy computation, which even holds the minimum number
of input channels.

The role of ICA and NMF is much clearer in CNN
classification performance. When each performance before and
after each blind source separation was compared, ICA drastically
improved the classification performance while NMF minimized
the number of input signals. 95 channel EMG signal lessen to
18.2 ± 5.5 inputs, and 29.8 ± 5.1 ICs to 12.2 ± 3.2. In our
previous study that saw multiple joints movement (Kim et al.,
2020), specifically complex wrist joint and grasping regression,
muscle synergy took the role of identifying the primitive of EMG
coactivation. In the current study, in the absence of movement
intention separation, NMF was merely used to minimize the
number of inputs because such pre-separation is not required.

In the study, we succeeded in identifying both superficial
and deep muscle signals through sequential ICA and NMF
calculation. However, it is necessary to verify whether the
calculations could even divide a mixture of superficial and
deep muscle signals under more complex movement including
multiple fingers and wrist movement coactivation. In addition,
the current estimations only progressed up to the classification
stage. The state-of-the-art studies on the wrist or upper joint
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movements mainly focused on the trajectory (Xia et al., 2018) and
the joint angle estimation (Kawase et al., 2017) at a continuous
level which is demanding for the prosthesis users (Biddiss, 2009).
Thereby, further research is still needed to relate and examine
the feasibility of this current ICA-synergy input to continuous
estimation models.
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