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Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common
neurodegenerative disorders worldwide, with age being their major risk factor. The
increasing worldwide life expectancy, together with the scarcity of available treatment
choices, makes it thus pressing to find the molecular basis of AD and PD so that the
causing mechanisms can be targeted. To study these mechanisms, gene expression
profiles have been compared between diseased and control brain tissues. However,
this approach is limited by mRNA expression profiles derived for brain tissues highly
reflecting their degeneration in cellular composition but not necessarily disease-related
molecular states. We therefore propose to account for cell type composition when
comparing transcriptomes of healthy and diseased brain samples, so that the loss of
neurons can be decoupled from pathology-associated molecular effects. This approach
allowed us to identify genes and pathways putatively altered systemically and in a cell-
type-dependent manner in AD and PD brains. Moreover, using chemical perturbagen
data, we computationally identified candidate small molecules for specifically targeting
the profiled AD/PD-associated molecular alterations. Our approach therefore not only
brings new insights into the disease-specific and common molecular etiologies of AD
and PD but also, in these realms, foster the discovery of more specific targets for
functional and therapeutic exploration.

Keywords: Alzheimer’s disease, Parkinson’s disease, neurodegeneration, cellular deconvolution, digital
cytometry, single-cell RNA-seq, chemo-transcriptomics

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common
neurodegenerative disorders worldwide. Although the etiology, affected brain region and clinical
features are particular to each of these diseases, they nevertheless share common mechanisms
such as mitochondria dysfunction, neuronal loss and tau protein accumulation (Zarow et al.,
2003; Xie et al., 2014). The major risk factor for those disorders is aging (Niccoli and Partridge,
2012), the age of onset of both AD or PD being around 65 years old (Nussbaum and Ellis, 2003).
Together, they account for 50 million cases worldwide (Feigin et al., 2017), a number expected
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to increase due to the fact that the world population
is living longer than ever (Goedert, 2015; World Health
Organization, 2020). Most of AD and PD cases are sporadic
and, despite all the research during the last centuries to better
understand their molecular nature, current treatments are still
symptomatic (Yiannopoulou and Papageorgiou, 2013; Schulz
et al., 2016). Therefore, the development of effective therapies
requires a better comprehension of the diseases’ etiology and
underlying mechanisms as well as finding disease-specific targets
for drug discovery.

A common strategy to identify biological pathways and
cellular processes altered in neurodegenerative disorders is to
compare gene expression profiles between age-matched diseased
and non-diseased post-mortem brain tissues (Wang et al., 2009;
Srinivasan et al., 2016) or between diseased and non-diseased
leukocytes (Soreq et al., 2013, 2014). However, the expression
profiles derived from whole brain tissue mRNA highly reflect
alterations in cellular composition, namely the well-known AD-
or PD-associated loss of neurons, but not necessarily the disease-
related molecular changes in brain cells (Srinivasan et al., 2016).
The advent of single-cell transcriptomes has made it possible to
tackle this limitation, enabling the determination of reference
gene expression profiles for each major brain cell type (namely
neurons, astrocytes, microglia and oligodendrocytes) (Darmanis
et al., 2015; Lake et al., 2016, 2018; Mathys et al., 2019a; Schirmer
et al., 2019; Velmeshev et al., 2019) that can then be used to
computationally estimate the cell type-specific content of bulk
brain sample’s in healthy and diseased conditions (Kuhn et al.,
2012, 2015), decoupling the neuronal loss effect from the intrinsic
systemic or cell type-specific disease effects (Capurro et al., 2015;
Skene and Grant, 2016).

This approach has already been applied in determining
the effects of age and psychiatric disorders on the cellular
composition of human brain (Hagenauer et al., 2017), or the
contribution of each cell type in shaping the pathological autism
transcriptome (Yu and He, 2017). The same principle was applied
in AD by modeling the expression of its risk genes as a function
of estimated cellular composition of brain samples (Kelley et al.,
2018). For instance, APP, PSEN1, APOE, and TREM2 had their
expression levels associated with the relative abundance of,
respectively, neurons, oligodendrocytes, astrocytes and microglia
(Kelley et al., 2018). Additionally, two recent studies profiled
single nuclei of major brain cell types in AD and non-AD post-
mortem brain samples, unveiling cell type-specific transcriptional
changes (Mathys et al., 2019a; Zhou et al., 2020). All these studies
highlight the importance of charactering disease-associated cell
type-specific phenotypes that can not only unveil the cellular
and molecular bases of pathological mechanisms but also be
therapeutically targeted.

However, some of these studies still lack independent
validation and have not fully dissected the nature of
transcriptomic alterations in AD brains. Moreover, to our
knowledge, similar approaches have not yet been applied to
PD, despite increasing evidence regarding the importance of
modeling cellular composition in neurodegenerative disorders.
We therefore used scRNA-seq data to derive gene expression
signatures for the major human brain cell types (Darmanis et al.,

2015) and estimate the cellular composition of idiopathic AD
(Allen et al., 2016) and PD (Dumitriu et al., 2016) post-mortem
brain samples from their bulk transcriptomes, investigating
whether neuronal loss could be confounding or masking the
intrinsic disease effects on gene expression, and validating the
results in independent datasets. Additionally, since AD and
PD might share the same mechanisms of disease progression
(Nussbaum and Ellis, 2003), we also investigated the similarities
between the transcriptomic alterations induced by AD and PD in
human brain tissues.

This approach allowed the novel identification of genes and
pathways whose activity in the brain is intrinsically altered by
AD and PD in systemic and cell type-specific ways. Additionally,
we pinpoint the genes that are commonly altered by these
major neurodegenerative disorders as well as those specifically
perturbed in each illness. Thus, we unveil a set of novel candidates
that can potentially be targeted in AD and PD therapeutics.
Moreover, we herein demonstrate the potential of modeling
cellular composition in transcriptomics analyses in the discovery
of therapeutic targets for other neurodegenerative diseases.

MATERIALS AND METHODS

Data Availability
We obtained, through NCBI Gene Expression Omnibus (GEO),
two single-cell RNA-seq datasets that we employed to derive
gene expression signatures for the major brain cell types (i.e.,
astrocytes, microglia, neurons and oligodendrocytes), one from
human temporal lobe [GSE67835 (Darmanis et al., 2015) –
only cells from adult samples were used] and the other from
mouse cortex [SRP135960 (Zeisel et al., 2015)]. We used a
third single-cell RNA-seq dataset [GEO GSE73721 (Zhang et al.,
2016)] to independently validate those signatures, considering
only cells from the human cortex (12 astrocytes, 1 neuron, 4
oligodendrocytes, and 2 endothelial cells), for consistency.

The AD analysis was based on the temporal cortex RNA-
seq dataset from the AMP-AD Knowledge Portal with accession
syn3163039 (Allen et al., 2016). We used the table available
therein, containing the pre-processed raw read counts for
each gene in each sample, for the downstream analyses. We
selected only the samples diagnosed as AD and non-AD with
RNA integrity number (RIN) ≥8 (Ferrer et al., 2008). We
also discarded a non-AD sample with a very low (<0.40)
estimated proportion of neurons (Supplementary Figure 1A and
Supplementary Table 1). In total, we used 71 AD and 32 non-
AD samples.

We used AD dataset GEO GSE104704 (Nativio et al., 2018)
for independent validation, less stringently requiring RIN ≥6
to keep enough samples for analysis. Three non-AD samples
with abnormally low (<0.40) estimated proportion of neurons
were discarded (Supplementary Figure 1B and Supplementary
Table 1), leaving a total of 9 AD and 14 non-AD samples.

We fetched the PD RNA-seq dataset from GEO GSE68719
(Dumitriu et al., 2016) and kept samples with RIN ≥7 and
from donors older than 60 years, for a better age match
between control and diseased samples and given the reported
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onset of idiopathic PD at around 65 years of age (Nussbaum
and Ellis, 2003). When performing principal component
analysis (PCA) of the normalized gene expression data (see
sections “Statistical Tests” and “Data Processing” below),
we identified two samples (SRR2015728 and SRR2015748)
with an outlying behavior (Supplementary Figures 2A,B).
When clustering samples based on the correlation between
their normalized gene expression profiles (see section
“Statistical Tests” below), SRR2015728 and SRR2015748 are
again shown to be outliers (Supplementary Figure 2C).
Moreover, non-PD samples SRR2015714 and SRR2015728 are
also those showing an abnormally low (<0.40) estimated
neuronal proportion (Supplementary Figure 1C and
Supplementary Table 1). As such, we conservatively discarded
those three samples from the dataset, leaving 15 PD and
26 non-PD samples.

For independent validation, we used PD gene expression
microarray dataset GEO GSE20168 (Zhang et al., 2005).
Since the PD RNA-seq dataset only comprised males, we
selected the 10 non-diseased and 8 PD male samples from
the microarray dataset. Although RINs were not provided
for this dataset, we were able to detect possible RNA
degradation by using function AffyRNAdeg from the xps
R package (Stratowa, 2020). We found some evidence for
the expected neuronal loss in PD brains but differences in
the distributions of estimated neuronal proportions between
PD and non-PD samples are not statistically significant
(Supplementary Figure 1D). Although one non-PD sample had
a low (<0.40) estimated neuronal proportion, we decided to
keep it due to the small number of samples in the dataset
(Supplementary Table S1).

All datasets used are summarized in Table 1.

Statistical Tests
We performed all statistical analyses in R (programming
language for statistics and graphics) (R Development Core
Team, 2018), extensively using packages from Bioconductor
(repository of R tools for the analysis of high-throughput
biological data) (Gentleman et al., 2004). We used t-tests
(Kalpić et al., 2011) to compare differences in expression
of specific marker genes, as well as differences in age
distributions between diseased and non-diseased groups. To
compare differences in proportions of neural cell types between
diseased and non-diseased brains, we used Wilcoxon-signed-
rank tests (Rey and Neuhäuser, 2011), and to compare the
neuronal proportion densities between diseased and non-
diseased brains, we used the Kolmogorov-Smirnov test (Lopes,
2011). For correlation analysis, we used Pearson’s correlation,
unless stated otherwise. We chose Euclidean distance for
clustering samples based on gene expression correlation,
having used the ComplexHeatmap package (Gu et al., 2016)
for the purpose and to generate the associated heatmap in
Supplementary Figure 2C.

Principal component analysis (PCA), enabling the
identification of the linear combinations of variables that
contribute the most to data variance (Ringnér, 2008), was
implemented through the singular value decomposition (SVD)

algorithm provided by the PCA function from R package
FactoMineR (Lê et al., 2008).

Where applicable and not indicated otherwise, p-values were
corrected for multiple testing using Benjamin-Hochberg’s False
Discovery Rate (FDR).

Data Processing
For all the RNA-Seq datasets with no pre-processed data available
(Table 1), we aligned the reads against the human transcriptome
[hg38 Gencode annotation (Frankish et al., 2019)] with Kallisto
(Bray et al., 2016) using the default parameters.

For both single-cell datasets, we performed state-of-the-art
procedures for quality assessment (Lun et al., 2016b), such as
checking for library size discrepancies between cells, the number
of expressed genes per cell and the proportion of reads aligning
to mitochondrial genes (Lun et al., 2016b; Supplementary
Figures 3A,C). We removed low-quality cells that presented
a median absolute deviation (MAD) <−3 for the library size,
MAD < −3 for the number of expressed genes or a MAD > 3
for the proportion of mitochondrial reads. Additionally, we kept
for downstream analysis only genes whose log10[average read
counts per million (CPM)] > 0 (Supplementary Figures 3B,D)
and whose variance in expression was significantly associated
with the biological component (i.e., the cell type) as assessed
through the usage of the decomposeVar function from the
scran R package (Lun et al., 2016b). Briefly, the variance in
expression for each gene was decomposed into their biological
and technical components. The technical component is estimated
by fitting the mean-dependent trend of the variance. The
biological component of the variance is then calculated by
subtracting the technical component from the overall variance
(Lun et al., 2016b). This last step avoids prioritizing genes whose
expression is highly variable due to technical factors such as
sampling noise during RNA capture and library preparation
(Lun et al., 2016b).

Furthermore, the t-Distributed Stochastic Neighbor
Embedding (tSNE) (van der Maaten and Hinton, 2008)
plot of human single-cell (Darmanis) gene expression shows a
few cells not clustered together with those of their respective
annotated type (Supplementary Figure 4A). Moreover, all
of them appear to have been misclassified also based on
single-cell trajectories [i.e., cells’ ordering according to their
inferred biological state (Qiu et al., 2017b)] obtained with the
monocle package (Trapnell et al., 2014; Qiu et al., 2017a,b;
Supplementary Figure 4B) or the nearest shrunken centroid
classification, implemented in R package pamr (Tibshirani et al.,
2002; Supplementary Figures 4C,D). Therefore, they were
discarded from our analysis (Supplementary Figure 4E). No
potentially misclassified cells were detected in the mouse dataset
(Supplementary Figure 4F).

After the filtering steps mentioned above, summed expression
values across pools of cells were deconvolved in cell-based
factors for normalization of the Darmanis and the mouse
single-cell gene expression datasets (Lun et al., 2016a). All
bulk RNA-seq datasets were quantile-normalized using
the voom function, from the limma R package (Ritchie
et al., 2015). The rma function from the affy R package
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TABLE 1 | Summary of transcriptomic datasets analyzed.

Accession Species Type Condition Technology Pre-processed
data

Darmanis (Darmanis et al., 2015) GEO GSE67835 Human Single cell Normal RNA-seq No

Mouse (Zeisel et al., 2018) http://mousebrain.org/
downloads.html

Mouse Single cell Normal RNA-seq Yes

Zhang (Zhang et al., 2016) GEO GSE73721 Human Single cell Normal RNA-seq No

MayoClinic (Allen et al., 2016) https://www.synapse.
org/#!Synapse:
syn3163039

Human Bulk AD + Normal RNA-seq Yes

Nativio (Nativio et al., 2018) GEO GSE104704 Human Bulk AD + Normal RNA-seq No

Dumitriu (Dumitriu et al., 2016) GEO GSE68719 Human Bulk PD + Normal RNA-seq No

Zhang bulk (Zhang et al., 2005) GEO GSE20168 Human Bulk PD + Normal Microarray
(Affymetrix Human
Genome U133A)

No

(Gautier et al., 2004) was used to normalize and summarize the
PD microarray dataset.

Moreover, we used the ComBat function from the sva package
to correct for batch effects. This function requires possible
technical effects to be encoded as categorical variables (Leek et al.,
2012). Thus, for the AD MayoClinic dataset, RIN was defined
as high if >8.5 and low if ≤8.5, in the AD Nativio dataset high
if >7.3 and low if ≤7.3, and in the PD Dumitriu dataset it was
defined as high if >7.8 and low if≤7.8. For the PD Zhang dataset,
the RNA degradation slope, derived from the average intensities
per relative 5′–3′ position of probes in their target transcripts
across probe sets (Draghici, 2012), was used and defined as low
if ≤5 and high if >5.

We quantified gene expression from RNA-seq data in counts
per million (CPM) and kept only genes with an average CPM
higher of 10/L, where L is the minimum library size in million
reads (Chen et al., 2016), in at least N samples, where N is the
smallest sample size in our analyses (Supplementary Figure 5).
For the microarray dataset, gene expression was quantified by
normalized intensities.

Derivation of Gene Expression
Signatures for the Major Brain Cell Types
We employed CIBERSORTx (Newman et al., 2019) to infer
both human and mouse gene expression signatures for each of
the major brain cell types (Supplementary Tables 2, 3) and
subsequently used them to estimate the cellular composition of
brain samples from their bulk transcriptomes.

We followed three different approaches to assess the accuracy
of human and mouse CIBERSORTx-derived signatures in
correctly identifying the major cell types in human brain samples:

(1) We split the Darmanis human dataset such that 80% of
cells were used to infer cell type-specific gene expression
signatures with CIBERSORTx. We used the remaining
20% of cells, with the same proportion of each cell type,
to create 300 artificial mixture samples with a diverse
range of known (i.e., pre-defined) cell-type proportions
(Supplementary Figure 6A) by generating chimeric
libraries of 35 million reads. In brief, all the reads from

all cells of each cell type were pooled together. For
each artificial sample, reads were randomly sampled from
cell-type-specific pools according to its defined cell type
proportion as in Supplementary Table 4. We treated the
artificial mixture samples as bulk RNA-seq samples.
CIBERSORTx estimated the cell type proportions of the
artificial mixtures, using the human (Darmanis) cell-type-
specific gene expression signatures. Those estimates are
generally concordant with the expected proportions, except
for the systematic underestimation of microglia’s relative
abundance (Supplementary Figure 6B). We repeated the
deconvolution analysis in the same artificial mixtures but
using the mouse cell-type signatures and got a similar,
albeit noisier, concordance (Supplementary Figure 6C).

(2) We ran CIBERSORTx using the same human and
mouse cell-type signatures, to classify samples from an
independent human brain single-cell RNA-seq dataset
(Zhang). Most cells were correctly classified with the
human signature (Supplementary Figure 7A). With the
mouse signature, most cells are classified as a mixture of
cell types but with a dominant proportion of that expected
(Supplementary Figure 7C).

(3) We generated artificial mixtures from the Zhang
dataset as in (1). Those artificial mixtures were then
deconvoluted with CIBERSORTx relying again on the
derived human and mouse signatures. Both signatures
yield significant concordances (all with p < 2.2e-16)
between the expected and observed proportions, with the
human signature being again, as expected, more accurate
(Supplementary Figures 7B,D).

Estimation of Cellular Composition of
Bulk AD, PD, and Non-diseased Brain
Samples
We used CIBERSORTx deconvolution (Newman et al., 2019),
relying on human and mouse gene expression signatures for the
major brain cell types derived as described above, to estimate
the cellular composition of all AD, PD, and non-diseased
brain samples from their bulk transcriptomes. Moreover,
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as CIBERSORTx options, we enabled batch normalization,
disabled quantile normalization and used 100 permutations for
significance analysis. Following CIBERSORTx’s user guidelines,
the B-mode batch normalization was chosen to perform
deconvolution when using the human signature, since the single
cell data used to derive it were generated with SMART-seq2
(Picelli et al., 2013), and the S-mode batch normalization when
using the mouse signature, since it is tailored for signatures
derived from data generated with the 10x Genomics Chromium
platform, as was the case (Newman et al., 2019).

Differential Gene Expression
We performed differential gene expression using the limma
(Ritchie et al., 2015) and edgeR (Dai et al., 2014) packages.

For each coefficient in the linear model, the magnitude of
differences in gene expression was measured in log2 fold-change
and their significance was given by the FDR-adjusted p-value of
the moderated t-statistic (an ordinary t-statistic with its standard
errors moderated across genes), along with the empirical Bayes
statistic (B statistic - log-odds ratio of a gene being differentially
expressed) (Smyth, 2004). Moreover, we also used the moderated
t-statistic to assess the differential gene expression coherence
between different datasets.

We linearly modeled gene expression in the AD datasets
according to the following:

GEx = β0 + βDisease • Disease+ βRIN • RIN + βNeuronal proportion

• Neuronal proportion+ βAge • Age+ βsex • Sex

+ βInteraction • Interaction+ ε

Here GEx is the expression of gene x; Disease is the sample’s
centered disease status; RIN is the categorized sample’s RNA
Integrity Number (1 for high and 0 for low); Neuronal proportion
is given by the sample’s estimated proportion of neurons centered;
Age is the age of the sample’s donor in years; Sex is the
biological sex of the sample’s donor (1 for male and 0 for
female); Interaction is the interaction between Disease and the
Neuronal proportion effects, given by the product of the two
and interpretable as the differential effect of the loss of neurons
between AD and non-diseased samples or, equivalently, the
part of AD effect that is dependent of the sample’s neuronal
contents; βs are the unknown coefficients, to be estimated from
fitting that linear model to the gene expression data, for each
of the aforementioned variables hypothesized to impact gene
expression; ε states the error of the model, that is the remaining
variance not explained by the model. Disease and Neuronal
proportion were centered to diminish the correlation between
their associated estimated coefficients, thereby using a model
more consistent with the purpose of estimating independent
effects (Afshartous and Preston, 2011). We thus shifted the
“prediction center” (i.e., the virtual reference) to the average
sample (Afshartous and Preston, 2011) by turning the variables’
means to 0 through the usage of the scale function from the built-
in R package base (R Development Core Team, 2018), with the
scale argument turned to “false.”

Likewise, we modeled gene expression in the PD Dumitriu
dataset as following:

GEx = β0 + βDisease • Disease+ βRIN • RIN + βNeuronal proportion

• Neuronal proportion+ βAge • Age+ βUnknown batch

• Unknown batch+ ε

Unknown batch corresponds to a batch effect of unknown
source detected by PCA (Supplementary Figure S8) that was
thereby adjusted for (Supplementary Figure 12C).

For validation with the independent PD microarray dataset
(Zhang), we used the following linear model:

GEx = β0 + βDisease • Disease+ βNeuronal proportion

• Neuronal proportion+ βAge • Age+ βRNA degradation

• RNA degradation+ ε

RNA degradation is given by its slope grouping for each sample
(1 for high and 0 for low).

We considered a gene differentially expressed if FDR < 0.05,
except for the Zhang PD microarray dataset, where we considered
FDR < 0.11. This arbitrary cut-off was used to “rescue” a
reasonable number genes for further analyses, given the small
sample size of the Zhang dataset and the consequent lower
statistical power of the associated differential expression analysis.
This arbitrary looseness in specificity is dealt with by subsequent
filtering (v. section on permutation analyses below).

Identification of Genes Reportedly
Associated With AD and PD
Genes already reported to play a role in AD and PD were gathered
from the DisGeNET database (Piñero et al., 2019). Only genes
with a human gene-disease association (GDA) score >0.1 and an
evidence index ≥0.9 (180 genes for AD and 112 genes for PD)
were considered as such in our analyses.

Permutation Analyses
We performed permutation tests to identify genes with consistent
differential expression ranking between datasets. For each gene,
we multiplied its t-statistic values for the intrinsic disease effect
(Disease in the linear models) in each of the two datasets
(MayoClinic and Nativio for AD; Dumitriu and Zhang for
PD) and compared that product with the distribution of
those resulting from 5000 random permutations of the disease
status labeling of samples. The proportion of random products
more extreme than the empirical one was taken as its False
Discovery Rate (FDR).

To assess the similarity between the intrinsic AD and
PD Disease effects on gene expression, we compared the
aforementioned FDRs. For each disease, when t-statistics for
both datasets were positive, we used −log10(FDR), when both
negative, we used log10(FDR), and when contradictory (i.e.,
showing different signs) we set this value to 0. When FDRs
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were originally zero, we equaled them to 1e-5 (half of the
FDR resolution) to avoid infinite values when computing their
logarithms. Then, for each gene, we multiplied those scores of
AD and PD and compared this product with the distribution
yielded by 1 000 000 permutations of randomly shuffled product
scores. The proportion of random products more extreme than
the empirical one was taken as its FDR (Figure 7A).

Gene Set Enrichment Analysis
We identified KEGG (Kanehisa et al., 2016) pathways
dysregulated in AD and PD datasets using the Piano R
package (Väremo et al., 2013) to perform gene set enrichment
analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005),
by default on t-statistics, but also on B-statistics of differential
gene expression for the AD Disease and Neuronal proportion
effects. We also used the AD cell-type marker genes defined by
Kelley et al. (2018) as a gene set. For GSEA on genes commonly
changed in AD and PD (Figure 7B), we used−log10(FDR) when
both AD and PD scores were positive, log10(FDR) when both
negative, and zero when signs were contradictory.

Identifying Candidate Compounds for
Reverting Disease-Associated Gene
Expression Alterations
We used cTRAP (de Almeida et al., 2020) to compare the
changes in gene expression induced by thousands of drugs in
human cell lines, available in the Connectivity Map (CMap)
(Subramanian et al., 2017), with those in human brains that we
have inferred to be related to the intrinsic (i.e., systemic) AD
and PD effects. As input for cTRAP, we used the aforementioned
scores for the Disease and Neuronal proportion effects, thereby
ranking changes that are coherent between the MayoClinic
and Nativio datasets for AD and the Dumitriu and Zhang
datasets for PD, as well as those coherent between AD and
PD. The compounds, in clinical trials or launched, with their
perturbation z-scores (Subramanian et al., 2017) exhibiting the
20 most negative and the 20 most positive average (across
different cell lines) Spearman’s correlation with the Disease effect
scores across common genes, and with an average absolute
Spearman’s correlation with the Neuronal proportion effect scores
<0.05 (to avoid confounding between effects), were selected
for AD (Supplementary Figure 15A) and PD (Supplementary
Figure 15B) as the top candidates for reversal or induction
of disease-associated gene expression alterations for discussion.
Noteworthily, cMap includes data for the same compounds tested
with different concentrations and at different time points, as
well as run in different plate types (ASG, CPD, HOG, etc.)
(Supplementary Tables 16–18).

RESULTS

The Cellular Composition of AD Brains Is
Altered
Most neuronal markers [DCX (Tanapat, 2013), MAP2 (Tanapat,
2013), NEFM (Tanapat, 2013), NEFH (Tanapat, 2013), NEFL

(Tanapat, 2013), RBFOX3 (Tanapat, 2013), SYP (Tanapat, 2013)]
are significantly downregulated in AD temporal cortex samples
from the MayoClinic dataset (Figure 1A). In contrast, all
astrocytic [ALDH1L1 (Preston et al., 2019), GFAP (Preston et al.,
2019)), SLC1A3 (Preston et al., 2019)] and a few microglial
and oligodendrocytic markers [CD40 (Ponomarev et al., 2006),
OLIG1 (Ligon et al., 2004) and OLIG2 (Ligon et al., 2004)] are
significantly upregulated in AD brains.

CIBERSORTx (Newman et al., 2019), a tool that estimates
cell type abundances in tissues from their bulk transcriptomes
and machine learning-inferred cell-type-specific gene expression
profiles, was used to derive the composition in major cell types
(astrocytes, microglia, neurons and oligodendrocytes) of AD
brain samples (see section “Materials and Methods”). These
estimates (Figure 1B) are concordant with the observations
in Figure 1A, including significant increase and decrease,
respectively, in the proportions of astrocytes and neurons in
AD brain samples. Despite the known differences in gene
expression between mouse and human brain cells (Hodge et al.,
2019), the same trends can be seen using the mouse signature
(Supplementary Figures 9A,B). We also performed principal
component analysis (PCA) on normalized gene expression in the
MayoClinic brain samples. The neuronal composition, along with
the disease effect, is correlated with the first principal component
(PC1), i.e., that retaining the most data variance (Figure 1C –
rho = −0.88; p < 2.2e-16). Sex also shows a strong association
with PC1 (Supplementary Figure 9E) but there is no significant
difference in age or neuronal proportion between female and
male individuals (Supplementary Figure 9F).

AD Alters Cortical Gene Expression
Independently From Neuronal Loss
We linearly modeled gene expression in the MayoClinic brain
samples as a function of technical (RIN) and biological variables,
such as neuronal proportion (reflecting neuronal loss), systemic
AD, Age, Sex and interaction between neuronal proportion and
AD (Supplementary Table 6, Figure 2, and Supplementary
Figure 10A). We were thereby able to discriminate genes
whose expression is significantly systemically affected by AD
(Figures 2A,B) from those essentially showing a strong
association with neuronal loss (Figures 2C,D). For instance,
LIAS, CTB-171A8.1, COX18, and ETV4 exemplify genes that
show a strong intrinsic AD effect, independent of neuronal
proportion (Figure 2B). Moreover, genes that have previously
been reported as playing a role in AD in the DisGeNet database,
namely CDK5 (Liu et al., 2016), CDK5R1 (Moncini et al.,
2017), FERMT2 (Shulman et al., 2014), and HSD17B10 (Marques
et al., 2009), were actually found to be associated with neuronal
loss rather than with the disease component (Figure 2D).
Additionally, with the Interaction effect we were also able to
detect genes, such as PNPLA5 and PTPN20A (Supplementary
Figure 10C), whose expression was differentially altered with
cellular composition in AD brains compared with non-AD
samples. It is worth noting that AD genes specific of a cell
type, as defined by Kelley et al. (2018), are also more related
with the neuronal composition effect (pGSEA = 0.0001) than with

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 607215

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-607215 December 3, 2020 Time: 17:25 # 7

Bordone and Barbosa-Morais Modeling Cellularity in Neurodegenerative Diseases

FIGURE 1 | (A) Neuronal, astrocytic, microglial, and oligodendrocytic known markers’ expression in the MayoClinic samples. T-tests were used to compare gene
expression mean differences between diseased (AD) and non-diseased (Control) samples. (B) Estimates of the composition of MayoClinic samples in each main cell
type based on the human cell type gene expression signature. Wilcoxon signed-rank tests were used to compare differences in proportions between diseased (AD)
and non-diseased (Control) samples. (C) Sample factorial map (upper plot) of components 1 (PC1) and 2 (PC2) of Principal Component Analysis (PCA) of the gene
expression in MayoClinic samples, and their neuronal proportion related to PC1 loadings (lower plot). Indicated in the respective axes’ labels are the percentages of
data variance explained by PC1 and PC2. Kolmogorov-Smirnov tests were used to compare the distributions of PC1 and PC2 loadings between AD and Control
samples, illustrated by the smoothed histograms along the respective axes of the PCA plot. In the lower plots, the colored solid lines represent the linear regressions
between neuronal proportions and PC1 loadings for AD and Control Samples. The respective Pearson’s correlation coefficients (r) and associated significance (p) are
also indicated. Legend: ns: non-significant, ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.
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FIGURE 2 | (A,B) Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene expression associated with the (A) AD and (B) Neuronal
proportion effects in MayoClinic samples. Highlighted with larger colored dots are disease-associated genes from DisgeNet (Piñero et al., 2019) (light blue), genes
reported by Kelley et al. (2018) as undergoing cell-type-specific changes in AD (pink), manually selected gene candidates for AD-specific alterations (orange), and
genes included in the CIBERSORTx-derived expression signature for the major brain cell types (dark gray). Amongst all these, labeled are genes of particular interest,
with individual expression profiles plotted in panels (C,D). The other labeled genes are the top 10 differentially expressed genes. (C) Expression of manually selected
gene candidates for AD-specific alterations (labeled in orange in panels (A,B) in Control and AD samples – scatterplots against neuronal proportion on the left,
boxplots of distribution by condition on the right. (D) Same as (C) for selected DisgeNet genes (labeled in light blue in panels A,B). Colored solid lines in panels C,D)
represent linear regressions. T-tests, for which p-values are indicated, were used to compare gene expression mean differences between Control and AD samples.
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the disease effect (pGSEA = 0.6) (Figures 2A,C). Additionally,
most up-regulated AD-specific genes seem to be related with
cell survival and immune pathways, whereas down-regulated
ones with oxidative phosphorylation and Parkinson’s disease
(Supplementary Figure 10C).

AD-Specific Genes are Validated in an
Independent Dataset
In order to validate those results, we used the independent
AD RNA-seq dataset (lateral temporal lobe) (Nativio et al.,
2018), herein named Nativio (Table 1), that we found to
better match the larger MayoClinic dataset (temporal cortex)
(Allen et al., 2016) in terms of brain area. Although the
Nativio dataset did not present significant differences in cellular
composition between AD and non-AD samples (Supplementary
Figure 11A), its samples were from significantly younger
donors (p = 2.7e-10) and the neuronal proportion of its
AD samples is significantly different (p = 0.033) from
MayoClinic AD samples’ (Supplementary Figure 11C), we
found consistency in AD-associated gene expression changes
between the MayoClinic and the Nativio datasets (Figure 3 and
Supplementary Tables 7–9).

The Human Brain Cellular Composition
Is Not Significantly Altered by PD
We analyzed the PD datasets following similar approaches
to those used on AD transcriptomes. In the RNA-seq PD
dataset (Dumitriu), only two neural (DCX and MAP2)
and two microglial (CD40 and ITGAM) markers showed
significant alterations between PD and non-PD samples
(Figure 4A), concordantly with no significant differences in
cellular composition as estimated by CIBERSORTx (Figure 4B)
using both the human and the mouse signatures (Supplementary
Figures 12A,B). However, the neuronal composition of samples,
along with the disease effect, has a significant association with
PC1 (Figure 4C – rho = −0.66; p = 3.2e-6) of gene expression.
Age also shows a relationship with PC1 (Supplementary
Figures 12C,E) but no significant age difference exists between
PD and non-PD sample donors (Supplementary Figure 12F).

PD Alters Cortical Gene Expression
Independently From Neuronal Loss
Gene expression was modeled for each gene as a function of the
technical variables (RIN and unknown confounder), neuronal
proportion (i.e., neuronal loss), intrinsic PD and Age (Figure 5A,
Supplementary Figure 13A and Supplementary Table 10). No
PD-neuronal loss interaction effect was considered because no
significant differences in cell type proportions between PD and
non-PD samples were detected (Figure 4B). We were thereby
able to discriminate genes with a strong disease effect (Figure 5B)
from those essentially altered by neuronal loss (Figure 5D). In
fact, according to our analysis, genes reported as playing a role in
PD [ABL1 (Mahul-Mellier et al., 2014), COMT (Jiménez-Jiménez
et al., 2014), GRK5 (Liu et al., 2010), and APT1A3 (Haq et al.,
2019)] were found associated with neuronal loss rather than the
disease itself (Figures 5A,C).

PD-Specific Genes are Validated in an
Independent Dataset
Although RNA-seq provides a more precise quantification of
gene expression than microarrays (Wang et al., 2009), we could
not find any other independent PD RNA-seq dataset matching, in
terms of brain region, the Dumitriu study and therefore resorted
to the Zhang microarray study. This independent dataset did not
present any significant cellular composition alteration between
PD and non-PD samples (Supplementary Figure 14A) either.
Additionally, we found no significant differences in neuronal
proportion estimates or age between samples from the Dumitriu
and Zhang studies (Supplementary Figure 14C). We find gene
expression changes that are consistent between the two analyzed
PD datasets (Figures 6A,B and Supplementary Tables 10–13),
including for LRRC40 and ABCB6 (Figure 6C). However, from
the selected PD candidates as examples shown in Figure 5, only
ADAMTS2 and ADCYAP1 were profiled in the Zhang dataset
and did not recapitulate the changes observed in the Dumitriu
dataset (Figure 6B).

Common AD- and PD-Associated Gene
Expression Alterations are Related With
Cell Survival and Metabolism
Alzheimer’s diseases and PD-associated gene expression
changes in human brains are very correlated (Figure 7A and
Supplementary Tables 14, 15), suggesting commonalities in
the molecular mechanisms underlying both diseases. Although
some neuronal markers are amongst the genes commonly altered
by AD and PD, most of them are not, indicating effectivity
in decoupling the neuronal loss effect on gene expression
(Figure 7A). Genes consistently up-regulated in both diseases
are linked to Wnt signaling (basal cell carcinoma pathway) and
NF-KB signaling (acute myeloid leukemia) (Figure 7B). Indeed,
the genes driving the basal cell carcinoma pathway are FZD9,
FZD7, FZD2, DVL1, and AXIN1, all playing a role in the Wnt
signaling pathway, which has already been linked to AD and
PD (Harvey and Marchetti, 2014). The genes contributing the
most to the acute myeloid leukemia pathway (RAF1, RELA, and
IKBKB) are related with NF-KB signaling, a process already
known to also play a role in AD and PD (Mattson and Meffert,
2006). Genes consistently down-regulated in both diseases are
linked essentially to cell metabolism (Figure 7B). Although the
magnitude of disease-induced changes in gene expression is
generally modest (as expected, as samples from the same type
of tissue are being compared), reassuringly they are overall
quite independent from the neuronal composition of the brain
samples (Figure 7C).

Metaraminol Administration Is Inversely
Correlated with the AD- and PD-Gene
Expression Phenotype
We used cTRAP (de Almeida et al., 2020) to identify drugs that,
when delivered to human cell lines, cause similar (correlated)
or opposite (anti-correlated) gene expression changes to
those we observed as intrinsically associated to AD and PD
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FIGURE 3 | (A) Scatter plot comparing the t-statistics of differential gene expression associated with the AD effect in MayoClinic and Nativio samples. Points (genes)
are colored according to the FDR of the random permutation test on the product of the t-statistics (section “Materials and Methods”). Labeled genes are those
significantly differentially expressed (FDR < 0.05) in both datasets and significant in that permutation test (FDR < 0.05). Light gray dashed zero and identity lines,
light gray solid contour density lines. (B) Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene expression associated with the of AD
and Neuronal proportion effects in MayoClinic and Nativio samples. Genes highlighted in orange are those manually selected as candidates for AD-specific
alterations already represented in Figure 2, those labeled in panel (A) are here highlighted in purple (“Common”), and those here labeled in purple are presented in
panel (C). (C) Expression of manually selected “Common” genes in MayoClinic and Nativio samples. Colored solid lines represent linear regressions.
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FIGURE 4 | (A) Neuronal, astrocytic, microglial, and oligodendrocytic known markers’ expression in the Dumitriu samples. T-tests were used to compare gene
expression mean differences between diseased (PD) and non-diseased (Control) samples. (B) Estimates of the composition of Dumitriu samples in each main cell
type based on the human cell type gene expression signature. Wilcoxon signed-rank tests were used to compare differences in proportions between diseased (PD)
and non-diseased (Control) samples. (C) Sample factorial map (upper plot) of components 1 (PC1) and 2 (PC2) of Principal Component Analysis (PCA) of the gene
expression in Dumitriu samples, and their neuronal proportion related to PC1 loadings (lower plot). Indicated in the respective axes’ labels are the percentages of
data variance explained by PC1 and PC2. Kolmogorov-Smirnov tests were used to compare the distributions of PC1 and PC2 loadings between PD and Control
samples, illustrated by the smoothed histograms along the respective axes of the PCA plot. In the lower plots, the colored solid lines represent the linear regressions
between neuronal proportions and PC1 loadings for PD and Control Samples. The respective Pearson’s correlation coefficients (r) and associated significance (p) are
also indicated. Legend: ns: non-significant, ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤0.01, *p ≤0.05.
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FIGURE 5 | (A,B) Volcano plots, relating log2 fold-changes (log2FC) and B-statistics, of differential gene expression associated with the (A) PD and (B) Neuronal
proportion effects in Dumitriu samples. Highlighted with larger colored dots are disease-associated genes from DisgeNet (Piñero et al., 2019) (light green), manually
selected gene candidates for PD-specific alterations (yellow), and genes included in the CIBERSORTx-derived expression signature for the major brain cell types
(dark gray). Amongst all these, labeled are genes of particular interest, with individual expression profiles plotted in panels (C,D). The other labeled genes are the top
10 differentially expressed genes. (C) Expression of manually selected gene candidates for PD-specific alterations (labeled in yellow in panels A,B) in Control and PD
samples – scatterplots against neuronal proportion on the left, boxplots of distribution by condition on the right. (D) Same as (C) for selected DisgeNet genes
(labeled in light green in panels A,B). Colored solid lines in panels (C,D) represent linear regressions. T-tests, for which p-values are indicated, were used to compare
gene expression mean differences between Control and PD samples.
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FIGURE 6 | (A) Scatter plot comparing the t-statistics of differential gene expression associated with the PD effect in Dumitriu and Zhang samples. Points (genes)
are colored according to the FDR of the random permutation test on the product of the t-statistics (section “Materials and Methods”). Labeled genes are those
significantly differentially expressed (FDR < 0.05 – Dumitriu and FDR < 0.11 – Zhang, section “Materials and Methods”) in both datasets and significant in that
permutation test (FDR < 0.05). Light gray dashed zero and identity lines, light gray solid contour density lines. (B) Volcano plots, relating log2 fold-changes (log2FC)
and B-statistics, of differential gene expression associated with the of PD and Neuronal proportion effects in Dumitriu and Zhang samples. Genes highlighted in
orange are those manually selected as candidates for PD-specific alterations already represented in Figure 5, those labeled in panel (A) are here highlighted in
purple (“Common”), and those labeled in purple are presented in panel (C). (C) Expression of manually selected “Common” genes in Dumitriu and Zhang samples.
Colored solid lines represent linear regressions.
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FIGURE 7 | (A) Scatter plot comparing the combined scores of differential gene expression (section “Materials and Methods”) associated with the AD and the PD
effects. Labeled genes are those highly significant (FDR < 0.0005) in the random permutation test of the product of scores (section “Materials and Methods”). The
Pearson’s correlation coefficient (r) between scores and associated significance (p) are also indicated. Neuronal gene markers included in the CIBERSORTx-derived
cell-type expression signature depicted in yellow. Identity line in dashed gray. (B) Significance of enrichment of KEGG pathways in genes up-regulated (green) and
down-regulated (red) in both AD and PD (section “Materials and Methods”). (C) Expression of selected genes commonly altered in AD and PD in samples from all
analyzed datasets against their neuronal proportion.

Frontiers in Neuroscience | www.frontiersin.org 14 December 2020 | Volume 14 | Article 607215

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-607215 December 3, 2020 Time: 17:25 # 15

Bordone and Barbosa-Morais Modeling Cellularity in Neurodegenerative Diseases

FIGURE 8 | (A) Scatter plot comparing, between the AD and the Neuronal proportion effects, the cTRAP-derived cross-gene Spearman’s correlation coefficients
(rho) of their differential expression combined scores with perturbation z-scores for cMap compounds. Highlighted with blue and red triangles are compounds
selected as top candidates for, respectively, reversal and induction of AD-associated gene expression alterations (Supplementary Figure 15A; section “Materials
and Methods”). Colored circles highlight compounds in use for AD treatments, including those listed by Siavelis et al. (2016). (B) Scatter plot comparing the
combined scores of differential gene expression between the AD and the Neuronal proportion effects. Highlighted genes are known targets of selected candidate
compounds for reversal of AD-associated gene expression alterations (Supplementary Figure 15A). (C) Scatter plot comparing, between the PD and the Neuronal
proportion effects, the cTRAP-derived cross-gene Spearman’s correlation coefficients (rho) of their differential expression combined scores with perturbation
z-scores for cMap compounds. Highlighted with blue and red triangles are compounds selected as top candidates for, respectively, reversal and induction of
PD-associated gene expression alterations (Supplementary Figure 15B; section “Materials and Methods”). Colored circles highlight compounds in use for PD
treatments. (D) Scatter plot comparing the combined scores of differential gene expression between the PD and the Neuronal proportion effects. Highlighted genes
are known targets of selected candidate compounds for reversal of PD-associated gene expression alterations (Supplementary Figure 15B).

(Figures 8A,C). Interestingly, gene expression perturbations
induced by drugs known to be used in the clinic to treat
AD (Siavelis et al., 2016) (donepezil, galantamine, memantine,

and rivastigmine) and PD (Zahoor et al., 2018) (amantadine,
bromocriptine, cabergoline, carbidopa, entacapone, levodopa,
lisuride, and selegiline) were not amongst the most correlated
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FIGURE 9 | Scatter plot comparing, between the AD and the PD effects, the cTRAP-derived cross-gene Spearman’s correlation coefficients (rho) of their differential
expression combined scores with perturbation z-scores for cMap compounds. Points (compounds) are colored according to the cross-gene Spearman’s correlation
coefficients of their perturbation z-scores with the scores for common AD-PD differential expression (section “Materials and Methods”). Labeled compounds are the
three most correlated and the three most anti-correlated compounds.

with those by the respective target diseases (Figures 8A,B
and Supplementary Tables 16–18). Siavelis et al. (2016) had
followed a similar approach, although they did not decouple
the neuronal loss effect, having identified 27 drugs linked to
the AD phenotype (Figure 8A). Chloroquine and scriptaid
seem promising drug candidates for AD since their known
targets are indeed overexpressed in AD and vary very little with
neuronal loss (Figure 8B). Scriptaid also seems promising for PD
therapeutics for similar reasons (Figure 8D). Additionally, gene
expression changes upon metaraminol administration showed
up as being the most anti-correlated with those commonly
induced by AD and PD (Figure 9), being metaraminol therefore
a potential candidate drug to be tested for repurposing. Gene
expression changes upon wortmannin administration are, in

a dose dependent manner, the most correlated with those
commonly induced by AD and PD (Figure 9).

DISCUSSION

In this study, we investigated the impact of cellular composition
on Alzheimer’s and Parkinson’s diseases’ molecular effects in
human brains. AD and PD brains are characterized by a loss of
neurons and an increase of astrocytic reactivity when compared
to age-matched healthy brain samples (Gomez-Isla et al., 1997;
MacDonald and Halliday, 2002; Verkhratsky et al., 2010; Booth
et al., 2017). Signatures of these changes will be confounded
with disease-intrinsic molecular alterations, both systemic and
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cell type-specific, in any differential expression analysis between
diseased and healthy brains. We confirmed this by looking at
the expression of known neuronal, astrocytic, oligodendrocytic
and microglial markers in AD and PD transcriptomic datasets.
We indeed found neuronal and astrocytic markers significantly
downregulated and upregulated, respectively, in MayoClinic AD
samples compared to controls (Figure 1A). Although microglia
were reported to be involved in AD (Solito and Sastre, 2012) and
PD (Le et al., 2016), we only observed a significant increase in one
(CD40) out of four microglial markers tested in AD (Figure 1A)
and in two (CD40 and ITGAM) in PD samples (Figure 4A).
Since microglia represent a small subset of human brain cells
[5 to 15% of human brain cells (Pelvig et al., 2008)], there were
likely too few microglial cells in the profiled brain sections for
their transcriptomic signal to be properly detected, as suggested
by our digital cytometry estimates (Figures 1B, 4B). Still, the
detection of a significant increase in CD40 and ITGAM microglial
markers in PD samples needs further investigation, as the highest
concentration of microglia in the brain is located in the substantia
nigra (Block et al., 2007), the first region affected by the loss of
dopaminergic neurons in PD (Badger et al., 2014). This could
then induce a more reactive response of microglia in PD cortices.

Based on the evidence that cellular composition was altered
in AD and PD brain samples, we computationally estimated
therein the proportion of the main brain cell types: neurons,
astrocytes, microglia and oligodendrocytes. We derived a gene
expression signature (1 962 genes – Supplementary Table 2)
from a publicly available single-cell RNA-seq dataset of human
adult cortical samples (Darmanis et al., 2015) to distinguish those
four cell types. To test the specificity of those signatures, we used
CIBERSORTx (Newman et al., 2019) to estimate the composition
of samples from an independent single-cell RNA-seq dataset
(Zhang et al., 2016) of human neurons, microglia, astrocytes and
oligodendrocytes. Each of these cells was mostly assigned to its
respective pre-annotated cell type (Supplementary Figure 7A).
Some oligodendrocyte samples showed a small presence of the
other three cell types that might be related with the myelin of
oligodendrocytes having some debris of astrocytes, microglia and
neurons attached, given that oligodendrocytes closely interact
with those cells (Domingues et al., 2016). With the further
advances in scRNA-seq technologies and the accumulation
of human brain single-cell datasets in healthy and diseased
conditions (Mathys et al., 2019b), the major brain cell type
signatures will be further improved and allow an increase in
sensitivity of digital cytometry.

After validating the cell type signatures, we used them to
estimate the proportion of neurons, astrocytes, microglia and
oligodendrocytes in AD and PD brain samples from their
bulk transcriptomes. In line with differences in expression
in canonical markers illustrated in Figure 1A, the estimated
neuronal proportion was significantly lower in AD compared
with control brains (Figure 1B). Some samples reached up to
60–90% of neurons, much higher than estimates based on cell
counting (Pelvig et al., 2008; Herculano-Houzel, 2009). This is
likely related with the neuronal RNA content being up to 2-fold as
much as that of glial cells (Filipchenko et al., 1976). In this study
we are therefore estimating the relative contribution by each cell

type to the total amount of mRNA in the bulk samples and not
their actual proportion of the total number of cells.

Linear models are a commonly used statistical approach to
model gene expression as a function of relevant explanatory
variables. Here, these were potential technical biases (RIN
and an unknown confounder variable), age, sex (for AD
datasets), estimated neuronal proportion (neuronal loss), disease
(categorical AD or PD) and, for the AD datasets, interaction
between neuronal proportion and disease. Considering that
AD and PD are age-related neurodegenerative disorders, it is
expected that most of their associated gene expression changes
in the brain are result from the loss of neurons and aging,
therefore the need to estimate their independent effects and
decouple them from the intrinsic molecular effects of the
diseases that we are interested in. Using those models, we
identified genes whose expression was significantly affected by
the intrinsic (systemic) disease effect (Figures 2, 5), as well
as genes whose expression was mostly explained by the other
effects (Supplementary Figures 10A, 13A). However, we were
not able to completely decouple the explanatory variables, as
the associated moderated t statistics of differential expression
were to some extent correlated with each other (Supplementary
Figures 10D, 13C). The correlations between RIN and the
intrinsic disease and neuronal loss effects may be explained by
potential agonal conditions, such as patients being in a coma or
their brains undergoing hypoxia just before death, preceding the
collection of post-mortem samples (Tomita et al., 2004). For AD,
with the Interaction effect, we were able to detect genes whose
expression varies differently upon neuronal loss in AD samples
(Supplementary Figure 10C). For example, the PNPLA5 gene is
involved in lipid metabolism (Kim et al., 2016) and is thought
to play a role in the autophagy biogenesis (Dupont et al., 2014).
Those processes have been implicated in AD (Li et al., 2017;
Zarrouk et al., 2018) and a variant in PNPLA5 was reported to
be associated with the APOE genotype directly linked to AD
(Cruchaga et al., 2012). Another example is PTPN20A, encoding
a phosphatase with a dynamic subcellular distribution that targets
sites of actin polymerization, a fundamental cellular process
(Fodero-Tavoletti et al., 2005). Although, to our knowledge, no
reports have linked PTPN20A to AD, it might indicate that,
concomitant with the loss of other neurons, AD neurons suffer
more structural changes than non-AD neurons.

The importance of decoupling the intrinsic disease effect from
others can be seen in Figures 2B, 5B. Looking at some of
the genes already reported as potentially playing a role in AD
[e.g., CDK5 (Liu et al., 2016)] or PD [e.g., COMT (Jiménez-
Jiménez et al., 2014)], we observed that alterations in their
expression were mostly driven by neuronal loss, i.e., by changes
in cellular composition, but not so much by an intrinsic cell
type-independent disease effect. This suggests that some genes
previously reported as candidates for playing a role in AD
or PD may be “false positives” for their association with the
diseases’ etiology and, given their cell-type specificity, have
been found dysregulated due to changes in cellular composition
(Kelley et al., 2018).

As shown in Figures 3A, 6A, the results of differential
expression analyses are significantly correlated between
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independent datasets. Although some genes initially selected
as candidates for intrinsic disease markers, such as ETV4 and
LIAS for AD, were not found to behave consistently in both
datasets, others previously described as playing a role in AD
and PD, such as RPH3A (Tan et al., 2014) and CXXC1 (Diao
et al., 2013), were consistent. We identified genes such as
HEBP2 and PRKAR1A to be, respectively, AD and PD-specific
(Figures 3C, 6C) and, to our knowledge, they had not been
previously linked with the disorders. HEBP2 is known to play
a role in mitochondria and its inhibition has been shown to be
important for HeLa cells survival upon oxidative stress (Szigeti
et al., 2010). Considering that HEBP2 is upregulated in our AD
samples, its overexpression may contribute to the sudden death
of neuronal cells upon the AD-characteristic high oxidative stress
environment (Tönnies and Trushina, 2017). Moreover, although
HEBP2 has not yet been linked to AD, its homologs HEBP1 has
been described as potentially playing a role in neurons’ ability to
sense cytotoxicity over the course of the disease (Yagensky et al.,
2019). When PRKAR1A, the cAMP-dependent protein kinase
type I-alpha regulatory subunit, is not working properly, it causes
an hyperactivation of PKA signaling and its loss of function
has been shown to cause cell death and muscle impairment
(Gangoda et al., 2014), two PD-related phenotypes.

Being the two most common neurodegenerative disorders in
the world, it has already been suggested that AD and PD could
share a common mechanism of neurodegeneration (Calne et al.,
1986; Xie et al., 2014). For instance, Greenfield and Vaux (2002)
proposed that the common mechanism may be associated with
the aberrant activation of a developmental process involving a
non-classical, non-enzymatic action of acetylcholinesterase. Our
results suggest that the genes whose expression is commonly
altered in AD and PD are essentially related with cell metabolism
and NF-KB and Wnt signaling pathways (Figure 7B), which
were already reported as playing a role in PD (Mattson and
Meffert, 2006; Cai et al., 2012; Harvey and Marchetti, 2014;
Seo and Park, 2019). Another study, that used mice with
a deletion of the vesicular acetylcholine transporter in the
forebrain, suggests that cholinergic failure causes changes in
RNA metabolism that can facilitate Alzheimer’s-like murine
pathology (Kolisnyk et al., 2016). Oxidative phosphorylation and
Parkinson’s disease pathways were significantly altered in both
diseases but enriched in genes downregulated in the MayoClinic
AD samples (Supplementary Figure 10B) and upregulated in
Dumitriu PD samples (Supplementary Figure 13B). The putative
upregulation of the oxidative phosphorylation pathway in PD is
mostly driven by NADH dehydrogenase genes such as NDUFS8,
NDUFS7, and NDUFA11, which take part in mitochondria’s
complex I, already reported to be impaired in PD (Keeney,
2006). Oxidative phosphorylation’s apparent downregulation in
AD is mostly driven by COX genes such as COX11 and COX15.
The most consistent defect in mitochondrial electron transport
enzymes in AD is indeed a deficiency in COX (Kish et al., 1992),
mitochondria complex IV (Kish et al., 1992). Genes highlighted
in Figure 7A should also be considered as candidate targets for
functional manipulation in both AD- and PD-related studies,
since they may unveil mechanisms that are disrupted in similar
ways in both disorders.

Drug discovery for human diseases is a slow and costly
process (Insa, 2013), drug repurposing being therefore seen as
a faster, safer and cheaper alternative (Siavelis et al., 2016).
Using cTRAP (de Almeida et al., 2020), we identified drugs,
already in clinical trials or launched, that potentially induce
gene expression changes that are significantly anti-correlated
with those caused by AD and PD (Figures 8A,C). For AD,
we identified compounds already linked with the disease. For
instance, chloroquine, an antimalarial drug, was shown to
increase tau proteolysis (Zhang et al., 2009) as well as to be
neuroprotective upon brain injury by diminishing inflammation
and neuronal autophagic death (Cui et al., 2015). Tubastatin-a,
an HDAC6 inhibitor, was used in AD mice leading to alleviated
behavioral deficits, alterations on amyloid-beta load and reduced
tau phosphorylation (Zhang et al., 2014). Sildenafil, usually used
to treat erectile dysfunction, is currently being investigated in AD
therapeutics (Sanders, 2020). Amisulpride and citalopram, two
antipsychotic drugs, have been used in AD (Mauri et al., 2006;
Porsteinsson et al., 2014). Curcumin has been implicated in AD
therapeutics, apparently decreasing beta-amyloid plaques as well
as slowing neurodegeneration and acting as an anti-inflammatory
(Chen et al., 2018). Doxycycline is a compound known to cross
the blood-brain barrier and a very promising candidate since it
reduced amyloid-beta oligomers and neuroinflammation in AD
mouse models (Balducci and Forloni, 2019). Etoposide needs to
be further explored, given a study reporting it as an inducer of
cellular senescence and mitochondrial dysfunction in cultured
rat astrocytes (Bang et al., 2019) but knowing that rat cell
lines may not recapitulate all the molecular cues of the human
brain microenvironment. To our knowledge, no research has
been reported on the use of interesting candidates panobinostat,
dimenhydrinate and perhexiline in AD. Indeed, perhexiline is
involved in the inhibition of mTOR pathway which is related
with autophagy, a process known to be altered in AD (Jaeger
and Wyss-Coray, 2010), and panobinostat acts as an HDAC
inhibitor, leading to the hypothesis that it may play a role similar
to that of tubastatin-a. For PD, we also identified compounds
previously linked to the disease. Atomoxetine, an inhibitor of the
norepinephrine reuptake, has been studied in PD therapeutics
since the noradrenergic system is involved in executive functions
impaired in PD (Warner et al., 2018). Meclofenamic acid, a
non-steroid anti-inflammatory drug, has been shown to have
an anti-fibrillogenic effect on alpha-synuclein fibrils in vitro
(Hirohata et al., 2008). Tamoxifen, an estrogen modulator,
has also been related with PD treatment but is associated
with controversial findings. Although tamoxifen demonstrated
neuroprotective effects in some animal and in vitro studies
(Lee et al., 2009; Mosquera et al., 2014), it has been shown
in some cohorts of female breast cancer patients that its usage
may increase PD risk (Latourelle et al., 2010; Hong et al.,
2017). However, given that our PD analyses were performed
only in male samples, our results could suggest a sex-specific
mode of action of tamoxifen in PD. Additionally, myricetin has
neuroprotective effects in different PD Drosophila and rat models
(Dhanraj et al., 2018; Huang et al., 2018). To our knowledge,
other drugs such as genipin and praziquantel have not yet been
related to PD and could be interesting to further explore for
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repurposing in that context. For instance, genipin is the main
component of a Chinese medicinal herb and was shown to
have anti-inflammatory and neuroprotective effects that could
be beneficial for neurogenerative diseases such as PD (Li et al.,
2016). Praziquantel, an anthelmintic compound, could be a very
interesting candidate since niclosamide, another anthelmintic
drug, has been suggested to be beneficial in PD through the
activation of the PINK1 pathway that is usually impaired in PD
(Barini et al., 2018).

Metaraminol, an adrenergic agonist that also stimulates
the release of norepinephrine and primarily used as a
vasoconstrictor in the treatment of hypotension (National Center
for Biotechnology Information, 2020. PubChem Database.),
induces the gene expression changes most anti-correlated with
those by both AD and PD (Figure 9). To our knowledge,
there is no association between metaraminol and AD and
PD therapeutics. However, adrenergic agonists can decrease
noradrenergic degeneration, a characteristic condition of AD
patients (Gannon et al., 2015). As for PD, using adrenergic
agonists along with levodopa treatment has been shown to lead
to a diminishment in parkinsonian symptoms (Alexander et al.,
1994). Perhexiline can act as an inhibitor of mTORC1, a protein
kinase involved in autophagy, and is able to stimulate autophagy
(Balgi et al., 2009). One common shared feature between AD and
PD is indeed autophagy decrease (Fujikake et al., 2018), which
might explain the anti-correlation between its transcriptomic
impact and the expression profiles changes induced by AD
and PD (Figure 9). Itopride, a dopamine D2 antagonist with
acetylcholinesterase inhibitory actions (National Center for
Biotechnology Information, 2020. PubChem Database.), has
already been studied as a potential drug for AD given its
very similar structure to curcumin, shown to decrease the
accumulation of Aß aggregates (Ngo et al., 2016). Moreover, it
is also used for increasing gastrointestinal motility, a symptom
that is prominent in PD patients, although it also seems to induce
parkinsonism (Shin and Chung, 2012). We also found scriptaid
(Figures 8A,C), a histone deacetylase (HDAC) inhibitor. HDAC
enzymes have already been linked to neurodegenerative diseases
and there are already several applications of HDAC inhibitors
being tested in such context (Gupta et al., 2020). Interestingly,
gene expression changes induced by wortmannin, auranofin and
prednicarbate, were the most correlated with those by AD and
PD. Indeed, wortmannin has been shown to increase Alzheimer-
like tau phosphorylation in vivo (Liu and Wang, 2002; Xu et al.,
2005) and to diminish the effect of an anti-apoptotic compound
in an in vitro PD model (Limboonreung et al., 2020). Auranofin,
a drug used as an antirheumatic agent, has indeed been linked
with AD and PD, but not as an inducer of both disorders (Roder
and Thomson, 2015). This result needs to be further explored
as, for instance, auranofin seems to act through glial cells but
does not stop cytokines secretion from astrocytes (Madeira et al.,
2013, 2014). Additionally, these findings result from work in
cell lines (Madeira et al., 2014) and mice (Madeira et al., 2013),
models that do not recapitulate all the molecular cues of the
human brain microenvironment. To our knowledge, there is no
association between prednicarbate, a corticosteroid drug with an
anti-inflammatory action, and AD and PD therapeutics besides

the recommendation of not being used together with memantine,
one of the few FDA approved drugs for AD, since it inhibits its
action (Wishart et al., 2018). These results show the potential of
using in silico tools to find existing drugs that could be tested as
candidates for the treatment of neurodegenerative diseases.

To our knowledge, this is the first study that decouples the
effects of cellular composition, aging and sex from the intrinsic
disease effect of AD and PD on gene expression in human
brains. However, our study has limitations. We focused on the
four major brain cell types but our approach is not sensitive
enough to estimate the relative amount of mRNA contributed
by microglia, therefore missing the transcriptomic signal of their
physiology. Moreover, although we validated our results using
independent public datasets, an additional local experimental
validation is not feasible due to extreme difficulty in having access
to human samples that would be suitable independent replicates
of those used to generate the analyzed datasets. Additionally,
drugs currently used for AD and PD treatment were not among
those our analysis deemed more likely able to revert the AD-
/PD-specific gene expression changes. This likely reflects the
differences between gene expression changes induced by drugs
in cancer cell lines [i.e., those available in CMap (Subramanian
et al., 2017), on which cTRAP (de Almeida et al., 2020) relies] and
those the same drugs would induce in brain cells.

We expect the permanent development of single-cell
technologies to help increase the resolution of our understanding
of the nuances in each human brain cell type, as well as which
molecular perturbations therein are critical to the onset and
progression of neurodegenerative diseases such as AD and
PD. In fact, there are already some studies using single-cell
RNA-seq to characterize the cellular composition in normal
brains (Darmanis et al., 2015; Lake et al., 2016; Hagenauer et al.,
2017), in neurogenesis and somatic reprogramming to neurons
(Shin et al., 2015; Treutlein et al., 2016), as well as in AD brains
(Grubman et al., 2019; Mathys et al., 2019a). Nevertheless, as
single-cell data are still accumulating and there are several bulk
transcriptomes available for brains affected by neurodegenerative
disorders, approaches like ours could help in the meantime to
unveil some of cellular and molecular complexity associated with
neurodegeneration in humans.

In summary, our results show the relevance of modeling and
accounting for cell type composition when analyzing molecular
alterations associated with neurodegenerative disorders, thereby
helping to identify candidate gene targets that are related
with the disease itself rather than the consequent loss of
neurons. They also illustrate the interest of performing in silico
analysis of chemical perturbagens as preliminary screens for
drug repurposing, helping to find new, more effective drug
therapies that could mitigate, or even reverse, some of those
neurodegenerative disorders’ phenotypes.
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