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Background: Because of the complexity of the interaction between the internal
pacemaker mechanisms, cell interconnected signals, and interaction with other body
systems, study of the role of individual systems must be performed under in vivo and
in situ conditions. The in situ approach is valuable when exploring the mechanisms that
govern the beating rate and rhythm of the sinoatrial node (SAN), the heart’s primary
pacemaker. SAN beating rate changes on a beat-to-beat basis. However, to date,
there are no standard methods and tools for beating rate variability (BRV) analysis
from electrograms (EGMs) collected from different mammals, and there is no centralized
public database with such recordings.

Methods: We used EGM recordings obtained from control SAN tissues of rabbits (n = 9)
and mice (n = 30) and from mouse SAN tissues (n = 6) that were exposed to drug
intervention. The data were harnessed to develop a beat detector to derive the beat-to-
beat interval time series from EGM recordings. We adapted BRV measures from heart
rate variability and reported their range for rabbit and mouse.

Results: The beat detector algorithm performed with 99% accuracy, sensitivity, and
positive predictive value on the test (mouse) and validation (rabbit and mouse) sets.
Differences in the frequency band cutoff were found between BRV of SAN tissue
vs. heart rate variability (HRV) of in vivo recordings. A significant reduction in power
spectrum density existed in the high frequency band, and a relative increase was seen
in the low and very low frequency bands. In isolated SAN, the larger animal had a
slower beating rate but with lower BRV, which contrasted the phenomena reported
for in vivo analysis. Thus, the non-linear inverse relationship between the average HR
and HRV is not maintained under in situ conditions. The beat detector, BRV measures,
and databases were contributed to the open-source PhysioZoo software (available at:
https://physiozoo.com/).
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Conclusion: Our approach will enable standardization and reproducibility of BRV
analysis in mammals. Different trends were found between beating rate and BRV or HRV
in isolated SAN tissue vs. recordings collected under in vivo conditions, respectively,
implying a complex interaction between the SAN and the autonomic nervous system in
determining HRV in vivo.

Keywords: heart rate variability, electrogram, animal models, pacemaker, sinoatrail node

INTRODUCTION

The normal heart beat dynamics involves orchestration of short-
and long-scale periodic signals. These signals are generated
by opening and closing of membranal channels (Adair, 2003)
in heart pacemaker cells, interaction between pacemaker cells
(Michaels et al., 1986), and the pacemaker cell interaction
with other body systems (Yang and Xu-Friedman, 2013). To
understand the role and relative contribution of each signal,
experiments must be performed under in vivo, in situ, and
in vitro conditions. When exploring the function of internal
pacemaker mechanisms (see for example Yaniv et al., 2015; Behar
et al., 2016), the in vitro conditions of isolated pacemaker cells
is the optimal experimental model. However, when exploring
the interconnected pacemaker cell mechanisms, the in situ
environment of isolated sinoatrial node (SAN) tissue isolating it
from all environmental effects (hormonal or nervous system) is
the ideal model. While ECG recordings (i.e., in vivo) in a variety
of mammals and electrical recordings of single pacemaker cells
(in vitro) are routinely performed in many labs, electrical data
from isolated pacemaker tissue are limited.

The heart rate variability (HRV, refers to variability measured
under in vivo conditions) has been suggested as a powerful tool
to explore system function (Burg et al., 1993; Bergfeldt and Haga,
2003; Rosenberg et al., 2020). HRV has been quantified in vivo
(Goldberger et al., 2000; Behar et al., 2018b) and the beating
rate variability (BRV, refers to variability measured under in situ
or in vitro conditions) has been quantified in single pacemaker
cells (Zaza and Lombardi, 2001; Yaniv et al., 2011). However,
although the beating rate of the SAN changes on a beat-to-beat
basis, BRV has not been extensively explored in isolated SAN
tissue. A number of limitations hinder such research: (i) The
electrogram (EGM) is used to measure electrical signals recorded
on the isolated tissue surface and reflects the inner currents in
this tissue. However, EGM signals differ in beat morphology
and rate from in vivo ECG signals even if both are from the
same mammal (see Figure 1). Therefore, different analysis tools
are required to determine the beating rate from SAN-isolated

Abbreviations: ANS, autonomic nervous system; BI, beating interval; BR, beating
rate; BRV, beating rate variability (analysis in situ); DFA, detrended fluctuations
analysis; ECG, electrocardiogram; EGM, electrogram; FN, false negative; FNR,
false negative rate; FP, false positive; FPR, false positive rate; GMM, Gaussian
mixture model; HF, high frequency band in the PSD; HRV, heart rate variability
(analysis in vivo); IBMX, 3-Isobutyl-1-methylxanthine, a phosphodiesterase
inhibitor; IQR, interquartile range, the range between the 25th and 75th percentiles
of a dataset; LF, low frequency band in the PSD; MSE, multiscale entropy; PSD,
power spectrum density function; SAN, sinoatrial node; TP, true positive; TPR,
true positive rate; VLF, very low frequency band in the PSD.

tissue EGM than those used to determine beating rates from
whole-body ECG recordings. To date, there is no database of
mammalian EGM recordings available for the development of
such a tool, and there are no standardized, state-of-the-art,
partially or fully automated tools to analyze such recordings.
(ii) Assuming that the first limitation is overcome, the beating
rate of the tissue can be calculated from the EGM signals.
However, there is no standard method to derive BRV from
HRV, and there are no publicly available programs to analyze
pacemaker tissue BRV. (iii) Isolating pacemaker tissue from
healthy human patients is rare; consequently, other mammals
are commonly used for cardiovascular research, with rabbits
and mice being the most common mammal species used
for such research. The rabbit is the smallest mammal with
intracellular Ca2+ dynamics similar to humans (Bers, 2002;
Terentyev et al., 2014; Morrissey et al., 2017). On the other
hand, mouse models are commonly used for overexpression or
knockout of genes implicated in human cardiovascular diseases
(Thireau et al., 2008; Tzimas et al., 2017; Hook et al., 2018).
Furthermore, mice are practical as aging models due to their
short lifespan (Liu et al., 2014; Yaniv et al., 2016). However,
tissues from different mammals differ in their beating rate, and
thus, BRV parameters must be adjusted for different mammals
(Behar et al., 2018b).

We aim here to overcome these three limitations and design
an open-source program to analyze mammal BRV derived from
pacemaker tissue EGM recordings. The new tool will be applied
to (i) test the effect of drugs on BRV indices, (ii) compare the BRV
indices of the different mammals, and (iii) compare BRV indices
to their corresponding in vivo indices. This analysis will enhance
our understanding of the contribution of pacemaker mechanisms
to HRV in vivo.

MATERIALS AND METHODS

Databases
EGM data from rabbits (n = 9) (Yaniv et al., 2014) and mice
(n = 30) in basal state as well as data from mouse SAN tissues
that were exposed to phosphodiesterase inhibition (using 3-
isobutyl-1-methylxanthine; IBMX) (n = 6) were used (Yaniv
et al., 2016). All animal training and validation data used in the
present paper were obtained from published studies for which the
respective animal protocols and experimental procedures were
approved by the local research committee. Rabbit and mouse
SAN were fixed in a heated bath (36± 0.5◦C) and superfused with
Tyrode’s solution (see Materials in Yaniv et al., 2014) at a rate of
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FIGURE 1 | Representative examples of rabbit (A) ECG and (B) sinoatrial node EGM and mouse (C) ECG and (D) sinoatrial node EGM.

E. 
Instantan-
eous beat 
interval 

calculation

D. Beats 
classificat-

ion

• 20 seconds 
segments

• Based on 
the relative 
height of the 
beat

C. Naive 
beat 

detection

• 20 seconds 
segments

• Based on 
width, 
prominence 
and distance 
from 
previous 
beat

B. Beat 
side 

decision

• Upward 
peaks / 
downward 
peaks

A. Pre-
filtering

• Notch filter

FIGURE 2 | Schematic description of the beat detection algorithm.

4 ml/min. An insulated Teflon-coated platinum electrode with a
0.25 (rabbit)- or 0.15 (mouse)-mm diameter tip was placed at the
center of the SAN to record extracellular signals using a Neurolog
system NL900D (Digitimer, Hertforsdire, United Kingdom),
which were recorded at 10 kHz.

Manual Beat Detection
Because no state-of-the-art beat detector is publicly available
for mammal SAN EGM data to test our suggested algorithm,

beats were manually annotated. The Matlab’s “findpeaks.m”
algorithm was used for initial peak detection. Then, a single
trained annotator reviewed all the recordings and corrected the
inaccurate annotations, i.e., false positive and false negative.
These reference annotations were then used to evaluate our beat
detector and to compute BRV measures. The manual annotations
of the training sets were used to calculate the refractory period
[minimal beating interval (BI)] and average BI of the SAN from
each mammal.
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FIGURE 3 | Processing steps of the EGM beat detection algorithm. (A) Prefiltering, (B) naive peak detection and classification, and (C) instantaneous beat interval.

Beat Detection Algorithms
Figure 2 summarizes the steps used for beat detection in the
EGM record, and Figure 3 shows a representative example of
the analysis step on one representative signal. In general, each
EGM record went through (A) a prefiltering process to clear
the data from environmental noise. A notch filter was used,
which automatically identifies and reduces effects of the local
electricity grid (e.g., 50/60 Hz noise) in the recording. (B) The
signal upstream and downstream sign was determined based on
the average frequency calculated from the power spectrum of
the upward and downward parts of the filtered signal. In order
to get more accurate BRV results, the side with the thinner
peaks was chosen, reflected in higher average frequency. If the
downward direction is preferred, the signal is reversed for the
next steps. (C) Naive peak detection: Every 20 s of filtered signal
was processed through Matlab’s “findpeaks.m” algorithm. The
peaks were defined as any point whose distance from a prior
beat is longer than the refractory period and were higher than
the neighboring points, however wider than 5 data points and
not wider than twice the refractory period (width measured at
half the height of the peak) and more prominent than a data-
derived threshold. Peak threshold = (100 - Q)th percentile of the

segment-Qth percentile of the segment (Q = 10 for rabbit and 5 for
mouse). (D) After the prominence of all of the naively annotated
beats was calculated, those with peaks that were less prominent
than 0.7 times the median prominence of beats were eliminated.
Finally, the instantaneous BI time series was calculated.

Beating Rate Variability Measures
Prefiltering
Before BRV can be calculated, two steps must be taken. First, to
assure signal stationarity, a window length of 3 min for mice and
5 min for rabbits was used (Behar et al., 2018b). Second, range-
based filtering was used. A certain constant range was defined,
and every beat with a beating interval out of that range was
excluded; for this purpose, every BI shorter than the refractory
period or longer than three times the average BI of the mammal
was discarded (Behar et al., 2018b). The resulting BI time series
of the preprocessed signal was named NN.

Time Domain Measures
The majority of time domain BRV measurements is not average
BI dependent, thus do not need any adjustment (see Table 1).
As was pointed out before (Behar et al., 2018b), only pNNxx
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TABLE 1 | Beating rate variability parameters and their derivation from HRV.

HRV measure Units Definition Adjustment from in vivo to
in situ

Time domain

AVNN (ms) Average NN interval duration No need

SDNN (ms) Standard deviation of NN interval duration No need

RMSSD (ms) The square root of the mean of the sum of the squares of differences between adjacent NN intervals No need

pNNXX (%) Percent of NN interval differenced greater than XX milliseconds XX threshold, either the same
or scaled according to the
average BI to HR

SEM (ms) Standard error of the mean NN interval No need

PIP (%) Percentage of inflection points in the NN interval time series No need

IALS (n.u.) Inverse average length of the acceleration/deceleration segments No need

PSS (%) Percentage of short segments No need

PAS (%) The percentage of NN intervals in alternation segments No need

Frequency domain

Total power (ms2) Total power of the PSD function in the frequency range No need

VLF (ms2) Power in the very low frequency band Frequency band cutoffs

LF (ms2) Power in the low frequency band Frequency band cutoffs

HF (ms2) Power in the high frequency band. Expected to be near 0 in BRV analysis of EGM from isolated
tissue

Frequency band cutoffs

VLF norm (%) Power in the very low frequency band, normalized to the total power of the PSD Frequency band cutoffs

LF norm (%) Power in the low frequency band, normalized to the total power in LF + HF bands Frequency band cutoffs

HF norm (%) Power in the high frequency band, normalized to the total power in LF + HF bands Frequency bands cutoffs

VLF-to-LF ratio (n.u.) The ratio between the power in the very low frequency and the power in the low frequency band Frequency band cutoffs

LF-to-HF ratio (n.u.) The ratio between the power in the low frequency and the power in the high frequency band Frequency band cutoffs

LF peak (Hz) Peak frequency in the low frequency band Frequency band cutoffs

HF peak (Hz) Peak frequency in the low frequency band Frequency bands cutoffs

Non-linear domain

SD1 (ms) NN interval standard deviation along the perpendicular to the line-of-identity in the Poincare plot No need

SD2 (ms) NN interval standard deviation along the line-of-identity in the Poincare plot No need

Beta (n.u.) Slope of the linear interpolation of the spectrum in a log–log scale for frequencies in the VLF Beta
range

VLF frequency band cutoffs

Alpha1 (n.u.) DFA low-scale slope DFA cutoff

Alpha2 (n.u.) DFA high-scale slope DFA cutoff

SampEn (n.u.) Sample entropy No need

measures that quantify the percent of NN interval differences
greater than xx milliseconds must be adjusted for different
mammals. We used two approaches to define the xx: one was
related to the respiratory rate in vivo, thus the pNNxx in situ
was similar to the value in vivo, and the other was to scale the
xx parameter according to the scaling ratio of the BRV AVNN
relative to the reported HRV AVNN.

Frequency Domain Measures
The Welch’s algorithm (Welch, 1967) was used for power
spectrum density (PSD) estimation. We chose this spectral
estimation method over auto-regressive model (Carvalho et al.,
2003; Tarvainen et al., 2006), which is a less frequently used PSD
estimate, and over the Lomb method (Lomb, 1976) because of
the risk of aliasing (Behar et al., 2018a). Window lengths of 3 min
for mice and 5 min for rabbits were used (Behar et al., 2018b).
The PSD is traditionally divided into three main bands (Malik,
1996): the very low frequency (VLF) band, the low frequency
(LF) band, and the high frequency (HF) band. To determine the

cutoff frequencies between the bands, we used a Gaussian mixture
model (GMM) of 2 Gaussians on the histogram of all prominent
peaks (see Figure 4), following the approach described in Behar
et al. (2018a). To calculate the prominent peaks in each band,
we used a simple peak detection algorithm to look for the 16
most prominent peaks on each of the normalized PSDs, with a
threshold of 0.01. The minimal frequency was determined as one
over the window length in seconds and was used to defined the
lower band of VLF. The HF band was set to be between the high
cutoff frequency of the LF band and 2 Hz.

Non-linear Domain Measures
Four measurements were used in this group: β coefficient, which
corresponds to the slope of the linear interpolation of the
spectrum in a log–log scale for frequencies below the upper
bound of the VLF band, detrended fluctuations analysis (DFA)
measures (Peng et al., 1994), Poincare analysis variation measure,
and multiscale entropy (MSE) measures (Costa et al., 2005).
Poincare analysis and MSE measures require no adaption. The
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FIGURE 4 | A histogram of prominent power spectrum density (PSD) peaks and a fit model of two Gaussians of (A) rabbit (n = 9) and (B) mouse (n = 12). Two
frequency bands were calculated for each of the mammals (dashed lines) and compared to the bands used in ECG HRV analysis (continuous line).

β coefficient was estimated in the adjusted VLF band. Originally,
two DFA coefficients were reported for the slopes before and after
16 beats (cutoff). We evaluated this cutoff for BRV analysis.

User Interface
The PhysioZoo open source software (Behar et al., 2018b) was
used to calculate the different BRV measures. All of our analysis
tools were implemented in PhysioZoo and are open to the public.

Performance Statistics
The quality of the beat detector was assessed by comparing
between the results of the algorithm and the manually annotated
beats, by using a tolerance window of 10% of the average BI
of the dataset and ignoring a constant difference between the
beat locations. True positive (TP) annotations, false positive (FP)
annotations, and the number of missed beats [false negative (FN)]
were calculated. The following statistical measurements were
used to report on the quality of our beat detector:

True positive rate (TPR)—the percentage of correctly
annotated beats out of all the real beats of the dataset

TPR = 100∗
TP

TP + FN
%. (1)

False discovery rate (FDR)—the percentage of falsely
annotated beats out of all the beat annotations

FDR = 100∗
FP

TP + FP
%. (2)

False negative rate (FNR)—the percentage of missed beats
(real and not annotated by the algorithm) out of all the real beats
of the dataset

FNR = 100∗
FN

TP + FN
%. (3)

General Statistics
The rank-sum test was used to define the significance level
of the differences between in situ vs. in vivo conditions
of the same animal and between mouse vs. rabbit
SAN tissue.

RESULTS

This section presents the results of the performance of the
beat detector on mouse and rabbit SAN tissues recordings
collected under basal conditions, the range of BRV measures
obtained for mouse and rabbit SAN tissues, the interpretation
of BRV results in comparison to HRV, and an example of
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insights on pacemaker function gained from drug response
BRV analysis.

Beat Detector
To validate the ability of the beat detector to perform
on unknown EGM records, we divided the mouse data
into training, validation, and test datasets. The dataset was
randomly divided into a training set (40%), validation set
(20%), and test set (40%). The algorithm was developed
using the training set and then fine-tuned by evaluating its
performance on the validation set. Finally, the generalization
performance of the algorithm is reported for the test set.
In the case of the rabbit data, because of the limited
number of animals, the data were divided into training
(67%) and validation (33%) sets. Table 2 provides the
performance statistics of the detector for mouse and rabbit.
The beat detector algorithm very accurately detected the beat in
the SAN EGM.

BRV Measures
Figure 5A presents the BI histogram of representative
examples of human-curated mouse and rabbit data.
As can be seen, the BI scattering of mouse SAN
tissue was higher than in the rabbit The Poincare
plot (Figure 5B) was more scattered in mouse than
rabbit, in accordance with the results of BRV time
domain parameters.

Figure 6 presents the log PSD vs. log frequency for all
data; a tight linear relationship between the log (PSD) and
log frequency in the VLF band was achieved. Thus, we can
define β as the slope of this linear regression between the
log (PSD) and log frequency in the VLF band, similar to
that obtained by HRV analysis. Figure 7 visualizes that the
cutoff block size of DFA was similar to the cutoff under
in vivo conditions [19.3 ± 7.6 (n = 7) for rabbit and
17.5 ± 9 (n = 11) for mouse]. Table 3 summarizes the
major changes in BRV analysis under in situ conditions vs.
in vivo.

Table 4 summarizes the analysis results of BRV measures
of rabbit and mouse. The time domain analysis found a
lower variability in rabbit vs. mouse SAN tissue. In both
mammals, the HF band had the least information about PSD,

TABLE 2 | Beat detector performance.

True positive rate False
discovery rate

False
negative rate

Mouse

Training set (n = 11) 99.6 (99.0–100)% 0.5 (0.0–11.3)% 0.4 (0.0–1.0)%

Validation set (n = 5) 99.8 (99.5–99.9)% 0.2 (0.1–0.5)% 0.2 (0.1–0.5)%

Test set (n = 12) 99.4 (99.2–99.5)% 0.0 (0.0–0.0)% 0.6 (0.5–0.8)%

Rabbit

Training set (n = 6) 99.3 (99.2–99.8)% 0.2 (0.1–0.5)% 0.7 (0.2–0.8)%

Validation set (n = 3) 99.1 (99.0–99.3)% 0.0 (0.0–0.2)% 0.9 (0.7–1.0)%

All the results are presented as median and interquartile range: MED (Q1–Q3).

FIGURE 5 | (A) Beating interval (BI) histogram of a representative mouse and
rabbit sinoatrial node (SAN) tissue. (B) Poincare plots of representative
examples of SAN tissue from mice and rabbits.

as expected. The PSD information was divided between the
VLF and LF bands (ratio of 4:1 in mouse and ratio of
1:2 in rabbit between VLF and LF bands). The non-linear
parameters showed lower complexity in mouse than rabbit.
To further explore the variability and complexity observed in
SAN BRV, we plotted the Poincare plot and MSE vs. order,
respectively. Figure 8 shows that, in the lower scale, the
MSE curve in rabbit was lower than that of mouse. However,
at higher scales that represent the system complexity, the
trends reverse.

Studying BRV in Response to Conditions
That Affect Pacemaker Function
To study how direct changes in pacemaker function affect
the BRV, phosphodiesterase activity was inhibited by
applying 100 µM 3-isobutyl-1-methylxanthine (IBMX),
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FIGURE 6 | Average power spectrum density (PSD) of (A) rabbits (n = 9) and (B) mice (n = 12), in a log–log scale. The dashed lines represent the standard deviation.

FIGURE 7 | Detrended fluctuations analysis visualized. Average and standard deviation (dashed lines) of F(n) for (A) rabbits (n = 9) and (B) mice (n = 12). A change in
slope is visually noticeable around 15 < n < 20. The traditional value used for ECG-derived HRV is n = 16 (Peng et al., 1995) and shown with a dashed vertical line.
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TABLE 3 | BRV analysis parameters and prefiltering parameters of in vivo vs.
in situ analysis.

Parameters Rabbit—
in vivo

Rabbit—
in situ

Mouse—
in vivo

Mouse—
in situ

VLF–LF band cutoff (Hz) 0.088 0.108 0.152 0.202

LF–HF band cutoff (Hz) 0.341 1.614 1.24 2.418

XX for pNNXX (ms) 17 24 5 12

Minimum BI to filter (s) 0.14 0.14 0.05 0.021

Maximum BI to filter (s) 0.58 0.982 0.24 0.724

The band cutoff frequencies, the XX calculation for pNNXX, and minimum and
maximum BI were calculated using the entire in situ dataset.

which subsequently leads to an increase in phosphate
activity and to an increase in BR. After 5 min of exposure
to 100 µM IBMX, the BRV time domain measures are
decreased (Table 5 and Figures 9A,B). Additionally, a
reduction in the relative PSD was documented in the
LF, alongside an increase in the relative PSD in the HF
band in response to 100 µM IBMX. There was also a
shift in the LF peak (Figure 9C). The MSE curve showed

an increase in the complexity in low-scale factors in
response to 100 µM IBMX and similar behavior at high
scale (Figure 9D).

DISCUSSION

Beat Detector
We present here a novel beat detector that is suitable for
EGM data. Both the beat detector and the annotated data
used to evaluate its performance are available at PhysioZoo
platform (Behar et al., 2018b). To the best of our knowledge,
this is the first time that a beat detector and annotated
database are published. The beat detector was trained on mouse
data and tested on a separate database with recordings from
different mice. Because the amount of rabbit data was limited,
the beat detector was trained and tested on data that came
from the same rabbit. Future testing with recordings from
additional rabbits and validation and training with other types
of mammal data (see limitation) are expected to improve
our beat detector.

TABLE 4 | BRV measures in rabbit and mouse SAN tissues and under in vivo conditions.

Parameters Rabbit in vivo (p = 33, n = 4) Rabbit SAN tissue (p = 9, n = 9) Mouse in vivo (p = 64, n = 8) Mouse SAN tissue (p = 12, n = 12)

Time domain

AVNN (ms) 264.95 (223.29–281.21) 335.41* (305.78–348.82) 108.50 (102.13–130.55) 187.81*,# (165.47–203.14)

SDNN (ms) 10.33 (6.23–15.00) 8.69 (3.40–12.07) 10.88 (5.60–14.32) 10.43 (4.65–20.34)

RMSSD (ms) 4.64 (2.72–9.33) 4.36 (2.30–16.29) 4.73 (2.89–7.61) 9.30* (5.39–21.10)

pNN5 (%) 0.38 (0.00–1.22) 0.53 (0.00–5.89) 16.54 (3.33–29.04) 26.33# (3.92–51.86)

pNN12 (%) 0.15 (0.00–0.48) 0.09 (0.00–5.06) 3.00 (0.36–8.00) 5.47 (0.32–28.89)

SEM (ms) 0.31 (0.17–0.42) 0.29 (0.11–0.38) 0.26 (0.14–0.35) 0.31 (0.14–0.67)

PIP (%) 41.68 (39.96–49.68) 62.03* (60.69–67.10) 43.09 (35.72–47.96) 68.37*,# (66.47–75.05)

IALS () 0.42 (0.40–0.50) 0.62* (0.61–0.67) 0.43 (0.36–0.48) 0.69*,# (0.67–0.75)

PSS (%) 36.95 (31.19–46.56) 65.51* (62.77–75.45) 38.95 (28.48–48.67) 78.96*,# (74.06–82.55)

PAS (%) 15.04 (10.30–19.59) 33.99* (32.98–35.55) 9.20 (7.07–13.24) 39.70* (35.57–56.26)

Frequency domain

Total power (ms2) 63.39 (24.66–141.79) 23.59 (8.30–88.71) 86.62 (20.51–168.23) 99.96 (16.51–159.82)

VLF (ms2) 25.84 (15.75–83.72) 8.76* (2.68–20.43) 48.33 (13.50–76.58) 15.65 (2.48–77.8)

LF (ms2) 10.85 (5.13–25.40) 6.46 (1.42–71.72) 19.40 (5.18–56.22) 33.71 (11.39–90.98)

HF (ms2) 5.36 (3.36–30.86) 0.04* (0.03–1.90) 7.69 (2.13–17.76) 4.81*,# (1.98–22.55)

VLF norm () 64.21 (49.27–70.41) 65.35 (23.34–80.62) 52.51 (40.82–76.73) 14.66* (9.95–38)

LF norm () 59.37 (49.10–74.22) 97.94* (93.84–99.18) 73.20 (62.57–80.84) 89.70*,# (68.72–95.39)

HF norm () 40.63 (25.78–50.90) 2.06* (0.82–6.16) 26.80 (19.16–37.43) 10.30*,# (4.61–31.28)

VLF to LF ratio () 2.95 (1.83–3.59) 1.93 (0.33–4.43) 1.81 (0.98–5.51) 0.25* (0.12–0.79)

LF to HF ratio () 1.46 (0.96–2.88) 47.61* (16.51–124.13) 2.73 (1.67–4.22) 8.76*,# (2.44–20.97)

LF peak (Hz) 0.12 (0.11–0.14) 0.92* (0.63–1.21) 0.25 (0.20–0.32) 1.34* (0.72–1.77)

Non-linear domain

SD1 (ms) 3.28 (1.93–6.60) 3.08 (1.62–11.52) 3.34 (2.05–5.38) 6.58* (3.81–14.93)

SD2 (ms) 13.47 (8.60–18.8) 9.38 (4.41–13.15) 14.59 (7.38–19.56) 13.12 (5.36–20.49)

β () −0.70 (−0.82 – −0.27) −2.23* (−2.43 – −1.26) −1.22 (−1.68 – −0.74) −0.64*,# (−1.28 – −0.52)

Alpha1 () 1.17 (1.04–1.30) 0.45* (0.27–0.48) 1.14 (0.97–1.25) 0.54* (0.44–0.75)

Alpha2 () 1.00 (0.89–1.15) 1.17 (0.65–1.44) 1.03 (0.93–1.18) 0.70* (0.59–0.77)

SampEn () 0.96 (0.60–1.18) 0.74 (0.30–1.52) 0.85 (0.54–1.29) 0.89 (0.35–1.49)

All the results are presented as median and interquartile range: MED (Q1–Q3). *p < 0.05 the in situ vs. in vivo conditions of the same mammal. #p < 0.05 mouse vs.
rabbit SAN tissue.
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FIGURE 8 | Average sample entropy as function of scale factor for mouse (n = 12) and rabbit (n = 9) SAN tissues. The dashed lines represent the standard deviation.

TABLE 5 | BRV measures in mouse SAN tissues with and without
phosphodiesterase inhibition by 100 µM IBMX.

Parameters Mouse SAN tissue
(n = 12)

Mouse SAN
tissue + IBMX (n = 6)

Time domain

AVNN (ms) 187.81 (165.47–203.14) 100.35 (91.42–106.69)*

SDNN (ms) 10.43 (4.65–20.34) 0.93 (0.55–4.29)*

RMSSD (ms) 9.30 (5.39–21.10) 1.48 (0.48–6.57)*

pNN5 (%) 26.33 (3.92–51.86) 0.33 (0.00–13.11)*

pNN12 (%) 5.47 (0.32–28.89) 0.00 (0.00–5.03)*

SEM (ms) 0.31 (0.14–0.67) 0.02 (0.01–0.10)*

PIP (%) 68.37 (66.47–75.05) 70.80 (64.45–72.13)

IALS () 0.69 (0.67–0.75) 0.71 (0.65–0.72)

PSS (%) 78.96 (74.06–82.55) 80.27 (67.85–82.34)

PAS (%) 39.70 (35.57–56.26) 45.31 (38.76–47.77)

Frequency domain

Total power (ms2) 99.96 (16.51–159.82) 0.53 (0.17–7.28)*

VLF (ms2) 15.65 (2.48–77.80) 0.10 (0.04–0.13)*

LF (ms2) 33.71 (11.39–90.98) 0.15 (0.07–1.79)*

HF (ms2) 4.81 (1.98–22.55) 0.31 (0.03–5.35)

VLF norm () 14.66 (9.95–38.00) 12.64 (2.47–42.77)

LF norm () 89.70 (68.72–95.39) 36.02 (31.85–41.91)*

HF norm () 10.3 (4.61–31.28) 63.98 (58.09–68.15)*

VLF to LF ratio () 0.25 (0.12–0.79) 0.46 (0.08–1.09)

LF to HF ratio () 8.76 (2.44–20.97) 0.57 (0.47–0.72)*

LF peak (Hz) 1.34 (0.72–1.77) 2.02 (1.74–2.20)*

Non-linear domain

SD1 6.58 (3.81–14.93) 1.05 (0.34–4.65)*

SD2 13.12 (5.36–20.49) 0.85 (0.58–3.88)*

Beta −0.64 (−1.28 – −0.52) −1.28 (−1.65 – −0.80)

Alpha1 0.54 (0.44–0.75) 0.36 (0.27–0.44)

Alpha2 0.70 (0.59–0.77) 0.45 (0.26–0.90)

SampEn 0.89 (0.35–1.49) 1.66 (1.05–2.05)

*p < 0.05.

BRV Measures
We present here, for the first time, a procedure for calculation of
BRV measures in different mammals. The main adaptation from
HRV to BRV is the changes in the band cutoff frequencies and
the XX for pNNxx. Although the BR was lower under in situ
conditions, the cutoff frequency between LF and HF was higher.
These results are in contrast to the trend observed under in vivo
conditions (Behar et al., 2018a). We also justified that the range
of BI filtering should be different between in vivo and in situ
conditions due to change in average BR, as expected. Under
in vivo conditions, larger animals have a lower BR with increased
HRV (Noujaim et al., 2007; Behar et al., 2018a). However, in
isolated SAN tissue, a larger animal has lower BR but with
lower BRV. Thus, the non-linear inverse relationship between
the average HR and HRV is not maintained under in situ
conditions. Because both the autonomic nervous system (ANS)
and the SAN control the HR and HRV, lower HRV in small
mammals is achieved via the balance between the sympathetic
and parasympathetic systems. Thus, the ANS and the SAN have
opposite effects on the HR vs. HRV relationship.

The division between the two ranges in DFA is assumed to
be related to the relationship between the beating and breathing
rates (Willson et al., 2002). However, we found that the cutoff
between the two ranges under in vivo and under in situ conditions
was similar. Thus, one may doubt that the breathing rate is the
cause of the division, and it may be related to some internal
pacemaker mechanism.

BRV in Response to Conditions That
Affect Pacemaker Function
We further explored the BRV in response to a drug that
increases the beating rate (100 µM IBMX). As was shown before
(Yaniv et al., 2016), an increase in mouse BR was associated with
a decrease in the BRV time domain. Additional data regarding
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FIGURE 9 | Representative BRV measures if mice SAN tissues with and without phosphodiesterase inhibition by 100 µM IBMX. Representative examples (A)
histograms, (B) Poincare plots and average (control n = 12, drug = 6), (C) PSD, and (D) sample entropy. The dashed lines represent the standard deviation.

FIGURE 10 | Double-logarithmic plot of the mean SampEn vs. typical (A) heart rate (HRm) in vivo (adapted from Behar et al., 2018b) and (B) beating rate in vitro.

how drug intervention affects rabbit BRV, and BRV analysis from
other mammals, will provide further insight into the BR vs. BRV
relationship in situ.

BRV vs. HRV Measures
Table 4 summarizes the main differences between in vivo and
in situ BRV. Based on the time domain analysis, there was an

increase in fragmentation parameters in recordings of isolated
tissue as compared to in vivo conditions (Behar et al., 2018b).

Exploring the frequency domain parameters revealed
interesting phenomena. The majority of information was
restored in the LF and VLF bands of isolated tissue compared to
in vivo conditions. Thus, the SAN is the main contributor to the
VLF and LF bands in rabbit and to the VLF band in mice. One
of the consequences of such behavior in mice and rabbits can be
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related to the balance between sympathetic and parasympathetic
activity and to the relative magnitude of each of these activities in
different mammals. The mice in our research were hosted in 20◦C
well below the thermoneutrality temperature and thus showed
higher sympathetic activity, and sympathetic activity affects LF
more than HF (Axsom et al., 2020). However, acclimation to
a thermoneutral environment reversed the balance between
sympathetic and parasympathetic activity (Swoap et al., 2008;
Axsom et al., 2020), and thus, using SAN tissue from such mice
in the future can reverse the information restored in different
bands. As expected, there was almost no PSD in the HF band in
both rabbit and mouse SAN tissue. Thus, the ANS is the main
contributor to that band. Note that respiratory rate frequency
is characteristic of the vagal activity. Because vagal activity is
expressed in the HF band, it can explain the reduction in that
band in the isolated tissue.

Based on the non-linear analysis parameters, the system
complexity in the rabbit SAN tissue was higher as compared to
in vivo conditions; the opposite trend was observed in mice. Thus,
the system complexity is maintained mainly by the SAN in rabbit,
and in mice, both SAN and ANS contribute to this complexity.

We and others have shown before that smaller mammals
have a higher HR than larger mammals (Noujaim et al., 2007;
Behar et al., 2018a). We also showed that an increase in HR
was associated with a decrease in sample entropy (Figure 10A).
In contrast to the in vivo conditions, in isolated SAN tissue,
the opposite relationship between entropy index and BR was
observed (Figure 10B). Thus, putting the in vivo and SAN tissue
data together on one graph is expected to show biphasic behavior
for the BR and BRV. One can therefore hypothesize that when
the beating rate increases in situ, there is an increase in short-
time entropy quantified by first-order entropy. Thus, the intrinsic
properties of SAN lead to an increase in entropy in response to an
increase in BR. However, the fact that this relationship reverses
in vivo implies that (i) the ANS leads to an opposite relationship
between entropy and BR, and (ii) under in vivo conditions, the
ANS controls this first-order entropy scale as was shown before
(Rosenberg et al., 2020).

LIMITATIONS

The beat detector was trained and tested on SAN from healthy
animals, without any drug interventions. Future training and
examination of the beat detector on EGM of SAN tissue that
was exposed to a drug will be necessary to validate the use of
the beat detector. Similarly, we analyzed BRV using recordings
of SAN of healthy mammals. Future analysis of BRV of SAN

tissue from transgenic animals or animals with cardiac diseases
and comparison to the respective in vivo conditions will allow us
to learn how changes in SAN function affects HRV in vivo.

CONCLUSION

The approach presented here will enable standardization and
reproducibility of BRV analysis in mammalian. Different trends
were found between BR and BRV of isolated SAN tissue vs. HRV
in vivo conditions, implying a complex interaction between SAN
and the ANS in determining HRV in vivo.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
PhysioZoo.com.

ETHICS STATEMENT

The animal training and validation data used in the present paper
were obtained from published studies for which the respective
animal protocols and experimental procedures were approved by
the local research committee.

AUTHOR CONTRIBUTIONS

JB and YY conceived and designed the research. OS implemented
the source code and interface and formatted the databases. YY
drafted the manuscript. KT, JB, and YY edited and revised
the manuscript. JB, YY, OS, and KT approved the final
version. All authors contributed to the article and approved the
submitted version.

FUNDING

The work was supported by a Kamin Grant (YY) and ISF
330/19 (YY). This research was also supported by the Intramural
Research Program of the NIH, National Institute on Aging
(KT). KT was supported by the Japan Society for the Promotion
of Science Research Fellowship for Japanese Biomedical and
Behavioral Researchers at NIH. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

REFERENCES
Adair, R. K. (2003). Noise and stochastic resonance in voltage-gated ion channels.

Proc. Natl. Acad. Sci. U. S. A. 100, 12099–12104. doi: 10.1073/pnas.203444
7100

Axsom, J. E., Nanavati, A. P., Rutishauser, C. A., Bonin, J. E., Moen, J. M., and
Lakatta, E. G. (2020). Acclimation to a thermoneutral environment abolishes
age-associated alterations in heart rate and heart rate variability in conscious,

unrestrained mice. GeroScience 42, 217–232. doi: 10.1007/s11357-019-00126-
127

Behar, J., Ganesan, A., Zhang, J., and Yaniv, Y. (2016). The autonomic
nervous system regulates the heart rate through cAMP-PKA dependent and
independent coupled-clock pacemaker cell mechanisms. Front. Physiol. 7:419.
doi: 10.3389/fphys.2016.00419

Behar, J. A., Rosenberg, A. A., Shemla, O., Murphy, K. R., Koren, G., Billman,
G. E., et al. (2018a). A universal scaling relation for defining power spectral

Frontiers in Neuroscience | www.frontiersin.org 12 February 2021 | Volume 14 | Article 614141

https://PhysioZoo.com
https://doi.org/10.1073/pnas.2034447100
https://doi.org/10.1073/pnas.2034447100
https://doi.org/10.1007/s11357-019-00126-127
https://doi.org/10.1007/s11357-019-00126-127
https://doi.org/10.3389/fphys.2016.00419
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-614141 February 11, 2021 Time: 17:58 # 13

Shemla et al. Beating Rate Variability of Isolated SAN

bands in mammalian heart rate variability analysis. Front. Physiol. 9:1001. doi:
10.3389/fphys.2018.01001

Behar, J. A., Rosenberg, A. A., Weiser-Bitoun, I., Shemla, O., Alexandrovich, A.,
Konyukhov, E., et al. (2018b). PhysioZoo: a novel open access platform for heart
rate variability analysis of mammalian electrocardiographic data. Front. Physiol.
9:1390. doi: 10.3389/fphys.2018.01390

Bergfeldt, L., and Haga, Y. (2003). Power spectral and Poincare plot characteristics
in sinus node dysfunction. J. Appl. Physiol. 94, 2217–2224. doi: 10.1152/
japplphysiol.01037.2002

Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature 415, 198–205.
doi: 10.1038/415198a

Burg, M. M., Jain, D., Soufer, R., Kerns, R. D., and Zaret, B. L. (1993). Role
of behavioral and psychological factors in mental stress-induced silent left
ventricular dysfunction in coronary artery disease. J. Am. Coll. Cardiol. 22,
440–448. doi: 10.1016/0735-1097(93)90048-6

Carvalho, J. L. A., Rocha, A. F., Dos Santos, I., Itiki, C., Junqueira, L. F., and
Nascimento, F. A. O. (2003). “Study on the optimal order for the auto-regressive
time-frequency analysis of heart rate variability,” in Annual International
Conference of the IEEE Engineering in Medicine and Biology - Proceedings,
(New York, NY: IEEE), 2621–2624. doi: 10.1109/iembs.2003.1280453

Costa, M., Goldberger, A. L., and Peng, C.-K. (2005). Multiscale entropy analysis of
biological signals. Phys. Rev. E 71:021906. doi: 10.1103/PhysRevE.71.021906

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G., et al. (2000). PhysioBank, physiotoolkit, and physionet. components
of a new research resource for complex physiologic signals. Circulation 101,
215–220. doi: 10.1161/01.CIR.101.23.e215

Hook, M., Roy, S., Williams, E. G., Bou Sleiman, M., Mozhui, K., Nelson, J. F.,
et al. (2018). Genetic cartography of longevity in humans and mice: current
landscape and horizons. Biochim. Biophys. Acta - Mol. Basis Dis. 1864, 2718–
2732. doi: 10.1016/J.BBADIS.2018.01.026

Liu, J., Sirenko, S., Juhaszova, M., Sollott, S. J., Shukla, S., Yaniv, Y., et al.
(2014). Age-associated abnormalities of intrinsic automaticity of sinoatrial
nodal cells are linked to deficient cAMP-PKA-Ca(2+) signaling. Am. J.
Physiol. Hear. Circ. Physiol. 306, H1385–H1397. doi: 10.1152/ajpheart.000
88.2014

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data.
Astrophys. Space Sci. 39, 447–462. doi: 10.1007/BF00648343

Malik, M. (1996). Heart rate variability. standards of measurement, physiological
interpretation, and clinical use. task force of the european society of cardiology
and the north american society of pacing and electrophysiology. Eur. Heart J.
17, 354–381. doi: 10.1111/j.1542-474X.1996.tb00275.x

Michaels, D. C., Matyas, E. P., and Jalife, J. (1986). Dynamic interactions and
mutual synchronization of sinoatrial node pacemaker cells. a mathematical
model. Circ. Res. 58, 706–720. doi: 10.1161/01.res.58.5.706

Morrissey, P. J., Murphy, K. R., Daley, J. M., Schofield, L., Turan, N. N.,
Arunachalam, K., et al. (2017). A novel method of standardized myocardial
infarction in aged rabbits. Am. J. Physiol. Circ. Physiol. 312, H959–H967. doi:
10.1152/ajpheart.00582.2016

Noujaim, S. F., Berenfeld, O., Kalifa, J., Cerrone, M., Nanthakumar, K., Atienza, F.,
et al. (2007). Universal scaling law of electrical turbulence in the mammalian
heart. Proc. Natl. Acad. Sci. U S A. 104, 20985–20989. doi: 10.1073/pnas.
0709758104

Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger,
A. L. (1994). Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–
1689. doi: 10.1103/PhysRevE.49.1685

Peng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time
series. Chaos 5, 82–87. doi: 10.1063/1.166141

Rosenberg, A. A., Weiser-Bitoun, I., Billman, G. E., and Yaniv, Y. (2020). Signatures
of the autonomic nervous system and the heart’s pacemaker cells in canine
electrocardiograms and their applications to humans. Sci. Rep. 10:9971. doi:
10.1038/s41598-020-66709-z

Swoap, S. J., Li, C., Wess, J., Parsons, A. D., Williams, T. D., and Overton,
J. M. (2008). Vagal tone dominates autonomic control of mouse heart rate at
thermoneutrality. Am. J. Physiol. - Hear. Circ. Physiol. 294, 1581–1588. doi:
10.1152/ajpheart.01000.2007

Tarvainen, M. P., Georgiadis, S. D., Ranta-Aho, P. O., and Karjalainen, P. A. (2006).
Time-varying analysis of heart rate variability signals with a Kalman smoother
algorithm. Physiol. Meas. 27, 225–239. doi: 10.1088/0967-3334/27/3/002

Terentyev, D., Rees, C. M., Li, W., Cooper, L. L., Jindal, H. K., Peng, X., et al. (2014).
Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit
model of LQT2 syndrome. Circ. Res. 115, 919–928. doi: 10.1161/CIRCRESAHA.
115.305146

Thireau, J., Zhang, B. L., Poisson, D., and Babuty, D. (2008). Heart rate variability
in mice: a theoretical and practical guide. Exp. Physiol. 93, 83–94. doi: 10.1113/
expphysiol.2007.040733

Tzimas, C., Johnson, D. M., Santiago, D. J., Vafiadaki, E., Arvanitis, D. A., Davos,
C. H., et al. (2017). Impaired calcium homeostasis is associated with sudden
cardiac death and arrhythmias in a genetic equivalent mouse model of the
human HRC-Ser96Ala variant. Cardiovasc. Res. 113, 1403–1417. doi: 10.1093/
cvr/cvx113

Welch, P. D. (1967). The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Trans. Audio Electroacoust. 15, 70–73. doi: 10.1109/TAU.1967.11
61901

Willson, K., Francis, D. P., Wensel, R., Coats, A. J. S., and Parker, K. H. (2002).
Relationship between detrended fluctuation analysis and spectral analysis of
heart-rate variability. Physiol. Meas. 23, 385–401. doi: 10.1088/0967-3334/23/
2/314

Yang, H., and Xu-Friedman, M. A. (2013). Stochastic properties of
neurotransmitter release expand the dynamic range of synapses. J. Neurosci.
33, 14406–14416. doi: 10.1523/JNEUROSCI.2487-13.2013

Yaniv, Y., Ahmet, I., Liu, J., Lyashkov, A. E., Guiriba, T.-R., Okamoto, Y., et al.
(2014). Synchronization of sinoatrial node pacemaker cell clocks and its
autonomic modulation impart complexity to heart beating intervals. Hear.
Rhythm 11, 1210–1219. doi: 10.1016/j.hrthm.2014.03.049

Yaniv, Y., Ahmet, I., Tsutsui, K., Behar, J., Moen, J. M., Okamoto, Y., et al. (2016).
Deterioration of autonomic neuronal receptor signaling and mechanisms
intrinsic to heart pacemaker cells contribute to age-associated alterations
in heart rate variability in vivo. Aging Cell 15, 716–724. doi: 10.1111/acel.
12483

Yaniv, Y., Ganesan, A., Yang, D., Ziman, B. D., Lyashkov, A. E., Levchenko, A.,
et al. (2015). Real-time relationship between PKA biochemical signal network
dynamics and increased action potential firing rate in heart pacemaker cells:
kinetics of PKA activation in heart pacemaker cells. J. Mol. Cell Cardiol. 86,
168–178. doi: 10.1016/j.yjmcc.2015.07.024

Yaniv, Y., Maltsev, V. A., Escobar, A. L., Spurgeon, H. A., Ziman, B. D., Stern,
M. D., et al. (2011). Beat-to-beat Ca2+-dependent regulation of sinoatrial nodal
pacemaker cell rate and rhythm. J. Mol. Cell. Cardiol. 51, 902–905. doi: 10.1016/
j.yjmcc.2011.08.029

Zaza, A., and Lombardi, F. (2001). Autonomic indexes based on the analysis of
heart rate variability: a view from the sinus node. Cardiovasc. Res. 50, 434–442.
doi: 10.1016/s0008-6363(01)00240-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Shemla, Tsutsui, Behar and Yaniv. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2021 | Volume 14 | Article 614141

https://doi.org/10.3389/fphys.2018.01001
https://doi.org/10.3389/fphys.2018.01001
https://doi.org/10.3389/fphys.2018.01390
https://doi.org/10.1152/japplphysiol.01037.2002
https://doi.org/10.1152/japplphysiol.01037.2002
https://doi.org/10.1038/415198a
https://doi.org/10.1016/0735-1097(93)90048-6
https://doi.org/10.1109/iembs.2003.1280453
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1016/J.BBADIS.2018.01.026
https://doi.org/10.1152/ajpheart.00088.2014
https://doi.org/10.1152/ajpheart.00088.2014
https://doi.org/10.1007/BF00648343
https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
https://doi.org/10.1161/01.res.58.5.706
https://doi.org/10.1152/ajpheart.00582.2016
https://doi.org/10.1152/ajpheart.00582.2016
https://doi.org/10.1073/pnas.0709758104
https://doi.org/10.1073/pnas.0709758104
https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1063/1.166141
https://doi.org/10.1038/s41598-020-66709-z
https://doi.org/10.1038/s41598-020-66709-z
https://doi.org/10.1152/ajpheart.01000.2007
https://doi.org/10.1152/ajpheart.01000.2007
https://doi.org/10.1088/0967-3334/27/3/002
https://doi.org/10.1161/CIRCRESAHA.115.305146
https://doi.org/10.1161/CIRCRESAHA.115.305146
https://doi.org/10.1113/expphysiol.2007.040733
https://doi.org/10.1113/expphysiol.2007.040733
https://doi.org/10.1093/cvr/cvx113
https://doi.org/10.1093/cvr/cvx113
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1088/0967-3334/23/2/314
https://doi.org/10.1088/0967-3334/23/2/314
https://doi.org/10.1523/JNEUROSCI.2487-13.2013
https://doi.org/10.1016/j.hrthm.2014.03.049
https://doi.org/10.1111/acel.12483
https://doi.org/10.1111/acel.12483
https://doi.org/10.1016/j.yjmcc.2015.07.024
https://doi.org/10.1016/j.yjmcc.2011.08.029
https://doi.org/10.1016/j.yjmcc.2011.08.029
https://doi.org/10.1016/s0008-6363(01)00240-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Beating Rate Variability of Isolated Mammal Sinoatrial Node Tissue: Insight Into Its Contribution to Heart Rate Variability
	Introduction
	Materials and Methods
	Databases
	Manual Beat Detection
	Beat Detection Algorithms
	Beating Rate Variability Measures
	Prefiltering
	Time Domain Measures
	Frequency Domain Measures
	Non-linear Domain Measures

	User Interface
	Performance Statistics
	General Statistics

	Results
	Beat Detector
	BRV Measures
	Studying BRV in Response to Conditions That Affect Pacemaker Function

	Discussion
	Beat Detector
	BRV Measures
	BRV in Response to Conditions That Affect Pacemaker Function
	BRV vs. HRV Measures

	Limitations
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


