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Neurodegeneration of the central and enteric nervous systems is a common

feature of aging and aging-related diseases, and is accelerated in individuals with

metabolic dysfunction including obesity and diabetes. The molecular mechanisms of

neurodegeneration in both the CNS and ENS are overlapping. Sirtuins are an important

family of histone deacetylases that are important for genome stability, cellular response to

stress, and nutrient and hormone sensing. They are activated by calorie restriction (CR)

and by the coenzyme, nicotinamide adenine dinucleotide (NAD+). Sirtuins, specifically

the nuclear SIRT1 and mitochondrial SIRT3, have been shown to have predominantly

neuroprotective roles in the CNSwhile the cytoplasmic sirtuin, SIRT2 is largely associated

with neurodegeneration. A systematic study of sirtuins in the ENS and their effect

on enteric neuronal growth and survival has not been conducted. Recent studies,

however, also link sirtuins with important hormones such as leptin, ghrelin, melatonin, and

serotonin which influence many important processes including satiety, mood, circadian

rhythm, and gut homeostasis. In this review, we address emerging roles of sirtuins in

modulating the metabolic challenges from aging, obesity, and diabetes that lead to

neurodegeneration in the ENS and CNS. We also highlight a novel role for sirtuins along

the microbiota-gut-brain axis in modulating neurodegeneration.

Keywords: central nervous system, enteric nervous system, gut microbiota, myenteric plexus, neuronal survival,

neurodegeneration, sirtuin (SIRT)

THE EFFECTS OF AGE, OBESITY, AND DIABETES ON
NEURODEGENERATION IN THE CNS AND ENS

Neurodegeneration in the CNS is characterized by a progressive loss of distinct groups of neurons
in specific regions of the brain, deposition of misfolded proteins in neurons, and alterations in
astrocytes (Przedborski et al., 2003; Maragakis and Rothstein, 2006) which results in cognitive
dysfunction, loss of synapses, impaired synaptic plasticity, disrupted neuronal signaling, and cell
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death. The factors that contribute to neuronal stresses in the CNS
are aging, neurodegenerative diseases (NDs), comorbidities such
as obesity and diabetes, over nutrition via high calorie intake, a
lack of physical activity, and genetic background (Popa-Wagner
et al., 2020). These stresses and changing physiological demands
from oxidative damage, protein aggregation, dietary changes,
inflammation, high metabolic demands, are counteracted by cells
to maintain cellular, protein, and metabolic homeostasis (Squier,
2001; Uttara et al., 2009). Similar to the CNS, the neurons of
the enteric nervous system (ENS) or the “brain within the gut,”
are also prone to neurodegeneration. The ENS is a subdivision
of the peripheral nervous system and functions independently
of the central nervous system (Nezami and Srinivasan, 2010).
The ENS is embedded within the walls of the intestine and
directly controls gastrointestinal functions. The neurons and glia
in the ENS are structurally organized into two interconnected
layers, the myenteric and the submucosal plexi. The myenteric
plexus, which is located between the circular and longitudinal
muscle layers, regulates gastrointestinal motility whereas the
submucosal plexus, which is located between the circular muscle
and mucosa, regulates secretory activity. In these plexuses, the
neuronal cells form groups of interconnected ganglions that
are surrounded by glia. The individual ganglia are connected
to each other and to the epithelium by neuronal projections
(Nezami and Srinivasan, 2010). The ENS, intestinal epithelium,
gut microbiota, and immune cells work in harmony together
to ensure the proper functioning of the intestine (Walsh and
Zemper, 2019). ENS-related neurodegeneration is particularly
evident in individuals with aging and neurodegenerative
disorders. Moreover, individuals with aging or NDs also
experience symptoms related to gastrointestinal dysmotility
especially chronic constipation due to loss of enteric neurons in
the myenteric plexus leading to ENS dysfunction (Poirier et al.,
2016; Rao and Gershon, 2016). Additional stresses from dietary
changes and antibiotic treatments can alter the gut microbiota
and also influence ENS function (Carabotti et al., 2015). Further
understanding of the factors leading to neurodegeneration
of the CNS and ENS is critical and can lead to new
therapeutic targets.

Aging Associated Neurodegeneration
Aging is a multifactorial process accompanied by many changes
at the cellular, tissue, and organismal level over time and has
shown to be a major risk factor for neurodegeneration of the CNS
and the ENS (Wade and Cowen, 2004; Hou et al., 2019). Cross-
sectional, longitudinal, and quantitative magnetic resonance
imaging (MRI) and voxel-based morphometry (VMI) analyses
report reduced brain volume and brain atrophy especially in the
hippocampus and the prefrontal cortex, in conjunction with a
decline in cognitive functioning in older adults (Liu et al., 2003;
Terribilli et al., 2011; Ramanoel et al., 2018). In vitro studies in rat

Abbreviations: Ab, Antibody; CR, Calorie restriction; CNS, Central nervous

system; ENS, Enteric nervous system; GI, Gastrointestinal; HFD, High-fat diet;

KO, Knock out; NDs, Neurodegenerative diseases; NF-κB, Nuclear factor kappa B;

PGC-1α, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha;

ROS, Reactive oxygen species; Sirtuins, Silent information regulator genes: sirtuins;

SCFA, Short chain fatty acid: SCFA; T2D, Type II diabetes; WT, Wild type.

primary cortical and hippocampal neurons, cultured long term,
demonstrate irreparable DNA damage that underlies normal
aging leading to proteostasis and cell senescence (Ishikawa
and Ishikawa, 2020). This causes a loss of ability to repair
tissues, chemokine and cytokine release, low grade inflammation,
and results in age-related neurodegeneration. Population-based
studies of cognitively unimpaired aged people reported an
accumulation of abnormal protein deposits that positively
correlated with age (Elobeid et al., 2016). While age-associated
neurodegeneration is accompanied by a gradual loss of neurons,
rapid progression in behavioral and cognitive changes have
been attributed to chronic neurodegenerative diseases (ND)
such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)
(Wilson et al., 2010). Along with these functional declines,
the cerebral levels of neurotransmitters such as dopamine,
acetylcholine, serotonin, and norepinephrine, and neurotrophic
factors such as brain-derived neurotrophic factor (BDNF) and
nerve growth factor (NGF) are dramatically reduced in aging
brains (Vecchio et al., 2018).

The impact of aging on the ENS is controversial. Enteric
neurons from the colon of human tissues have been shown
to decrease in the 4th year of age in both the plexuses with
a further loss of 37% of total neuron population between the
ages 20–65 (Gomes et al., 1997). Some studies have reported
a loss of 50–60% of myenteric neurons has been reported in
the aging guts and especially the colon of aging rats (Santer
and Baker, 1988; Nezami and Srinivasan, 2010) while other
studies contrasted that myenteric neuron numbers in the aging
colon remain the same albeit with functional changes (Gamage
et al., 2013). Neurotransmitters produced by myenteric neurons
and neuronal reflexes mediate late neurogenesis and regulate
intestinal motility (Cooke, 2000; Nezami and Srinivasan, 2010).
Neurons that produce the choline acetyl transferase (ChAT) and
neuronal NOS (nNOS) regulate intestinal motility by stimulating
and inhibiting intestinal smooth muscles, respectively (Porter
et al., 2002). An imbalance in the equilibrium between the nNOS-
and ChAT-producing neurons can alter the ENS architecture and
result in an altered bowel motility (Nezami and Srinivasan, 2010).
These changes presumably alter the normally well-orchestrated
crosstalk between the enteric neurons and glia. Some studies also
report a loss of choline acetyltransferase (ChAT) and no changes
in neuronal nitric oxide synthase (nNOS)- expressing myenteric
neurons (Phillips et al., 2003; Nezami and Srinivasan, 2010) while
other studies report the loss of nNOS and ChAT neurons in the
myenteric plexus of aging mice (Becker et al., 2018; Sun et al.,
2018). In rats, studies have reported a loss of submucosal neurons
in the proximal and distal colon in 12 months old animals when
compared to 3 month old animals with a greater loss occurring
in the distal colon and maximum loss occurring at 24 months
of age (Saffrey, 2013). In samples from human colon and ileum,
the myenteric ganglia had a wider area overall, with a larger
proportion of them with increased gaps within the ganglia and
this correlated with increasing age, that might contribute to gut
dysmotility seen in older individuals (Hanani et al., 2004). Factors
and pathways cumulatively associated with neurodegeneration
in the CNS and the ENS with aging (Wyss-Coray, 2016) are
diagrammatically represented in Figure 1.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 614331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chandramowlishwaran et al. Sirtuins and Neurodegeneration

FIGURE 1 | Metabolic dysfunction in the central nervous system (CNS) and the enteric nervous system (ENS). Aging, obesity, and diabetes leads to different

molecular and physiological changes that cause neurodegeneration in the hypothalamus of the CNS and the ENS of the gut. Created with BioRender.com.

Neurodegeneration Associated With
Metabolic Disorders—Obesity and
Diabetes
Obesity and type II diabetes (T2D) have been suggested to
accelerate the physiological process of aging (Thorpe and Ferraro,
2004; Kalyani et al., 2017) and obesity is a known risk factor
for T2D development (Al-Goblan et al., 2014). In age-dependent
and age-independent studies, obesity has been shown to double
the risk for mild cognitive impairment, dementia, and AD (Qiu
et al., 2009; Hildreth et al., 2012). T2D causes brain atrophy,
reduced cerebral glucose metabolism, and insulin resistance in
the CNS, and this is also seen in AD (Arnold et al., 2018).
Accumulation of misfolded phosphorylated tau and amyloid beta
(Arnold et al., 2018) in the brain as well as the islet amyloid
polypeptide (amylin) (Raimundo et al., 2020) co-secreted with
insulin in the islet beta cells are major pathological features
observed in T2D patients who develop AD. As seen in aging,
computed tomography demonstrated structural changes in the
obese brain such as atrophy in the hippocampus and decreased

hippocampal volume (O’Brien et al., 2017). The prefrontal
cortex and the hippocampus which are crucial for learning

and memory are most vulnerable to obesity-related changes

(Bischof and Park, 2015). The hypothalamus controls metabolic
homeostasis by sensing nutrients and hormones via autonomic
and neuroendocrine signaling to integrate the signals of satiety.

Inflammation of the hypothalamus from high fat feeding induces
Inhibitor Of Nuclear Factor Kappa-B (IKKβ)/NF-kB-dependent

inflammation, changes satiety control, and increases the risk

for developing obesity (Timper and Bruning, 2017). Magnetic

resonance imaging (MRI) has shown an inverse relationship
between Body Mass Index (BMI) as well as diabetes and

brain volume, neuron viability, and gliosis in the hypothalamus
(Thomas et al., 2019). Obese individuals with higher BMI

with no cognitive defects also displayed decreased gray matter,
brain atrophy in the frontal lobe, hippocampus and thalamus
when compared to non-obese, thus demonstrating extensive
neurodegeneration (Stillman et al., 2017). Vascular defects from
obesity leading to cognitive decline include lipotoxicity, diabetes
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impaired insulin metabolism and signaling pathway or defect in
glucose transport mechanisms in the brain (Uranga and Keller,
2019). Adipose tissues including white adipose tissue (WAT) are
important for metabolism and hormones derived from WAT
such as leptin and adiponectin are involved in regulating obesity
and diabetes (Stern et al., 2016). Leptin plays a major role in
body weight regulation and reducing appetite (Ramos-Lobo and
Donato, 2017). Leptin bound to its receptor Ob-Rb has been
shown in the cortex and the hippocampus which are major
sites of neurodegeneration in aging, AD and PD (McGregor
and Harvey, 2018). Another adipokine, adiponectin has been
shown to have an opposite effect to leptin in inflammation
and insulin resistance, and the ratio of leptin to adiponectin is
considered as a marker for developing T2D and obesity (Forny-
Germano et al., 2018). High levels of circulating leptin caused
by obesity has been shown to lead to leptin resistance in the
hypothalamus and is linked to alteredmetabolism, inflammation,
and neurodegeneration in the brain (Forny-Germano et al.,
2018). Obesity and T2D also cause gastrointestinal dysmotility
and lead to enteric neuronal degeneration (Yarandi and
Srinivasan, 2014). Diabetic autonomic neuropathy has been
shown to gastrointestinal disturbances including impaired
esophageal transit, gastroparesis, and disorganized intestinal
motility with constipation and diarrhea (Verrotti et al., 2014).
Our studies in obese and overweight human subjects and in mice
fed a high fat diet have demonstrated increased pyroptosis in
nitrergic neurons, delayed colonic transit, and impaired electric
field stimulation–induced colonic relaxation responses (Ye et al.,
2020). In mouse Other studies in the ENS using mice models of
high fat diet and obesity induced diabetic neuropathy reported a
reduction in hormones such as ghrelin, cholecystokinin (CCK),
and leptin levels; and inhibitory neurons expressing nitric
oxide synthase (nNOS), vasoactive intestinal peptide (VIP),
neuropeptide Y (NPY), and galanin as well as their expression
levels (Chandrasekharan and Srinivasan, 2007; Li et al., 2011;
Voukali et al., 2011; Stenkamp-Strahm et al., 2015). The neuronal
changes characterized by the loss of important neurotransmitters
and hormones resulted in altered gastric emptying, diarrhea and
constipation that is characteristic of enteric neurodegeneration
(Stenkamp-Strahm et al., 2015). Moreover, these alterations
could be a compensatory mechanism to increase satiety and
decrease food intake to balance weight gain in diet induced obese
mice (Coll et al., 2007). A major orchestrator of pathways in
response to stresses caused by age- and metabolism-associated
neurodegeneration are the sirtuins (Duan, 2013). Factors and
pathways cumulatively associated with neurodegeneration in the
CNS and the ENS with metabolic dysfunction are summarized in
Figure 1.

FUNCTION AND DISTRIBUTION OF
SIRTUINS

Localization, Activators, and Substrates of
Sirtuins
Silent information regulator (Sirtuins) are a family of class III
histone deacetylases with a conserved catalytic domain core

TABLE 1 | Overview of sirtuin localization, activity, substrates, functions, and

activators.

Sirtuin Specific examples relevant to metabolism

Localization Sirtuins are present in all subcellular compartments and differ in

their substrate specificities (Houtkooper et al., 2012). SIRT1,

SIRT6, and SIRT7 are predominantly nuclear but also detected at

lower levels in cytosol, membrane, and the cytoskeleton. SIRT2

resides in the cytoplasm (Houtkooper et al., 2012) though it is also

found in the nucleus and the cell membrane (North and Verdin,

2007). SIRT3, SIRT4, and SIRT5 predominantly localize to the

mitochondria although they are also found in the nucleus and the

cytoplasm (Houtkooper et al., 2012).

Enzymatic

activity

SIRT1, SIRT2, SIRT3, SIRT5, and SIRT7 predominantly

deacetylate histone and non-histone proteins; SIRT4 and SIRT6

act as mono-ADP-ribosyl transferases (Canto et al., 2013).

Functions SIRT1 and SIRT3—Neuronal protection and cell survival, DNA

repair, chromatin remodeling, neuronal differentiation, apoptosis,

energy and metabolic homeostasis, mitochondrial biogenesis,

autophagy, glucose production and insulin secretion, lipid

homeostasis, anti-inflammation (Yamamoto et al., 2007; Duan,

2013; Giblin et al., 2014). SIRT2—cell cycle regulation, modulation

of microtubule deacetylation and myelination, tumorigenesis,

neurodegeneration (Yamamoto et al., 2007; Gomes et al., 2015).

SIRT4—insulin secretion, cell cycle regulation (Yamamoto et al.,

2007). SIRT5—Mitochondrial metabolism, urea cycle (Yamamoto

et al., 2007). SIRT6—glucose homeostasis, genome stability, DNA

repair, anti-inflammation (Yamamoto et al., 2007; Zhong and

Mostoslavsky, 2010). SIRT7—rDNA transcription (Wu et al., 2018).

Histone

targets

H1, H3, H4 (H1K26, H1K9, H3K9, H3K56, H3K14, H4K16) by

SIRT1; H4K16 by SIRT2; H3, H4 (H3K9, H4K16) by SIRT3; H2B,

H3 (H2BK12, H3K9, H3K56) by SIRT6; and H2A, H2B, H3

(H3K18) by SIRT7 (Jing and Lin, 2015).

Non-histone

targets

Transcriptional regulators (Martinez-Redondo and Vaquero, 2013;

Jing and Lin, 2015) related to:

• Stress - p53, Nuclear Factor kappa B (NF-κB), Forkhead Box

(FoxO), Superoxide dismutase 2 (SOD2), Poly (ADP-ribose)

polymerase (PARP), target of rapamycin (TOR) kinase (TORC2),

bcl-2-like protein 4 (Bax), leucine zippers - c-Fos and c-Jun,

Uncoupling Protein 2 (UCP2), Heat shock factor 1 (HSF1), b-

catenin, E2F Transcription Factor 1 (E2F1), Period Circadian

Regulator 2 (PER2), Circadian Locomotor Output Cycles Kaput

(CLOCK)

• Metabolism - Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC-1α), Liver X receptor (LXR), Farnesoid

X receptor (FXR)

• DNA repair - Ku70, Peroxisome proliferator-activated receptor

gamma (PPARγ)

• Structural protein - α-tubulin

• Chromatin remodeling - p300, MOF

Agonists or

stimulators

Resveratrol [activated SIRT1 and reduced signs of aging without

changing the expression patterns of other sirtuins (Borra et al.,

2005)], SRT1720 (Huynh et al., 2013) and oxazolo[4,5-b] pyridines

(Bemis et al., 2009) [activated SIRT1 to treat diabetes and insulin

resistance in mice (Bemis et al., 2009)], pyrrolo[3,2-b]quinoxalines

[promoted SIRT1, SIRT2, and SIRT3-dependent anti-inflammatory

properties in vitro (Villalba and Alcain, 2012)], and honokiol

[activated SIRT3 and counteracted oxidative stress and

mitochondrial damage in AD and diabetes studies (Ramesh et al.,

2018; Zheng et al., 2018)].

of 275 amino acids (Houtkooper et al., 2012). The subcellular
localization, enzymatic activities, transcriptional substrates,
functions, and activators of sirtuins are briefly explained in
Table 1. As cooperative sensors and regulators of nutrients and
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energy metabolism in response to changes in diet and stress,
they require NAD+ for their enzymatic activity (Anderson
et al., 2017). Energy deficits by calorie restriction or cellular
stressors increase NAD+ levels and activate sirtuins (Guarente,
2013).

Distribution of Sirtuins in the CNS and the
ENS
All of the seven sirtuins are ubiquitously expressed in all human
tissues (Yamamoto et al., 2007). Mass spectrometry and semi-
quantitative studies have shown that all the sirtuins are expressed
in the human and non-human brain and small intestine
(Sidorova-Darmos et al., 2014; Jayasena et al., 2016). In the brain,
SIRT1 (110 KDa) and SIRT2 (37 KDa) are the most abundant
and widely expressed sirtuin subtypes. SIRT1 expression is
highest in the neurons of the cerebellum, hippocampus, and the
hypothalamus and lowest in the spinal cord. SIRT2 is highest in

the spinal cord and brain stem and is also highly expressed in the
cortex, frontal lobe, hippocampus, striatum, and cerebellum. The
mitochondrial sirtuins, SIRT3, SIRT4, SIRT5, are also expressed
in different regions of the brain, but at lower levels than SIRT1
and SIRT2. In the brain, SIRT6 and SIRT7 are expressed at the
lowest levels compared to other sirtuins. All the sirtuins, except
for SIRT7, are expressed at lower levels in the small intestine
than is detected in the brain. SIRT7 is the most highly expressed
sirtuin in the small intestine with 10-fold higher expression than
in the brain. Considering that subcellular localization of sirtuins
are cell type dependent, more sampling across different cell lines
and tissue types can provide information about the anatomical
contribution of the lesser abundant sirtuins. Recent studies have
shown that both SIRT1 and SIRT3 are expressed by neurons of
the ENS (Lakhan and Kirchgessner, 2011; Bubenheimer et al.,
2016). However, the role of sirtuins in ENS neurodegeneration
remains unknown.

FIGURE 2 | Sirtuins in neuroprotection and neurodegeneration. In healthy neurons, downregulation of IGF-1 and activation of SIRT1 by the availability of NAD+

induces the activation of FOXO transcription factors and the transcription of antioxidant genes in the nucleus. SIRT1 and SIRT3 activation by calorie restriction (CR) or

by resveratrol also leads to PGC-1α modulation with improved mitochondrial function and decreased oxidative stress. PGC-1α and FOXOs can be directly activated

through AMPK-dependent phosphorylation. SIRT1 or SIRT3 activation or SIRT2 inhibition can activate autophagy, leading to neuroprotection. SIRT4 and SIRT5

modulation of fatty acid oxidation and reducing oxidative stress contributes to mitochondrial homeostasis, and SIRT7 regulates nuclear encoded mitochondrial genes.

SIRT6 represses the recruitment of HIF-1α to its target gene promoter and inhibits glycolysis and increases mitochondrial respiration. During aging, obesity, and

diabetes, the reduced availability of NAD+ causes decreased AMPK, SIRT1, and SIRT3 levels which in turn decreases the stimulatory effect of PGC-1α on

mitochondrial biogenesis. Decreased SIRT1 reduces mTOR inhibition and reduces autophagy and decreases cell viability. SIRT1 can no longer suppress IGF-1,

NF-κB, or p53, acetylates and stabilizes p53, and causes inflammation and apoptosis. Low levels of SIRT4 increases glutamine reflux, dysregulates insulin sensitivity,

glucose metabolism, and fatty acid oxidation. SIRT5 and SIRT6 deficiency reduces ATP levels in the mitochondria. Moreover, low levels of SIRT6 leads to increased

HIF-1α and results in increased glucose uptake and glycolysis. On the other hand, SIRT2 (or its isoforms) accumulate with age and promote cell death by deacetylating

Foxo3a and upregulating a pro-apoptotic factor, Bim. These processes progressively lead to neuronal degeneration and cell death. Created with BioRender.com.
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ROLE OF SIRTUINS IN MODULATING
NEURODEGENERATION IN THE CNS

Role of Sirtuins in Modulating
Neurodegeneration Associated With Aging
and Neurodegenerative Diseases
Aging leads to damage of cellular organelles and accumulation
of proteins that causes an imbalance in cellular homeostasis
and accelerates neurodegeneration (Castelli et al., 2019). SIRT1
and SIRT6 levels increase and decrease respectively with
age respectively despite similarities in cellular localization
and their role in increasing lifespan (Lee et al., 2019). A
reduction in SIRT1 activity was reported in post-mortem brain
tissue of PD patients (Singh et al., 2017). SIRT1 has shown
to be universally involved in multiple pathways associated
with stress related to energy homeostasis and metabolism
through epigenetic regulation and transcriptional modulation
whereas SIRT6 is important for glucose metabolism and exerts
neuroprotection from DNA damage (Ramadori et al., 2008;
Zhong andMostoslavsky, 2010). Overexpression of brain-specific
SIRT1, ubiquitous overexpression of SIRT6, calorie restriction,
or resveratrol, extended lifespan and prevented experimental AD
amyloid neuropathology (Giblin et al., 2014). Resveratrol has
been shown to inhibit the activity of a serine/threonine kinase
called mammalian target of rapamycin (mTOR) which contrasts
with nicotinamide, a SIRT1 antagonist enhanced mTOR activity
and reduced age-induced autophagy (Ghosh et al., 2010). In
neurons comprising of non-dividing cells, SIRT1 has been shown
to foster DNA repair during double strand breaks and protect
against genomic instability caused by aging (Oberdoerffer et al.,
2008). Studies in rat brain, kidney, liver, and fat pad tissues
showed that SIRT1 induced by calorie restriction maintained
a DNA repair factor, Ku70 in a deacetylated state to sequester
Bax from the mitochondria to attenuate apoptosis, thus shifting
the balance from cell death toward cell survival (Amsel et al.,
2008). SIRT1 and in some cases, SIRT2 and the signaling
pathways of insulin and insulin-like growth factor-I (IGF-I),
bidirectionally regulate each other (Sansone et al., 2013). IGF-1 is
an important growth factor that has been shown to be important
for neurogenesis and cell survival of neurons as well as inhibition
of apoptosis during postnatal to adult stages (Nieto-Estevez et al.,
2016). IGF-1 declines with age in the brains of humans and
rodents, and treatment with IGF-1 agonists in preclinical models
of AD and PD have shown to improve neuronal survival (Nieto-
Estevez et al., 2016). Notably, SIRT1 deacetylates insulin receptor
substrate 2 (IRS-2), a substrate protein for IGF-1 and activates
Akt, an insulin receptor target of IGF (Sansone et al., 2013),
highlighting SIRT1 importance in modulating IGF-1 signaling.

Overexpression of SIRT1 and the addition of resveratrol
has shown to provide neuroprotective effects in various animal
models of AD by reducing amyloid plaque formation and
neurofibrillary tau pathology (Chen et al., 2005; Qin et al.,
2006; Kim et al., 2007; Green et al., 2008; Karuppagounder
et al., 2009; Min et al., 2010; Vingtdeux et al., 2010). SIRT1

was shown to target ADAM10, a retinoic acid receptor
β target and induce Notch receptor cleavage to promote
non-amyloidogenic processing of amyloid precursor protein
(APP), thereby promoting neurogenesis (Donmez et al., 2010).
Overexpression of SIRT1 protected SH-SY5Y neuroblastoma
cells from toxin induced cell death by down-regulating NF-
κB and cPARP-1 and reducing phospho-α-synuclein aggregates
(Singh et al., 2017). Resveratrol acting via SIRT1/PGC-1α
significantly protected dopaminergic neurons in the MPTP
mouse model of PD (Mudo et al., 2012). Interestingly in other
studies, SIRT1 failed to protect tyrosine hydroxylase (TH)-
positive dopaminergic neuronal damage induced by MPTP
(Kakefuda et al., 2009). SIRT2 inhibition was shown to
reduce Aβ production and improved cognitive performance
and microtubule assembly favoring cell survival (Biella et al.,
2016; Silva et al., 2017). SIRT3 expression was decreased
in AD patient’s cerebral cortex and its dysfunction led to
p53-mediated mitochondrial and neuronal damage in AD
(Lee et al., 2018). Patients with AD showed a reduction in
the expression of SIRT6. Increased signs of DNA damage,
cell death, and hyperphosphorylated Tau, all features of
neurodegenerative diseases, were observed in SIRT6-deficient
mice brain (Kaluski et al., 2017) indicating the importance of
SIRT6 regulation of DNA repair and maintenance of genomic
stability to keep the brain healthy (Giblin et al., 2014; Kugel
and Mostoslavsky, 2014). SIRT2 has largely been found as
detrimental in several neurodegenerative disorders (Gomes
et al., 2015). Polymorphisms in a SIRT2 intron increased
susceptibility to AD and its knockout and inhibition studies
improved outcomes in a PD model by reducing cytoskeletal
pathology and increasing autophagy (Biella et al., 2016; Guan
et al., 2016). SIRT2 inhibition may have beneficial effects for
PD by rescuing α-synuclein mediated toxicity (Outeiro et al.,
2007; de Oliveira et al., 2017). SIRT3 has been demonstrated
to protect cortical neurons from various types of stress by

increasing mitochondrial antioxidant capacity (Cheng et al.,

2016). Mice with SIRT3 deletion was shown to have reduced
neuron number, synaptic plasticity, and poor remote memory,
thereby dramatically increasing neuronal vulnerability (Kim
et al., 2011; Dai et al., 2014). SIRT3 and SIRT5 have the largest
protective effects on neurons of the nigrostriatal pathway within
the brain (Liu et al., 2015a,b). SIRT5 displays a protective role
against MPTP-induced nigrostriatal dopaminergic degeneration
by preserving mitochondrial antioxidant capacity (Liu et al.,
2015b). Resveratrol and another polyphenol quercetin in mice
models were shown to prevent motor neuron degeneration
and polyglutamine-induced cell death in striatal neurons
characteristic of motor neuron disorders such as amyotrophic
lateral sclerosis (ALS), spinal muscular atrophy (SMA), and
Huntington Disease (HD), respectively (Bhullar and Rupasinghe,
2013; Lazo-Gomez and Tapia, 2017). SIRT6 and SIRT7 were
shown to deacetylate the nucleolar protein, nucleophosmin
(NPM1) that is involved in DNA repair to regulate aging
(Wu et al., 2018).
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Role of Sirtuins in Modulating
Neurodegeneration Associated With
Obesity and Diabetes
Increased SIRT1 expression in dorsal root ganglion (DRG)
neurons was shown to rescue mice from peripheral neuropathy
induced by a high fat diet (HFD) (Chandrasekaran et al., 2019).
SIRT1 is also regulated by the hypothalamus/pituitary axis that
receives inputs related to nutrients and adiposity (Toorie and
Nillni, 2014). SIRT1 inhibition in the hypothalamus, via the
acetylation of FOXO1, increased neurons that express pro-
opiomelanocortin and agouti-related peptide. These neurons
produce satiety peptides to inhibit food intake after feeding
and increase food intake in response to fasting and CR,
respectively. This resulted in reduced feeding and body weight
gain (Dietrich et al., 2010). This established the role of SIRT1 as
an important regulator of nutrient sensing in the neural circuits
that govern central and peripheral networks. SIRT3 deletion
in the hippocampus of mice fed a high fat diet was shown
to cause oxidative stress and impaired cognition (Tyagi et al.,
2018). This was alleviated by SIRT3-mediated aerobic interval
training that upregulated the antioxidant manganese superoxide
dismutase (MnSOD) and inhibited neuronal apoptosis (Shi et al.,
2018). SIRT6 and SIRT7 have been shown to be important
for glucose production and metabolism. Studies in SIRT6
deleted mice have shown that SIRT6 deacetylates histone 3
lysine 9 (H3K9) to repress hypoxia-inducible factor, HIF-1α,
in the promoter of Glucose transporter type1 (GLUT1) and
Pyruvate Dehydrogenase Kinase, Isoenzyme 1 (PDK1) enzymes
to facilitate glucose metabolism (Zhong et al., 2010). Knockout
studies have shown that SIRT7 is an epigenetic modulator of
glucose metabolism that regulates ribosomal biogenesis and
promotes mitochondrial biogenesis via PRMT6 methylation and
connects it to glucose availability in an AMPK dependentmanner
(Yan et al., 2018). These studies demonstrate the important
functions carried out by SIRT6 and SIRT7 to regulate glucose
homeostasis. The pathways relevant to neurodegeneration and
modulated by sirtuins are summarized in Figure 2.

ROLE OF SIRTUINS IN REGULATION OF
NEURODEGENERATION IN THE ENS

The ENS develops from enteric neural crest cells, a multipotent
cell population that originates in the neural tube and migrates
across the embryo to reach the developing intestine, where
it proliferates and differentiates into enteric neurons and
glia (Nagy and Goldstein, 2017). These neural progenitors
eventually differentiate into several distinct neuronal subtypes
that eventually comprise both the myenteric and submucosal
plexi (Furness, 2012). Comparative studies between the intestines
of young (3 months old) and old (>24 months) mice (n = 6)
has shown that aging reduced the number of intestinal stem cells
(ISCs) in vivo as well as the formation of intestinal organoids
from the ISCs ex vivo that gives rise to differentiated cells
of the gut (Igarashi et al., 2019). The plexuses are areas that
are vulnerable to neurodegeneration from aging and high-fat
or high sugar induced diets (Lakhan and Kirchgessner, 2011;

Stenkamp-Strahm et al., 2015; McMenamin et al., 2018). Sirtuins
are widely expressed in the gut (Figure 3, Zeisel et al., 2018)
and neurons in the murine colon show immunoreactivity to
SIRT1 where they localize to the nucleus, in the myenteric
plexus (Lakhan and Kirchgessner, 2011). A knockout of SIRT1
in the gut of mice was reported to increase gastric emptying
and intestinal contraction with suppressed villous apoptosis and
increased crypt proliferation (Wang et al., 2012). This could
indicate an altered cholinergic neuronal function. In the same
study, the genes ghrelin and Period Circadian Clock 2 Gene, Per2,
which regulate food intake and circadian rhythm respectively
(Yannielli et al., 2007; Kim et al., 2018), were also found to be
increased in the stomach and hypothalamus, implying a role
for SIRT1 in regulating GI functions controlled by the circadian
systems. Treatment of aged mice with SIRT1-dependent NAD+

precursor, nicotinamide riboside restored ISC number and its
functional defects in aged mice in vivo (Igarashi et al., 2019)
but this was blocked by SIRT1 inhibitor EX527, suggesting
a role for SIRT1 activators or precursors in maintaining the
intestine during aging. Similar to the role of astrocytes in the
CNS, enteric glia modulates the ENS by regulating motility and
secretion by sensing neuronal reflexes by virtue of its plasticity
(Gulbransen and Christofi, 2018). The glia is also important
for epithelial health, and ablation of glia in transgenic mice
has shown to cause alterations in motor and mucosal activity,
resulting in intestinal inflammation, myenteric degeneration,
hemorrhage, and necrosis (Aube et al., 2006). Obesity in the
gut is characterized by persistent low-grade inflammation with
alterations in gut motility (Hotamisligil, 2006). Experimental
data show that gut inflammation, even if mild, could lead to
persistent changes in GI nerve and smooth muscle function,
resulting in dysmotility, hypersensitivity, and dysfunction (Mawe
et al., 2009; Lakhan and Kirchgessner, 2010). Thus, the
breakdown of mucosal barrier function as observed in obesity
could cause alterations in the patterns of gut motility, abnormal
secretion, and changes in visceral sensation that contributes to
gastrointestinal symptoms. Whether the changes in GI motility
observed in many obese patients are due to inflammation-
related changes in the properties of enteric neurons is yet to
be explored. Intestinal epithelium-specific knockout of SIRT1
in aged mice induced spontaneous inflammation and tissue
damage in the colon and increased their susceptibility to colitis
(Wellman et al., 2017). Increased proinflammatory cytokines and
leukocyte infiltration, decreased colon lengths, elevated levels of
LPS, and increased expression levels of anti-microbial proteins
was observed in the SIRT1 KO mice compared to their age-
matched controls. SIRT1 induced by resveratrol administration
to rats has shown to be protective against acute intestinal
inflammation from colitis by downregulating inflammation via
NF-κB (Larrosa et al., 2009; Hofseth et al., 2010). In an
experimental model of ileitis, oral administration of resveratrol
increased the survival of resveratrol-treated mice after exposure
to T. gondii, decreased mRNA expression of pro-inflammatory
cytokine—IL-6, and increased the mRNA expression of anti-
inflammatory cytokine—IL-10 in the ileum, compared to the
control group (Bereswill et al., 2010). These studies highlight
SIRT1 as a potential target in inflammatory diseases of the
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FIGURE 3 | Expression and cellular localization of sirtuins in the neurons of the mouse CNS and the ENS. Dendrogram showing gene expression of all the seven

sirtuins in cell populations generated by single-cell RNA sequencing (scRNA-seq) in the central nervous system (CNS) neurons and the enteric neurons in the

peripheral nervous system (PNS) using data from Zeisel et al. (2018). The plots were generated using the online database, Mouse Brain Atlas http://mousebrain.org/

genesearch.html.

intestine. Studies in mice and cell cultures have shown that SIRT3
protects cortical and dopaminergic neurons from oxidative stress
by regulating mitochondrial homeostasis (Kim et al., 2011; Dai
et al., 2014; Shi et al., 2017). Unlike its protective role in the CNS,
a SIRT3 knockout in mice exposed to dinitrobenzene sulfonic
acid mode of colonic inflammation was shown to not have any
effects in counteracting oxidative stress or the susceptibility of
myenteric neurons to inflammation (Bubenheimer et al., 2016).
Further research is required to explore the role of sirtuin proteins
in enteric neurobiology during normal and inflamed states.

ROLE OF SIRTUINS AS MODULATORS OF
GUT MICROBIOTA ALONG THE
MICROBIOTA-GUT-BRAIN AXIS

The gut microbiota regulates many metabolic processes in
addition to host energy homeostasis by taking part in the
gut–brain crosstalk, a complex bidirectional communication
system. This is mediated by gut microbiota produced signaling
molecules like short-chain fatty acids (SCFAs: acetate, butyrate
and propionate), lipopolysaccharide (LPS), 5-hydroxytryptamine
(5-HT), biogenic amines (dopamine, norepinephrine), glutamate
and γ-aminobutyric acid (GABA) (Nicholson et al., 2012;
O’Mahony et al., 2015; Koh et al., 2016; Mazzoli and Pessione,
2016; Bhattarai et al., 2017; Sudo, 2019). The gut microbiota
metabolites affect brain activity either through blood circulation
or acting via vagus nerve afferent fibers, while vagal efferent
fibers regulate gut permeability and inflammation influencing
gut functions (Bonaz et al., 2018). Enteroendocrine cells
(EECs) are in direct contact with the luminal contents and
mediate the communication between gut microbiota and enteric
innervations. They produce hormones and peptides including
serotonin, ghrelin, cholecystokinin, glucagon-like peptide-1
(GLP-1), peptide YY (PYY) and pancreatic polypeptide whose
receptors are expressed in gut enteric neurons, vagal afferents,

brain stem, and hypothalamus (De Silva and Bloom, 2012;
Richards et al., 2014). EECs maintain gut homeostasis by
regulating food intake and insulin secretion (Gribble and
Reimann, 2016). SCFA stimulate the secretion of the leptin,
GLP-1, and peptide YY(3–36), and lower body weight thereby
contributing to gut-brain activation (Xiong et al., 2004; Tazoe
et al., 2008; Tolhurst et al., 2012). The gut-brain bidirectional
communication happens largely through the ENS which along
with commensal microflora and immune cells, plays an
important role in regulating intestinal epithelial barrier function
(Snoek et al., 2010). Dysbiosis, an imbalance in the gut
microbial community is linked to several metabolic diseases
such as obesity, type-2 diabetes mellitus and inflammatory bowel
diseases (Castaner et al., 2018; Zuo and Ng, 2018; Sharma and
Tripathi, 2019). It is often associated with a reduction in the
Bacteroidetes:Firmicutes ratio and increased gut permeability
(Tremaroli and Backhed, 2012; Zuo and Ng, 2018; Sharma and
Tripathi, 2019) with low-grade gut inflammation. Considerable
shifts in human gut microbiota composition have been observed
in several CNS disorders including neurodegeneration (Fung
et al., 2017). Gut dysbiosis play an important role in modulating
the gut–brain axis. An impaired gut barrier facilitate entry of
bacterial endotoxins like LPS into the blood circulation, elicit
inflammatory response, causing metabolic endotoxemia that
eventually leads to insulin resistance and weight gain (van Olden
et al., 2015). This impairment can also affect the blood brain
barrier promoting neuro-inflammation and neurodegeneration
including anxiety and depression (Liu, 2017).

Over recent years, accumulating evidence has suggested the
role of sirtuins in obesity, diabetes, and various age-related
neurodegenerative diseases by modulating gut microbiota at
times, implicating the importance of gut-brain axis connections.
Much of the studies involving sirtuins and gut microbiota have
been done using resveratrol, which activates SIRT1. Resveratrol
is thought to possess antibacterial activity against opportunistic
pathogens of the digestive tract like Escherichia coli, Salmonella
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enterica, and Enterococcus faecalis (Paulo et al., 2010), thereby
contributing to maintenance of normal gut bacterial species. The
epithelial barrier integrity and function is regulated by resveratrol
by increasing the expression of intestinal tight junction proteins
such as tight junction protein 2, occludin, and claudin 4
(Etxeberria et al., 2015; Ling et al., 2016; Wang et al., 2016).
Resveratrol up-regulated SIRT1 display anti-inflammatory role
in the gut by decreasing immune responses (Th1-type) and
preventing bacterial translocation by maintaining gut barrier
function (Bereswill et al., 2010), which is compromised in obesity
(Cani and Delzenne, 2010). Resveratrol functions by modulating
the composition of the gut microbiota (Chen et al., 2016;
Komaroff, 2017). Mice studies have suggested that resveratrol
can influence the relation between gut microbiota, diet, and
obesity (Clarke et al., 2012; Komaroff, 2017) either by changing
the expression of genes involved in central regulation of body
weight homeostasis like fasting-induced adipose factor (Fiaf)
or mTOR (Kim et al., 2010; Qiao et al., 2014; Jung et al.,
2016), or by reversing the gut microbial dysbiosis caused by a
high-fat diet by modifying the relative Bacteroidetes: Firmicutes
ratio (Qiao et al., 2014; Sung et al., 2017). A recent study has
shown that fecal microbiota transplantation from resveratrol
treated mice to HFD mice reversed weight gain and improved
gut microbiota composition and intestinal permeability (Wang
et al., 2020). SIRT1 deficiency in the intestinal epithelium as
studied with SIRT1 intestinal knock out mice, resulted in altered
gut microbial composition, increased intestinal inflammation,
and susceptibility to colitis implicating SIRT1 importance in
maintaining intestinal tissue homeostasis through modulation of
the gut microbiota (Wellman et al., 2017). In colonic biopsies
from patients with inflammatory bowel disease (IBD), SIRT1
was downregulated by TNF-α and IL-21 in the mucosa (Caruso
et al., 2014). Moreover, incubation with a SIRT1 agonist,
Cay10591 reduced the acetylation of NF-κBp65 and suppressed
the inflammatory cytokine production in the colon as seen in
IBD. It also ameliorated experimental colitis induced in mice
by reducing LPS-induced TNF-α production whereas a SIRT1
antagonist, Ex527 aggravated the same. On the contrary, another
experimental study on mice and worms with an intestinal
deletion of SIRT1 increased Paneth and goblet cell number
and upregulated anti-bacterial peptides such as lysozyme and
cryptidines resulting in a rearrangement of the gut microbiota,
thus protecting them from colitis-induced colorectal cancer (Lo
Sasso et al., 2014). The direct effects of resveratrol on SIRT1
or sirtuin activation in general is not completely conclusive
as resveratrol as well as other sirtuin activators have many
molecular targets that acts via diverse pathways on different
sirtuin isoforms, depending on the substrate sequence and the
type of acyl modification (Athar et al., 2009; Gertz et al., 2012;
Britton et al., 2015; Gomes et al., 2019). With regards to SIRT1,
resveratrol either directly binds and activates SIRT1 or increases
the intracellular pool of NAD+ via phosphorylation of AMPK by
serine-threonine liver kinase B1 (LKB1) or calcium/calmodulin
kinase kinase-β (CaMKKβ) kinases on its catalytic α-subunit, that
can be utilized by SIRT1 (Lan et al., 2017).

The aberrant microbiota to CNS pathway is thought to
result in the formation of insoluble protein aggregates within

neurons in neurodegenerative disorders (Quigley, 2017). Toxic
accumulation of misfolded and aggregated α-synuclein protein,
Lewy bodies, is seen in both CNS and ENS of Parkinson’s
disease (PD) patients (Beach et al., 2010). Gram-negative
bacteria in these patients are abundant producing LPS which
contributes to α-synuclein aggregation leading to dopaminergic
neuronal death, thereby causing motor impairments through
inflammatory pathways (Sharma and Nehru, 2015). Using mice
that overexpress αSyn, it is shown that gut microbiota promotes
motor deficits and microglia activation. αSyn aggregation results
in progression of the disease (Sampson et al., 2016). Studies
show the correlation between increased gut permeability due
to endotoxin exposure and alpha-synuclein staining in early
Parkinson’s disease (Forsyth et al., 2011). PD is frequently
associated with impaired gastric motility (Fasano et al., 2015).
Several studies have supported the hypothesis that PD may
initiate in the gut since GI dysfunctions appear many years before
motor impairments suggesting spread of α-syn pathology from
the ENS to the CNS. Alzheimer’s disease (AD) is characterized
by an accumulation of protein aggregates composed of amyloid-
β peptide (Aβ) and tau in CNS tissues impairing cognitive
function and the pathogenesis is believed to be associated with
increased permeability of the gut and blood-brain barrierinduced
by microbiota dysbiosis (Jiang C. et al., 2017). Gut bacteria can
secrete large amounts of amyloids and LPS which modulates
the signaling pathways that lead to neurodegeneration and
AD pathogenesis, as well as inflammatory response to Aβ

accumulation in CNS (Pistollato et al., 2016). Amyloid precursor
protein (APP) from which Aβ is derived, is expressed in the ENS
suggesting its role in the pathogenesis of AD (Arai et al., 1991).
Studies with transgenic mice overexpressing APP has shown
progressive accumulation of Aβwithin enteric neurons leading to
a decreased number of enteric neurons, dysmotility and intestinal
inflammation (Semar et al., 2013; Puig et al., 2015), implying that
ENS dysfunction could occur in AD.

The concept of microbiota-gut-brain axis is extensively
studied, with an emphasis being on the gut dysbiosis in the onset
and/or progression of several metabolic diseases such as obesity,
type-2 diabetes mellitus, and the most commonly studied forms
of neurodegeneration, such as AD and PD. This review examines
scientific literature addressing the possible role of sirtuins in
regulating this axis thereby targeting themselves as molecules
of importance therapeutically. Each sirtuin has different targets,
located in different subcellular locations, and might function
quite differently. Therefore, it is extremely important to develop
selective activators or inhibitors that target a specific sirtuin.
Sirtuins are known to modulate gut microbiota. It is critical for
future studies to clarify using sirtuins as interventions to correct
dysbiosis, which may provide safe and effective treatments to
slow or halt the progression of clinical disorders.

FUTURE PERSPECTIVES

This review offers a consolidated overview of sirtuins and
their important functions in modulating neurodegeneration
in the CNS and the ENS. The precise functions of sirtuins
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are still unclear, but they seem to be important players
in age- and metabolism-associated neurodegeneration.
Therefore, elucidating the molecular roles of sirtuins may
enable the development of novel strategies for intervention
in neurodegenerative diseases. Inhibition of SIRT2 while
overexpressing SIRT1 is a potential strategy that could be used
to treat certain age-related neurodegenerative diseases. The
connection between sirtuins and dietary restriction also warrants
further investigation on the precise role of sirtuins. However,
the beneficial effect of dietary restriction on aging and various
metabolic disorders is dependent on the activation of SIRT1 and
can be mimicked by resveratrol. SIRT1 via resveratrol has shown
neuroprotective effects against acute inflammation induced
by colitis and are expressed by enteric neurons suggesting
that it might help in gut motility and secretion. This could
be a promising and previously unrecognized role of enteric
sirtuins, especially SIRT1, in regulating energy homeostasis.
Moreover, activation of enteric sirtuin pathways could offer a
therapeutic approach to treating diabetes- and obesity-related
gut dysfunction as well as age-induced neurodegeneration. Using
genetically engineered reporter mice that illuminate the entire

ENS (Jiang Y. et al., 2017), the effects of sirtuins on different

neuronal subtypes can be better visualized and investigated
when compared to traditional immunohistochemistry.
Further research and identification of novel or repurposing
of previously known small molecule activators and inhibitors
of sirtuins could have a potential impact in the therapy of
neurodegenerative disorders.
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