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When environmental cues or stimuli that represent both rewarding and aversive

outcomes are presented, complex computations must be made in order to

determine whether approach or avoidance is the better behavioral strategy. In many

neuropsychiatric illnesses these computations can be skewed. In some instances,

circumstances that may normally warrant avoidance instead promote approach, thus

producing compulsive-like behavioral strategies that are inflexible in response to new

or conflicting information. Alternatively, high sensitivity to aversion or low sensitivity to

reward can result in the failure to achieve goals and loss of resilience that characterizes

depressive disorders. Increases in compulsive-like behavior have been found to be

associated with disrupted signaling in regions that regulate response to conflicting

stimuli, including the hippocampus. Classic behavioral inhibition theories of hippocampus

function in anxiety suggest that the hippocampus blocks aberrant behavior in response

to anxiety related cues or stimuli. The hippocampus may act to block approach in the

face of conflicting stimuli. Dysregulations of hippocampal function, as may be present

in neuropsychiatric disorders, may therefore promote aberrant approach behavior. The

ventral hippocampus (vHPC) subregion is key for coordinating this approach/avoidance

conflict resolution, likely through its participation with cortico-striatal and mesolimbic

circuits. We revisit Gray’s behavioral inhibition theory of HPC function, first posited in

the 1980s, and interpret in the context of new knowledge on vHPC function gained

through modern technology. Taken together with the extant, classical literature on

hippocampal function, we propose that these new findings suggest that vHPC circuits

balance behavioral response to conflicting stimuli in a manner that is both state- and

context-dependent and, further, that disruption of specific vHPC circuits tips the balance

in favor of biased approach or avoidance behavioral strategies.

Keywords: ventral hippocampus (vHPC), conflict, arbitration, fear, reward

INTRODUCTION

Environmental cues and contexts that signal positive or desirable outcomes generally promote
approach whereas those that signal negative or unpleasant outcomes promote avoidance
(Gray, 1982; Elliot, 2006). An approach-avoidance conflict can arise in cases where a cue or
context represents both positive and negative outcomes. In such circumstances more complex
computations weighing the potential risks and benefits of approaching or avoiding are required
in order to choose the most appropriate behavioral response (Figure 1). For example, when the
potential for reward is high and the risk is small, an approach behavioral response is chosen, while
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FIGURE 1 | Determining approach or avoidance strategies. Picking an appropriate behavioral strategy in response to conflicting stimuli requires the weighing and

balancing of potential risks vs. benefits. In general, avoidance strategies are chosen in circumstances where negatively valenced stimuli hold more weight or the

potential risks are greater than the potential benefits (A). In contrast, approach strategies are chosen in circumstances where positively valenced stimuli hold more

weight or the potential benefits are greater than the potential risks (B). In neuropsychiatric illnesses and diseases, maladaptive strategies may be chosen because of

changes in the weight of different stimuli, a change in the ratio of positively and negatively valenced stimuli, or biases toward certain response patterns.

high risk, small reward circumstances yield avoidance. The
ability to accurately perceive, balance, and weigh conflicting
environmental information may be disrupted in some
neuropsychiatric illnesses. This can cause an overreliance
either on approach-related behaviors—resulting from increased
attribution of salience or value to positive valence stimuli relative
to negative valence stimuli – or, conversely, on avoidance-related
behaviors when negative valence stimuli dominate behavioral
response. Imbalance in approach-avoidance behavior can lead
to and perpetuate maladaptive behavioral responses that include
uncontrolled reward seeking (e.g., compulsivity) or loss of

normal goal-directed behavior in the face of effort or mild
negative consequences.

Findings from clinical and preclinical literature implicate the
hippocampus (HPC) in arbitrating conflicting stimuli (Pennartz
et al., 2011; Ito and Lee, 2016). Based on data showing
qualitatively similar effects of anxiolytic drugs and HPC lesions
on approach-avoidance conflict (Klüver and Bucy, 1937; Gray,
1977; Rickels, 1978), it was postulated by Gray in the 1980s that
the HPC acts as a comparator by comparing conflicting stimuli
and, further, that as a central component of a septo-hippocampal
behavioral inhibition system that the HPC disproportionately
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weights negatively valenced stimuli (Gray, 1982; McNaughton
and Gray, 2000). Thus, the HPC is postulated to block ongoing
behavior when there is a mismatch between stimuli and predicted
outcomes, allowing for increased attention to the environment.
When the HPC is ablated there is no longer a system in place
to give enough weight to negatively valued stimuli and thus
animals exhibit more approach-related behaviors. This theory
of HPC function by Gray et al. was discounted because of
data that showed the HPC primarily as a structure involved
in spatial navigation and memory consolidation (O’Keefe and
Nadel, 1978; Cohen and Eichenbaum, 1993), until future work
investigated functional heterogeneity of the HPC (McNaughton,
1997; McNaughton and Gray, 2000; Davidson and Jarrard, 2004).

It is now known that the HPC can be anatomically
and functionally separated into dorsal and ventral subregions
(posterior and anterior, respectively, in humans and non-human
primates) (Fanselow and Dong, 2010; Bach et al., 2014) and
the function of these discrete subregions is generally conserved
across species (Ito and Lee, 2016). It is further postulated based
on molecular and morphological signatures across the dorsal-
ventral axis that a third intermediate subregion of the HPC
should be considered when defining HPC subregions (Fanselow
and Dong, 2010; Lothmann et al., 2020).

Hippocampus functions in memory formation and spatial
navigation have been largely attributed to the dorsal HPC, as
selective inactivation or ablation of this dorsal region leads
to deficits in these areas (Frankland et al., 1998). The ventral
hippocampus (vHPC), however, regulates emotional affect and
memory, such that vHPC inactivation or ablation leads to robust
changes in behavior that cannot be attributed solely to spatial
learning or memory recall, meaning that vHPC manipulation
can impact behavior without affecting the ability to recall or
recognize environmental cues and contexts (Kjelstrup et al.,
2002; Fanselow and Dong, 2010). These more recent vHPC
findings have led to a surge of scientific interest in this subregion
and its projections as they relate to anxiety, fear, and reward
seeking. Furthermore, technical advances in projection-specific
manipulations has allowed for a greater understanding of how
distinct ventral Cornu Ammonis (vCA) and subicular subfields
within vHPC contribute to emotional memory.

The HPC contains several major, well-defined, and structured
lines of pyramidal neurons known as CA1, CA2, and CA3.
In canonically defined projections, input from the entorhinal
cortex is received by the dentate gyrus, which projects to CA3.
Projections from CA3 innervate CA1 and the subiculum.While a
subset of entorhinal input is received by CA2 which then projects
to CA1, the vast amount of input goes through the dentate gyrus
and CA3 (Figure 2). As such, the CA1 and subiculum are the
two major outputs from the HPC (Gergues et al., 2020), and
thus their connectivity is well-characterized. The CA3 subfield
also has substantial extrahippocampal projections (Fanselow and
Dong, 2010). Further, many of the papers that specify vCA1
may fail to distinguish from ventral subiculum (vSUB) since
they are in such close proximity and this may explain some of
the contrasting results of vCA1 manipulation which will require
careful parsing in future research. Functionally, the CA and
subicular subfields are heterogenous along the dorsal-ventral

axis, which is wheremany of the previously discussed dorsal HPC
and vHPC differences arise from. Thus, when possible, vCA and
vSUB subregions will be specified herein.

Studies that involve vHPC lesions broadly support Gray’s
theory of the HPC as a behavioral inhibitor, but more recent work
that has dissected the role of specific vHPC circuits, subfields,
and neuron subtypes has been somewhat contradictory. While
some vHPC circuits seem to block approach-related behavior,
others tend to promote it (Moscarello and Maren, 2018). This
new evidence suggests that the vHPC may act as a context-
dependent comparator of inputs and that individual vHPC
outputs function to either promote or inhibit behavioral action
(Figure 3). Thus, differences in the activity of distinct vHPC
circuits may drive an overreliance on approach or avoidance
strategies as is found inmany neuropsychiatric illnesses (Ferrante
et al., 2019; Loijen et al., 2020). This review will collate recent
and classical evidence related to vHPC function and present a
novel role for vHPC circuit activity in arbitrating behavior under
conflict, which may have implications for understanding and
treating neuropsychiatric disease.

MODELS OF APPROACH-AVOIDANCE
CONFLICT

Many animal models, especially in rodents, measure some aspect
of behavior under approach-avoidance conflict (Kumar et al.,
2013; Kirlic et al., 2017). Generally, these models measure
conflict either through more intrinsic processes that lack discrete
stimuli (e.g., drive to explore new environments vs. potential
danger in a new environment) or through discrete reward- and
punishment-associated stimuli (e.g., a behavior is associated with
both rewarding outcomes, such as food or drug delivery, and
aversive outcomes, such as footshock) (Figure 4).

Tasks that measure approach-avoidance conflict through
more naturalistic, internally generated processes that lack
discrete external stimuli include the elevated plus maze (EPM),
the open field test, and the light-dark box (Bourin and Hascoët,
2003; Prut and Belzung, 2003; Carobrez and Bertoglio, 2005;
Treit et al., 2010; Kumar et al., 2013). The conflict in these
paradigms is between the drive to explore novel environments
and the drive to avoid potential dangers. While these tests may
be more ethological and potential contributions of differences in
locomotor activity can be partially controlled for by performing
appropriate analyses and comparisons, repeat testing is not ideal
because of habituation to the task.

Other animal models of approach-avoidance conflict use
discrete, experimenter-controlled stimuli to signal punishment
and/or reward. Punishment-induced conflict tasks include the
Vogel and Geller-Seifter tasks, the modified Y-maze, conditioned
suppression tests, and modified conditioned place preference
(CPP) paradigms (Millan, 2003; Millan and Brocco, 2003; Ito
and Lee, 2016; Kirlic et al., 2017; Xie et al., 2019). Unlike the
paradigms which are based off of intrinsic processes, these tasks
have at least one cue or context associated with an aversive
outcome (e.g., shock). Some paradigms, like the Vogel and
Geller-Seifter tasks, pair shock directly with reward delivery.
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FIGURE 2 | Differences in dorsal and ventral hippocampal circuitry. The hippocampus contains extensive within-region micro circuitry between the dentate gyrus

(DG), Cornu Ammonis 1 (CA1), CA2, CA3, and subiculum (SUB) subregions. Generally, input from the entorhinal cortex (EC) (inputs are simplified here) is received by

(Continued)
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FIGURE 2 | the DG, which projects via mossy fibers to CA3, and then to CA1 via the Schaffer collaterals. Though the dHPC (A) and vHPC (B) share the same general

micro circuitry, vCA1 and vSUB have more reciprocal connections and project to more cortical and subcortical structures than dCA1 and dSUB. ACC, anterior

cingulate cortex; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; DLS, dorsolateral striatum; LHA, lateral hypothalamus; LS, lateral septum;

NAcC, nucleus accumbens core; NAcS, nucleus accumbens shell; PFC, prefrontal cortex; RSC, retrosplenial cortex (Cenquizca and Swanson, 2007; Witter, 2007;

McGinty et al., 2011; Arszovszki et al., 2014; Bienkowski et al., 2018; Besnard et al., 2020; Gergues et al., 2020).

FIGURE 3 | Proposed roles of downstream vHPC targets. The vHPC is posited to be a region that compares conflicting stimuli and signals to inhibit aberrant

behavior, but recent data has shown that vHPC can also promote behavioral action. This suggests that vHPC may still act as an arbitrator or comparator between

conflicting stimuli, but promote different behavioral responses based on projection target. This review postulates that vHPC projections to orbitofrontal and accumbal

regions generally support behavioral action, while those projections to septal and hypothalamic regions generally suppress behavioral action. Notably, the basolateral

amygdala and medial prefrontal cortex in this context also act as a sort of arbitrator since they can drive either action or inaction depending on their projection targets.

BLA, basolateral amygdala; CeA, central amygdala; dHPC, dorsal hippocampus; IfL, infralimbic prefrontal cortex; LHA, lateral hypothalamus; LS, lateral septum; NAc,

nucleus accumbens; PrL, prelimbic prefrontal cortex; PFC, prefrontal cortex; OFC, orbitofrontal cortex; vHPC, ventral hippocampus.

Other paradigms may pair shock with a cue, context, or action
(e.g., lever press) that is also paired with reward. These paradigms
benefit from having distinct conflicting stimuli related to explicit
reward and/or punishment that is lacking in the exploratory
tasks. A downfall of these approaches though is that the aversive
experience likely recruits fear-related circuitry making it more
difficult to tease apart approach-avoidance from fear.

These different models of approach-avoidance conflict all have
important considerations as tools to study vHPC function. Even
though the vHPC is not the HPC subregion most attributed to
spatial navigation it also has a known role in spatial learning,
particularly in respect to learning environmental contexts (Zhang
et al., 2001; Ferbinteanu et al., 2003; Rudy and Matus-Amat,
2005; Hunsaker et al., 2008). Tasks that are more exploratory
in nature, then, may confound the role of the vHPC in
learning spatial contexts with its role in comparing conflicting
stimuli. Additionally, it is also important to consider how tasks

that involve active or passive avoidance may be differentially
impacted by vHPC disruption. According to Gray’s theory, in
an approach-avoidance conflict scenario a functioning vHPC
would inhibit behavior and approach by increasing the salience
of negatively valenced stimuli in order to promote survival in
a potentially dangerous environment (McNaughton and Gray,
2000). Yet if an action or response is required in order to avoid
an aversive outcome, blocking of this response by vHPC would
be detrimental. Furthermore, when the best strategy may involve
instrumental action, suppression of vHPC may be required
so that it does not promote innate reactions when action is
required (Moscarello and Maren, 2018; Yoshida et al., 2019).
In this sense, different circuits must regulate active vs. passive
avoidance such that vHPC is less important for active avoidance
than it is for passive avoidance, or vHPC effects on behavioral
outputs are more complex than what was originally postulated
by Gray.
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FIGURE 4 | Commonly used animal models of approach-avoidance conflict. Approach-avoidance conflict tasks typically have either general or discrete cues and

contexts that are associated with positive or negative outcomes. Tasks that lack stimuli associated with specifically positive or negative outcomes include the elevated

plus maze (A) and light-dark box (B). Tasks that involve discrete stimuli associated with specifically positive or negative outcomes includes the Vogel and Geller-Seifter

(C) tasks and the modified Y-maze (D).
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vHPC AS AN ARBITRATOR OF
CONFLICTING STIMULI

Aversive Cues and Contexts
From lesion work it is clear that animals in which vHPC has
been ablated seem to disregard fear-associated cues whether they
are new or previously learned (Klüver and Bucy, 1937; Koh
et al., 2009). The vHPC has robust bidirectional glutamatergic
communication with the amygdala. Recent research suggests
that vHPC projections to the amygdala, a limbic region that
regulates fear response and emotional contexts (Beyeler et al.,
2018), are particularly important for response to fear cues
(Jimenez et al., 2018). The glutamatergic projections from vCA1
to basolateral amygdala (BLA) encode conditioned fear memory
whereas glutamatergic projections to the central amygdala
(CeA) are necessary for the reinstatement of a cued fear
response (e.g., freezing) following extinction (Xu et al., 2016;
Jimenez et al., 2018). On the other hand, the regulation of
conditioned fear extinction and renewal by vHPC seems to
be via its glutamatergic projections to the infralimbic (IfL)
and prelimbic (PrL) prefrontal cortices, respectively (Sierra-
Mercado et al., 2011; Soler-Cedeño et al., 2019; Vasquez et al.,
2019). Furthermore, there is a population of neurons within
vCA1 that project monosynaptically to both the medial PFC
and BLA that have been found to be preferentially activated
during fear renewal (Jin and Maren, 2015) and are suspected
to be important in conditioned fear extinction (Ishikawa and
Nakamura, 2006; Kim and Cho, 2017). Thus, the vHPC role in
integrating fear-associated stimuli is at least in part through its
projections to the PFC and amygdala. Furthermore, how intra-
vHPC signaling impacts fear and aversion related behavior is
still relatively unknown and distinct roles for vDG to vCA3 to
vCA1 signaling in promoting fear response are just now being
discovered (Besnard et al., 2020; Yeates et al., 2020).

It has been proposed that vHPC projections to the prefrontal
cortex (PFC) act as a fear gating mechanism that determines
whether reactions (e.g., freezing, fleeing) or actions (e.g.,
avoidance, exploration) are made (O’Donnell and Grace, 1995;
Moscarello andMaren, 2018).When threat is low, PFC activation
by vHPC promotes action through downstream effects on the
nucleus accumbens (NAc); when threat is high, BLA activation
by vHPC drives reactionary behaviors by promoting CeA activity.
The vHPC to PFC projections may play similar gating roles in
anxiety-like behavior. Indeed, it has been shown that inhibition
of vHPC terminals within the medial PFC (mPFC) decreases
anxiety-like behavior in the EPM as measured by head dips into
the open arm and length of open arm visits, suggesting that
this circuit normally functions to drive avoidance-like behavior
(Padilla-Coreano et al., 2016). Further, increased synchrony
between vHPC and mPFC oscillations has been observed in
anxiogenic contexts (Adhikari et al., 2011). These findings may
be contrary to the idea that vHPC to mPFC signaling promotes
approach behavior. This may alternatively suggest a role for this
circuit in promoting actions in the context of fear and anxiety,
which may arise as either avoidance or exploration. Furthermore,
the ability of the mPFC to promote approach behavior may
depend on its activation of downstream targets like the NAc,

and these downstream targets may differ in fear, anxiety, and
reward. Thus, these findings and the extent of inter-connectivity
between the vHPC, BLA, and PFC, suggest that these regions
play an important role in arbitrating behavioral response to fear
and anxiety.

This theory of the vHPC as a fear-gating structure is in line
with the proposed theory of the vHPC as a context-dependent
regulator of behavior in response to conflicting stimuli. The
vHPC gathers information related to environmental cues,
contexts, and emotional states and decides what strategy is
most appropriate. When conflict or threat is presented some
vHPC projection targets, like LHA and CeA, promote avoidance
or more passive behavioral strategies while others, like BLA
and PFC, promote more complex action (Figure 3). When
vHPC is completely ablated, the proverbial gate is left wide
open and behaviors inappropriate to the context are performed
by unruly downstream targets without vHPC direction
or supervision.

Reward-Related Cues and Contexts
Compared to our understanding of vHPC contribution to fear
and anxiety, its role in reward is still severely understudied.
The HPC contains distinct populations of reward coding
neurons that activate when seeking and tracking rewarding
goals (Gauthier and Tank, 2018). Further, vHPC sends robust
excitatory, glutamatergic innervation to the NAc, a region well-
studied in reward (Britt et al., 2012) and vHPC inactivation
has been shown to impact reward discrimination tasks (Riaz
et al., 2017). This suggests that vHPC is a potent regulator
of reinforcement learning and behavior. Indeed, studies have
shown that vHPC input to the NAc is preferentially enhanced
by dopamine D1 receptor modulation, even above amygdalar
input to the NAc, suggesting vHPC has a dominant role in
driving NAc activity (Charara and Grace, 2003; French and
Totterdell, 2003). Beyond connectivity, it has been shown that
nucleus accumbens shell (NAcS) projecting vCA1 neurons are
important for the expression of sucrose-seeking habits and for
the acquisition of appetitive conditioned place preference in mice
and rats, respectively (Ito et al., 2008; Barker et al., 2019). This
evidence suggests that the projection from vHPC to the NAc is
important in maintaining motivated behavior.

As with fear, there are some projection-target specific
differences in vHPC contribution to reward seeking that support
a potential context-dependent role for vHPC projection targets.
In the context of behavioral flexibility, inactivation of the
glutamatergic vCA1 projections to the NAcS restores goal-
directed sucrose seeking in mice trained to respond habitually,
suggesting that the vHPC is important for the expression of
habits (Barker et al., 2019). Similarly, one study showed that
vHPC inactivation lead to increased ethanol drinking in non-
dependent mice suggesting that vHPC may normally suppress
goal-oriented drug taking (Griffin et al., 2019). However, when
vCA1 neurons that project to the lateral orbital frontal cortex
(OFC), a region that contains abstract representations of reward
associations (Wallis, 2007), are inactivated mice defer to habitual
response strategies suggesting that the vHPC is important for
the expression of goal-directed behavior (Barfield and Gourley,
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2019). Notably, vHPC inactivation did not impact basal reward
seeking behavior in either study. If vHPC was merely an inhibitor
of behavior, as proposed by the behavioral inhibition theory, one
would expect goal-directed action to be suppressed by vHPC in
order to divert attention to other survival processes. The fact that
vHPC does not necessarily suppress goal-directed action suggests
that vHPC’s role in driving behavior is circuit dependent. Thus,
vHPC can drive motivated behavior, but differences in behavior
based on projection target support the notion that these effects
are context and circuit specific (Figure 3).

Approach-Avoidance Conflict
Approach-avoidance conflict involves the evaluation of potential
rewards or punishments resulting from an action (or lack of
action) as well as the likelihood of these desirable or undesirable
events based on available contextual information (McNaughton
and Gray, 2000; Elliot, 2006). The vHPC has a well-documented
role in regulating approach-avoidance conflict (Ito and Lee,
2016), but the precise computations it performs in that role are
still unknown. Studies in rodents have shown that excitotoxic
lesions of vHPC reduce aversion to the open arm of an elevated
plus maze and reduces secretion of stress-related hormones after
exposure to a brightly lit chamber without impacting spatial
or contextual memory (Kjelstrup et al., 2002; Zarrindast et al.,
2008). Additionally, vHPC lesioned rats exhibit greater attention
to “conflict” stimuli that are associated with both appetitive and
aversive outcomes (Schumacher et al., 2016), but this also extends
to “safety” stimuli that signal once an aversive outcome has been
successfully avoided (Çavdaroglu et al., 2020). The vHPC may
monitor all positively and negatively valenced stimuli but only
drive behavior in situations where the valences overlap. In this
way the vHPC acts as an arbitrator when conflict arises, and
always errs on the side of caution.

One caveat of some of these studies, though, is that
they involve massive vHPC lesioning. Thus, it is difficult to
determine whether vHPC damage is impacting the response
to or recognition of the conflicting/threatening stimuli or
whether vHPC contributions are time-dependent. There is
some evidence that vHPC lesioning affects the recognition of
fear-associated cues, which may impact the interpretation of
vHPC lesion data, but to our knowledge this has only been
demonstrated experimentally with shock-associated cues thus
far (Koh et al., 2009). The evidence for vHPC importance in
approach-avoidance conflict is also supported by clinical research
(O’Neil et al., 2015), which has shown that increasing threat
levels engage the anterior HPC (human homolog of vHPC)
and patients with damage to this region exhibit reduced passive
avoidance (Bach et al., 2014).

Relatively recent advances in circuit manipulation methods
has allowed for more complex questions regarding the precise
vHPC projections that specifically regulate approach-avoidance
conflict. One study showed that distinct subfields of the
vHPC differentially regulate approach and avoidance such that
inactivation of vCA1 induced avoidance while inactivation of
vDG or vCA3 increased approach (Schumacher et al., 2018;
Yeates et al., 2020). However, using fiber photometry and
optogenetics Jimenez et al. (2018) found that the vCA1 region

is enriched with cells that respond to anxiety-related contexts
and that the activation of vCA1 to lateral hypothalamus (LHA)
projecting neurons induces avoidance behavior when in anxiety-
associated contexts. Notably, the neurons projecting from vCA1
to the BLA do not impact anxiety or avoidance. These findings
suggest that while general inactivation of vCA1 may induce
avoidance, inactivation of individual circuit outputs from vCA1
may drive approach.

Taken together, these data support the notion that vHPC
is important for regulating approach-avoidance conflict, but
exactly how the individual subfields are important is unclear.
General vHPC ablation seems to induce approach behavior, but
inactivation of specific vHPC subfields has contrasting effects,
and these effects are themselves different from the effects of
individual circuit manipulation. One possibility is that vHPC
compares conflicting stimuli and activates different circuits
depending on whether action or inaction is warranted. When
large portions of the vHPC or its subfields are inactivated, the
system reverts to either straight avoidance or approach as the
subtlety of differences in individual computations is lost and
downstream targets lose vHPC input and direction. Another
possibility is that different levels of specific vHPC manipulations
are affecting the balance of vHPC outputs differently. The
vHPC, in particular vCA1, has externally projecting neurons
that collateralize to up to 2 or 3 different regions (Gergues
et al., 2020), so depending on the combination of collateralized
neurons that end up get manipulated, the “weight” of vHPC
input to other important downstream targets not currently being
investigated may change from experiment to experiment and
produce different behavioral results.

The vHPC is clearly involved in regulating conflicting stimuli
but there are several potential theories related to its actual
function in this process. One potential explanation is that vHPC
is not involved in any sort of arbitration and just passes on
information about cues in relation to the current context to
downstream targets. On the other end of the spectrum, perhaps
vHPC is entirely involved in comparing the stimuli and deciding
on the best course of action, which it enacts through downstream
targets. Finally, it is possible that the vHPC participates in
both arbitration and information relay, such that arbitration of
conflicting stimuli by vHPC is necessary to successfully navigate
potentially dangerous scenarios but is not sufficient on its own to
choose the most appropriate response.

DISCUSSION: OVERLAP AND
CONVERGENCE IN ANXIETY, FEAR, AND
REWARD CIRCUITRY

Most of the overlap in anxiety, fear, and reward circuitry that
exists in vHPC is in its projections to other major limbic
structures like the PFC, NAc, and BLA. vHPC innervation to PFC
is important for gating decision-making related to salient and
conflicting stimuli, whether its fear- or reward-related (Yoshida
et al., 2019). In particular, the PFC likely uses vHPC guidance to
preferentially enact action-based strategies through downstream
signaling in the NAc (O’Donnell andGrace, 1995;Moscarello and
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Maren, 2018), though in some contexts activation of the PFC by
vHPCmay also promote avoidance (Padilla-Coreano et al., 2016).
Direct innervation of the NAc by the vHPC, however, suggests
that signaling through the PFC is not necessary for vHPC to
promote action-based strategies (Britt et al., 2012) though the
types of action-based strategies enacted through direct or indirect
NAc connectivity may differ (Barfield and Gourley, 2019; Barker
et al., 2019). Lastly, vHPC projections to the BLA can either
promote or suppress action depending on its downstream targets
like the NAc and CeA, respectively (Moscarello and Maren,
2018). One interesting aspect of the PFC and BLA targets,
specifically, is that a substantial portion of vHPC neurons project
to both regions and have been found to be important in encoding
fear contexts (Ishikawa and Nakamura, 2006; Jin and Maren,
2015). The role of these vHPC projections to the BLA and PFC in
reward are still unknown but should be studied as both projection
targets have been found to be important for reward and drug
seeking (Kalivas, 2009; Beyeler et al., 2018). Furthermore, the
vHPC also receives projections from the PFC and BLA (Beyeler
et al., 2018), so how the constant conversation between these
regions guides their signaling and impacts downstream targets is
an area for future research. Additionally, the exact physiological
mechanisms underlying vHPC regulation of approach-avoidance
conflict remain generally understudied. While there exist some
reports of altered vHPC physiology and synchrony in preclinical
models associated with anxiety or substance use disorders
(Adhikari et al., 2011; Ewin et al., 2019; Griffin et al., 2019), more
research is needed in order to fully characterize vHPC function
in these behaviors.

The vHPC projections to the LHA (Jimenez et al., 2018)
and OFC (Barfield and Gourley, 2019) have thus far only been
investigated in the context of either fear or reward, respectively.
Based on the context-dependent arbitrator theory of vHPC
function proposed in this review, these projection targets should
regulate the same types of responses whether they are reward or
fear related. Both the LHA (Jennings et al., 2013, 2015; Mangieri
et al., 2018) and OFC (Milad and Rauch, 2007; Wallis, 2007)

have known roles in reward and fear as well even though the
role of vHPC input in regulating both of these aspects has not
been researched. Further support for this theory comes from
work looking at the role of the vHPC projection to the lateral
septum (LS) in both reward and fear. A very recent study has
shown that vCA3 projections to the dorsal LS suppress fear
response (Besnard et al., 2020), similar to the function of vHPC
projections to the LS in suppressing feeding (Sweeney and Yang,
2015). This is perhaps not too surprising as the HPC to septum
projections (labeled as the Septal Hippocampus System or SHS)
were central to Gray’s theory of the behavioral inhibition system.
Still, as would be suggested by this theory, the vHPC projections
support only one type of response (in the case of the LS, to
suppress behavioral action) regardless of whether it is fear or
reward related.

Together, current evidence indicates that theories of vHPC
contribution to behavioral inhibition should be updated. vHPC
is not entirely a suppressor of action, and instead is a context-
dependent decider of behavioral strategy. Depending on whether
an action in a particular context should be suppressed or
promoted, vHPC signals to different regions to this effect. When
vHPC is severely damaged or ablated, there is no longer a
decider present to promote or suppress certain behaviors, so
actions that are normally suppressed in a particular context are
performed unabated.
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