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Medical image fusion, which aims to derive complementary information from

multi-modality medical images, plays an important role in many clinical applications,

such as medical diagnostics and treatment. We propose the LatLRR-FCNs, which is a

hybrid medical image fusion framework consisting of the latent low-rank representation

(LatLRR) and the fully convolutional networks (FCNs). Specifically, the LatLRR module

is used to decompose the multi-modality medical images into low-rank and saliency

components, which can provide fine-grained details and preserve energies, respectively.

The FCN module aims to preserve both global and local information by generating the

weighting maps for each modality image. The final weighting map is obtained using

the weighted local energy and the weighted sum of the eight-neighborhood-based

modified Laplacian method. The fused low-rank component is generated by combining

the low-rank components of each modality image according to the guidance provided

by the final weighting map within pyramid-based fusion. A simple sum strategy is used

for the saliency components. The usefulness and efficiency of the proposed framework

are thoroughly evaluated on four medical image fusion tasks, including computed

tomography (CT) and magnetic resonance (MR), T1- and T2-weighted MR, positron

emission tomography and MR, and single-photon emission CT and MR. The results

demonstrate that by leveraging the LatLRR for image detail extraction and the FCNs

for global and local information description, we can achieve performance superior to

the state-of-the-art methods in terms of both objective assessment and visual quality

in some cases. Furthermore, our method has a competitive performance in terms of

computational costs compared to other baselines.

Keywords: multi-modality medical image, latent low-rank representation, fully convolutional networks, medical

image fusion, Laplacian pyramid
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1. INTRODUCTION

Medical image fusion is a key technology that has been used
extensively in clinical diagnosis and treatment planning (James
and Dasarathy, 2014). Modern medical imaging techniques
mainly include computed tomography (CT), magnetic resonance
(MR), single-photon emission computed tomography (SPECT),
and positron emission tomography (PET) (Walrand et al., 2017).
CT has a high spatial and density resolution for dense structures
(e.g., bones, implants), while MR has a high resolution for soft
tissue (Wang et al., 2016) (e.g., muscle, tendon, and fascia).
PET is an advanced nuclear medical examination technique that
allows visualization of biomolecular metabolism, receptors, and
neurotransmitter activity in vivo. SPECT is often applied to
quantify images of the physiological and pathological changes
of organs or tissues in vitro. Evaluating different perspectives
of these imaging techniques reveals that they do, to an extent,
complement each other (Walrand et al., 2017). Thus, medical
image fusion can be utilized to combine different medical
images and generate a new fusing image, providing the clinical
information from each original image (Du et al., 2016; Huang
et al., 2020).

To date, many medical image fusion studies have been
reported (Toet, 1989; Li et al., 1995, 2013; Petrovic and Xydeas,
2004; Lewis et al., 2007; Zhang and Guo, 2009; Bhatnagar et al.,
2015; Wang Q. et al., 2015; Geng et al., 2017; Zhao and Lu, 2017;
Li H. et al., 2018; Manchanda and Sharma, 2018). Among them,
multiscale transform (MST)-based methods are commonly used.
The key point of MST-based fusion techniques is to decompose
the original images into a multiscale transform domain (Li et al.,
1995). Some fusion rule strategies can be utilized to merge
the transformed coefficients, and the merged coefficients are
employed to reconstruct the composite image. Note that the
current literature indicates that the non-subsampled shearlet
transform (NSST) and non-subsampled contourlet transform
(NSCT) achieve the optimum performance in terms of image
representation among MST-based methods (Anitha et al., 2015;
Li Y. et al., 2018; Yin et al., 2018; Zhu et al., 2019). Zhu et al. used
NSCT to decompose medical image pairs into low-pass and high-
pass sub-bands, where a phase congruency rule was applied to
fuse the high-pass sub-bands and a local Laplacian energy-based
fusion rule was utilized for the low-pass sub-bands (Zhu et al.,
2019). Later, Yin et al. introduced a novel framework in which the
high-frequency coefficients were fused by a parameter-adaptive
pulse coupled neural network (PA-PCNN), and the weighted
local energy and the weighted sum of eight-neighborhood-based
modified Laplacian were utilized to fuse low-frequency bands in
the NSST domain (Yin et al., 2018). However, due to the nature

of the transformation, MST-based (including NCST-based and
NSST-based) fusion methods may not express and extract certain

significant structures of source images properly without being

sensitive to misregistration.
To address the misregistration problem in MST-based

methods, sparse representation (SR) has emerged as another
popular and powerful theory in the medical image fusion field

(Liu and Wang, 2014; Liu et al., 2016, 2019; Fei et al., 2017).

A typical SR-based medical image fusion method includes three
basic steps: (1) a given dictionary is used to find the sparsest
representation of source images; (2) some fusion rules are used
to integrate the sparse representation coefficients; and (3) the
integrated sparse representation coefficients and given dictionary
are utilized to construct the fused image. For example, Liu and
Wang (2014) proposed a novel adaptive sparse representation
model for medical image fusion, where a set of more compact
sub-dictionaries was learned to replace the single redundant
dictionary in the traditional SR approach and achieved better
results. Although the SR-based and extended methods are robust
in terms of noise and misregistration to some extent, they
cannot capture global information and suffer from significant
energy loss.

In the field of medical image fusion, a key issue is to calculate
a weight map since it reflects pixel activity information from
different modality images, determining the quality of the final
fused image. The weight map is calculated by two steps: activity
level measurement and weight assignment. However, these two
steps suffer from the robustness problem because traditional
methods cannot deal with noise and misregistration well, as
indicated in Liu et al. (2017). To improve the robustness of
activity level measurement and weight assignment, Liu et al.
(2017) introduced a deep learning fusion method with a simple
multi-layer convolutional neural network (CNN) using the
decision map and the medical image under the pyramid-based
image fusion framework to reconstruct the fused medical image.
While such a method achieves some success in specific medical
image fusion tasks, this work may fail in multi-modal image
fusion because the simple use of the CNN cannot extract fine-
grained details efficiently.

To address the aforementioned challenges, we propose a
novel hybrid medical image fusion framework with two principal
elements (e.g., LatLRR and FCNs), inspired by Liu and Wang
(2014) and Liu et al. (2017). The main contributions of this paper
are as follows:

• The latent low-rank representation (LatLRR) is applied to
decompose the medical image into low-rank (for extraction
of details) and saliency components (for the preservation
of energies).

• In the context of the low-rank component, to avoid the
fixed-length feature vector from the final full connection
layer and the information loss in the traditional CNN, three
different FCNs (due to the nature of an input image of
arbitrary size) are applied to produce a correspondingly-
sized feature map with an efficient deconvolution layer (Guo
et al., 2018), where a prediction is generated for each pixel
and the spatial information in the original input image is
retained. A sum strategy is used to fuse the saliency parts for
energy preservation.

• To the best of our knowledge, this fusion strategy in
combination with LatLRR and FCNs is the first to be applied
in the medical image domain.

The remainder of this paper is structured as follows. In section
2, the proposed fusion strategy is described in detail. Section
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3 gives the experimental configurations. Section 4 illustrates a
comparative study between the proposed frameworks and five
representative medical image fusion methods in terms of visual
quality and quantitative and computational cost assessments. The
conclusion is drawn in section 5.

2. METHODOLOGY

As shown in Figure 1, each proposed framework is fed with a
pair of pre-registered multi-modality medical source images, and
outputs the fused medical image via the following four steps:

• We use the LatLRR theory to decompose the two medical
source images into low-rank and saliency components (see
section 2.1).

• To capture the detailed information of each source, a novel
fusion framework of the low-rank components for each
paired source based on FCNs, score maps, weight maps, and
pyramid fusion is described (see section 2.2).

• To retain the energies of each source, a simple sum strategy
is used to fuse the saliency components and reconstruct the

fused image (see section 2.3).

2.1. LatLRR Decomposition
The LatLRR theory was first proposed by Liu and Yan
(2011), integrating subspace segmentation and feature extraction
simultaneously, to extract the global and local structure from raw
data in the context of natural images. It can be summarized into
the following problem (Li and Wu, 2018):

min
X,Y ,Z

‖X‖∗ + ‖Y‖∗ + λ‖Z‖1
s.t.Img = ImgX + ImgY + Z

(1)

where ‖‖∗ denotes the nuclear norm, ‖‖1 denotes the l1-norm,
and λ > 0 is the balance coefficient. Img is the observed
data matrix, and X and Y denote the low-rank and saliency
coefficients, respectively. Note that Figure 2 explains the subject
to Equation (1), where ImgX, ImgY , and Z are the low-rank,
saliency, and noise components of Img, respectively.

In this paper, the LatLRR decomposition of Equation (1)
can be solved by the inexact augmented Lagrangian multiplier
method (Wang et al., 2013), where it extracts the low-rank and
saliency components (e.g., ImgXj and ImgYj) frommedical image
Imgj with j = 1, 2 (here, we consider two medical images, as
shown in Figure 1a).

2.2. Fusion of Low-Rank Components
The fusion of low-rank component details can be seen in
Figure 1b, including the FCN model for producing score
maps (section 2.2.1), zero-phase component analysis (ZCA)
(Kessy et al., 2018), and l1-norm operations (section 2.2.2)
for whiting the score maps and generating the weight maps,
respectively, weighted local energy (WLE) and weighted sum
of eight-neighborhood-based modified Laplacian (WSEML) (Yin
et al., 2018) operations (section 2.2.3) for obtaining the fused
weight map, and pyramid fusion strategy (section 2.2.4) for
reconstructing the fused low-rank component.

2.2.1. FCN Model
The fully convolutional networks (FCNs), demonstrated in many
studies (Long et al., 2015; Wang L. et al., 2015; Chen et al.,
2017; Guo et al., 2018), achieved significant performance in image
semantic segmentation. In the FCN architecture, after multiple
convolutions and pooling processes, the obtained image size
will be progressively smaller with a lower resolution, resulting
in a heatmap (coarse output). To keep the output the same
size as the input, a skip architecture is used for upsampling.
In this work, three different scenarios are tested, as shown in
Figure 3. For each scenario, there are 38 layers of FCNs before
upsampling, including 16 convolutional layers (blue color block
in Figure 3A), 15 rule layers, five pooling layers (green color
block in Figure 3A), and two dropout layers. In Figure 3A, the
FCN-32s is a single-stream net in which up-samples stride 32
predictions back to pixels in a single step, but the upsampling
output is very coarse. To obtain the refined outputs of FCN-
16s, the final layer and the pool4 layer are used to combine the
predictions in Figure 3B at stride 16. In Figure 3C, to obtain
the outputs of FCN-8s with greater precision, the pool3 layer,
the pool4 layer, and the final layer are utilized to combine the
predictions at stride 8. As shown in Figure 1b, the three trained
FCNs (FCN-32s, FCN-16s, and FCN-8s) are utilized to classify
a pair of the low-rank components of medical source images
Lr1 = ImgX1 and Lr2 = ImgX2 pixel by pixel, producing the
corresponding score maps Sj

1 :C,C = 21, j = 1, 2 (the choice of
C = 21 can be seen in section 3.4).

2.2.2. ZCA and l1-Norm Operations
The details for ZCA and l1-norm operations are depicted in
Figure 4. To project the original redundancy score maps into
a sparse subspace, we used ZCA to whiten those score maps
Sj
1 :C and to obtain the score maps Ŝ1 :Cj . Among the ZCA, the

covariance matrix Coj
i is decomposed as follows:

Coj
i = Sj

i × (Sj
i)T ,Coj

i = U6VT (2)

where i = 1, 2, · · · ,C; j = 1, 2, and i denote the i − th channel
score map. Note thatU, 6 and V define the left singular, singular
values, and right singular matrixes, respectively (Chen et al.,
2018). An alternative solution named Ŝij is given as follows:

Ŝij = Kj
i × Sj

i,Kj
i = U(6 + ηI)−

1
2UT (3)

where η is a small value avoiding badmatrix inversion and I is the
identity matrix. Then, the local l1-norm and average operations
are used to calculate the initial weight mapWj:

Wj =

∑u+k
x=u−k

∑v+k
y=v−k

∥

∥

∥
Ŝij(x, y)

∥

∥

∥

1

(2k+ 1)× (2k+ 1)
(4)

where k = 2 and the average l1-norm is calculated by a window
centered at Ŝij(u, v).

2.2.3. WLE and WSEML Operations
Once the initial weight maps W1 and W2 is calculated, the WLE
and WSEML are applied to acquire the final fused weight map
Fw, which is described in Figure 1b with the orange block.
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FIGURE 1 | Schematic diagram of the proposed end-to-end frameworks (LatLRR-FCNs). The proposed LatLRR-FCNs enable the fusion image to extract details and

preserve energies from paired sources. It is composed of four parts: (a) LatLRR decomposition, (b) fusion of low-rank components, (c) fusion of saliency

components, and (d) reconstruction of fused image. Img1 and Img2 are the source medical images, Lr1 and Lr2 are the low-rank components of Img1 and Img2, Ls1
and Ls2 are the saliency components of Img1 and Img2, S1

1 :C and S2
1 :C are the score maps, W1 and W1 are the initial weight maps of Lr1 and Lr2, and the final

fused weight map is Fw. Flr is the fused low-rank component, Fls is the fused saliency component, and the final fused image is F.

FIGURE 2 | The LatLRR decomposing operation. Img is the observed image.

ImgX and ImgY are the low-rank and saliency components of Img,

respectively. Z denotes the noisy component.

First, the WLE of eachWj (i.e., 8j) is calculated as follows:

8j(u, v) =
r

∑

p=−r

r
∑

q=−r

{�(p+ r + 1, q+ r + 1)Wj(u+ p, v+ q)2}

(5)

where j ∈ {1, 2} and � denote a (2r + 1) × (2r + 1) weighting
matrix. The value of each element in � is 22r−d with radius r,
d denotes the element of a four-neighborhood distance to the
center. If r is 1, � is equal to

1

16





1 2 1
2 4 2
1 2 1





.
Second, the WSEML of eachWj (i.e., 9j) is given as follows:

9j(u, v) =
r

∑

p=−r

r
∑

q=−r

{�(p+ r + 1, q+ r + 1)

×EMLj(u+ p, v+ q)}
(6)
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FIGURE 3 | The skip architecture for upsampling for three scenarios: (A) FNC-32s, (B) FNC-16s, and (C) FNC-8s.
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FIGURE 4 | The ZCA and l1-norm operations for whiting the score maps and generating the weight maps, respectively.

where EML is expressed as follows:

EMLj(u, v) =
∣

∣2Wj(u, v)−Wj(u− 1, v)−Wj(u+ 1, v)
∣

∣

+
∣

∣2Wj(u, v)−Wj(u, v− 1)−Wj(u, v+ 1)
∣

∣

+ 1√
2

∣

∣2Wj(u, v)−Wj(u− 1, v− 1)−Wj(u+ 1, v+ 1)
∣

∣

+ 1√
2

∣

∣2Wj(u, v)−Wj(u− 1, v+ 1)−Wj(u+ 1, v− 1)
∣

∣

(7)

Finally, the fused weight map Fw is calculated by the
following rule:

Fw(u, v) =
{

W1(u, v), if 81(u, v) · 91(u, v) ≥ 82(u, v) · 92(u, v)
W2(u, v), otherwise

(8)

2.2.4. Pyramid Fusion Strategy
As shown in Figure 1b, the fused weight map Fw is decomposed
into a Gaussian pyramid G{S}l (green color arrow). The low-
rank components Lr1 and Lr2 are decomposed into a Laplacian
pyramid (dark blue color arrow) L{C}l and L{M}l, respectively.
Note that l denotes the l-th decomposition level, which is
calculated by the following:

l =
⌊

log2(X,Y)
⌋

(9)

where ⌊·⌋ is the flooring operation and the spatial size of the
low-rank component is X × Y .

Next, those coefficients about L{F} are calculated at each
decomposition level l:

L{F}l(u, v)

=















{G{S}l(u, v) · L{C}l(u, v)
+(1− G{S}l(u, v))L{M}l(u, v)}, if {Ql(u, v) ≥ τ }
L{C}l(u, v), if {Ql(u, v) < τ &ElC(u, v) ≥ ElM(u, v)}
L{M}l(u, v), if {Ql(u, v) < τ &ElC(u, v) ≥ ElM(u, v)}

(10)
where the threshold τ determines the corresponding fusion
mode. Ql(x, y) is given as follows:

Ql(u, v) =
2
∑

p

∑

q
L{C}l(u+ p, v+ q)L{M}l(u+ p, v+ q)

ElC(u, v)+ ElM(u, v)
(11)

where ElC(u, v) and ElM(u, v) are the local energy maps of

L{C}l and L{M}l, respectively. ElC(u, v) and ElM(u, v) are defined
as follows:

ElC(u, v) =
∑

p

∑

q
L{C}l(u+ p, v+ q)2

ElM(u, v) =
∑

p

∑

q
L{M}l(u+ p, v+ q)2

(12)

Finally, the Laplacian pyramid reconstruction method (Mertens
et al., 2009) (bottle green color arrow in Figure 1b) is used to
reconstruct the fused low-rank components Flr from L{F}l, as
indicated in Equation (10).

2.3. The Flowchart of the Proposed
LatLRR-FCNs
The FCN architectures (FCN-32s or FCN-16s or FCN-8s) are
inserted to produce two score maps with the focus property after
the LatLRR decomposition once a pair of low-rank components
for two images are calculated (hereafter, we named the proposed
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Algorithm 1: LatRR-FCN-32s, LatRR-FCN-16s, and LatRR-
FCN-8s networks.

Input: Medical images: Img1 and Img2.
1 Part 1: LatLRR decomposition.

2 Parameters: the λ of LatLRR is set to 0.8.
3 for j = 1 : 2 do
4 Perform the LatLRR decomposition on Imgj to obtain

the low-rank component Lrj = ImgXj

5 and the saliency component Lsj = ImgYj;

6 end

7 Part 2: Fusion of low-rank components.

8 (i) FCN models
9 for j = 1 : 2 do
10 The trained FCN (FCN-32s or FCN-16s or FCN-8s)

models are used to
11 process Lrj to obtain Sj

1 :C,C = 21;

12 end

13 (ii) ZCA and l1 -norm operations:
14 Equations (2–4) are used to obtainW1 andW2;
15 (iii)WLE andWSEML operations:
16 Equations (5–8) are used to obtain Fw;

17 if 81(u, v) · 91(u, v) ≥ 82(u, v) · 92(u, v) then

18 Fw(u, v) = S1(u, v);
19 else

20 Fw(u, v) = S2(u, v);
21 end

22 (iv) Pyramid fusion strategy;
23 Decompose Fw into a Gaussian pyramid to obtain

G{S}l;
24 Decompose Lr1 and Lr2 into a Laplacian pyramid to

obtain L{C}l and L{M}l, respectively;
25 Equation (10) is used to obtain L{F}l;
26 Laplacian pyramid reconstruction is used to fuse Flr

from L{F}l;
27 Part 3: Fusion of saliency components.

28 Fls = Ls1 + Ls2;
29 Part 4: Reconstruct the fused image.

30 F = Flr + Fls
Output: the fused image F.

LatRR-FCNs: including proposed LatRR-FCN-32s, LatRR-FCN-
16s and LatRR-FCN-8s, respectively). Algorithm 1 provides
a pseudo-code of the proposed LatRR-FCN-32s, LatRR-FCN-
16s and LatRR-FCN-8s networks. Then, ZCA and l1-norm are
utilized to white the score maps and obtain the initial weight
maps for the low-rank components of paired source images [see
Part 2-(ii) in Algorithm 1]. The WLE and WSEML techniques
are used to fuse the two initial weight maps [see Part 2-(iii)]. The
fused weight map and a pair of low-rank components under the
pyramid-based image fusion framework (Mertens et al., 2009)
are used to reconstruct the fused low-rank components’ image
Flr [see Part 2-(iv)]. We sum the saliency components to obtain
the fused saliency components’ image Fls (see Part 3). Finally, the
fused image F is obtained by combining Flr and Fls (see Part 4).

3. EXPERIMENTAL CONFIGURATIONS

3.1. FCN Training Sets
Currently, transfer learning (Bar et al., 2015; Liu et al., 2017;
Razzak et al., 2018; Lu et al., 2019, 2020) has become an active
topic in the field of medical image analysis. In this study, we
directly adopted a transfer learning strategy, and we trained
the FCNs (FCN-32s, FCN-16s, and FCN-8s) on the PASCAL
VOC 2012 dataset (Everingham et al., 2012) and the semantic
boundary dataset (SBD) (Hariharan et al., 2011). The PASCAL
VOC 2012 dataset contains 20 foreground object classes and 1
background class. The original dataset contains 1,464 (train),
1,449 (val), and 1,456 (test) pixel-level annotated images. The
dataset is augmented with the SBD by extra annotations (Mertens
et al., 2009), resulting in 10,582 training images.

3.2. Source Medical Image Testing Sets
In our experiments, we used 40 pairs of multi-modal medical
images (each medical image fusion problem contains 10 image
pairs) to demonstrate the usefulness and efficiency of the
proposed methods. Most of the test images were gathered from
the Whole Brain Atlas databases (Vidoni, 2012) and have been
widely adopted in previous related publications (Liu and Wang,
2014; Liu et al., 2017, 2019; Yin et al., 2018; Zhu et al., 2019). Each
pair of images was geometrically aligned, and all the test images
were normalized to 256× 256.

3.3. State-of-the-Art Methods
Five superior medical image fusion methods were collected
for comparison against our proposed methods. These included
the adaptive sparse representation (ASR) method (Liu and
Wang, 2014) (https://github.com/yuliu316316/MST-SR-Fusion-
Toolbox), the convolutional neural network (CNN)-based
(LP-CNN) method (Liu et al., 2017) (https://github.com/
yuliu316316/CNN-Fusion), the phase congruency and local
Laplacian energy-based NSCT (NSCT-PC-LLE) method (Zhu
et al., 2019) (https://github.com/zhiqinzhu123/Source-code-
of-medical-image-fusion-in-NSCT-domain), the parameter-
adaptive pulse coupled-neural network (NSST-PAPCNN)
in the NSST domain method (Yin et al., 2018) (https://
github.com/yuliu316316/NSST-PAPCNN-Fusion), and the
convolutional sparsity-based morphological component analysis
(CSMCA) method (Liu et al., 2019) (https://github.com/
yuliu316316/CSMCA-Fusion). Among them, the NSCT-PC-
LLE, NSST-PAPCNN, and CSMCA methods were proposed in
last year.

3.4. Parameter Choices
The parameters of all compared methods were set to the default
values. The key parameters for our proposed algorithms were
given in Table 1. According to this table, the parameter λ in
LatLRR decomposition was 0.8 (Li and Wu, 2018), and the
threshold τ in Equation (10) was set to 0.8 (Liu et al., 2017).
The PASCAL VOC 2012 dataset contained 20 foreground object
classes and one background class, so that the C in Sj

1 :C was
equal to 21. Note that we adopted a transfer learning strategy
directly to train the FCN-VGG16 (Long et al., 2015) byMacInnes,
and the trained models were obtained after 50 epochs using the
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TABLE 1 | The key parameters used in our algorithms.

LatLRR decomposition Threshold Classes No. of epochs

λ τ C epoch

0.8 0.8 21 50

training data. The choice of epoch was dependent on Figure 5.
When the epoch was lower than 50, the accuracy of the training
and validation sets increased with the values of epochs. However,
the accuracy of the validation set leveled off when the epoch
was higher than 50, although the accuracy of the training set
still increased regardless of the scenario (FCN-32s, FCN-16s,
and FCN-8s). In terms of the loss function, the values for all
FCN architectures decreased with the epoch in the case of the
training set, but the loss of the scenarios tended to converge at the
50 epochs. Therefore, to balance the computational complexity
and accuracy, the epochs for FCN models in this paper were
chosen as 50.

3.5. Experimental Environment
All the experiments were implemented in MATLAB R2019a on a
WIN64 Intel(R) Core (TM)i7-8750H CPU@2.20GHz 8GB RAM.
The training models of the proposed method were trained in
MATLAB R2019a+VS2017+ MatConvNet 1.0-beta25.

3.6. Objective Evaluation Metrices
In this study, five common representative quantitative metrics,
e.g., EN (Liu and Wang, 2014), QMI (Bhatnagar et al., 2013),
QAB/F (Xydeas et al., 2000), SCD (Aslantas and Bendes, 2015),
andVIFF(Han et al., 2013) (for all metrics, a larger value indicates
a better performance), were used to evaluate the quality of fused
images. The metrics were briefly described as follows:

(i) Entropy (EN) Liu and Wang (2014), Wang et al. (2017),
Zhang et al. (2017): Entropymeasures the amount of information
in the fused image.

(ii) Mutual information (MI) of two images QMI Bhatnagar
et al. (2013): MI is a quantitative assessment of the information
shared by two images. Mathematically, MI can be expressed with
joint entropy H(C,D), marginal entropy H(C), and H(D) of two
variables C and D as follows:

MI(C,D) = H(C)+H(D)−H(C,D) (13)

where H(C) = −
∑

c
p(c)log2p(c),H(D) =

−
∑

d

p(d)log2p(d),H(C,D) = −
∑

c,d

p(c, d)log2p(c, d). p(c)

and p(d) denote the marginal probability distributions of C and
D, respectively. p(c, d) denotes the joint probability distribution
of C andD. Therefore, the quality of the fused image with respect
to input images Img1 and Img2 can be defined as:

QMI = 2

[

MI(Img1, F)

H(Img1)+H(F)
+ MI(Img2, F)

H(Img2)+H(F)

]

(14)

(iii) Edge-based similarity measure QAB/F : The authors in
Xydeas et al. (2000) proposed a metric QAB/F to produce the

similarity between the edges that transform in the fusion process.
This metric is defined as follows:

QAB/F =

N
∑

u=1

M
∑

v=1
(QAF(u, v)wA(u, v)+ QBF(u, v)wB(u, v))

N
∑

u=1

M
∑

v=1
(wA(u, v)+ wB(u, v))

(15)

whereA,B, and F represent the two input images (Img1 and Img2)
and fused images. The size of each image isN×M,QAF(u, v) and
QBF(u, v) are defined as follows:

QAF(u, v) = QAF
g (u, v)QAF

α (u, v)

QBF(u, v) = QBF
g (u, v)QBF

α (u, v)
(16)

where Q∗F
g (u, v) and Q∗F

α (u, v) are the edge strength and orient
preservation values at location (u, v) in images A and B,
respectively. The dynamic range for QAB/F is equal to [0, 1],
where a larger value forQAB/F indicates a better fusion result. For
more details of this metric, please refer to Xydeas et al. (2000).

(iv) The sum of the correlations of differences (SCD)

Aslantas and Bendes (2015) is a quality metric formulated
as follows:

SCD = r(D1, Img1)+ r(D2, Img2) (17)

where D1 = F − Img2, D2 = F − Img1, F is the fused image, and
Img1 and Img2 are the input images. The r(.) function calculates
the correlation between Sk and Dk, given as:

r(Dk, Imgk)

=

∑

u

∑

v
(Dk(u, v)− D̄k)(Imgk(u, v)− ¯Imgk)

√

(
∑

u

∑

v
j(Dk(u, v)− D̄k)

2
)
∑

u

∑

v
(Imgk(u, v)− ¯Imgk)

2

(18)

where k = 1, 2, D̄k and ¯Imgk are the average of the pixel values of
Dk and Imgk, respectively.

(v) The human visual perception-based metric visual

information fidelity fusion (VIFF) Han et al. (2013): To obtain
the VIFF, four steps are needed. First, the source and fused
images are filtered and then divided into blocks. Second, visual
information is evaluated with and without distortion information
in each block. Third, the VIFF of each sub-band is calculated.
Finally, the overall quality measure is determined by weighting
the VIFF of each sub-band.

3.7. Color Space Fusion
In our proposed methods, the YUV color space was used to solve
the grayscale and RGB color image (PET, SPECT) fusion issues.
First, the RGB color image was converted into a YUV color space,
resulting in three channel components of Y, U, and V. Then,
the grayscale image and the Y channel were fused by using the
proposed fusion methods, as described in section 2. Finally, the
fused Y-channel component, the U-channel component, and the
V-channel component were inversely transformed by YUV space,
obtaining the fused color image.
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FIGURE 5 | The process of training FCN models. (A) FNC-32s model, (B) FNC-16s model, and (C) FNC-8s model.

4. RESULTS AND DISCUSSION

This section is devoted to showing that the proposed LatRR-
FCNs can improve the information details and energy
preservation in terms of visual quality assessment (section
4.1), quantitative assessment (section 4.2) and computational

cost assessment (section 4.3), compared with five recently
proposed methods: ASR (Liu and Wang, 2014), LP-CNN (Liu
et al., 2017), NSCT-PC-LLE (Zhu et al., 2019), NSST-PAPCNN
(Yin et al., 2018), and CSMCA (Liu et al., 2019). In this study, the
usefulness and efficiency of each method are investigated with
four sets of medical image fusion studies, including CT and MR,
MR-T1 and MR-T2, PET and MR, and SPECT and MR.

4.1. Visual Quality
The fusion examples of CT and MR images are given in
Figure 6. Furthermore, one representative region of each
result is enlarged for better comparison. The ASR and
CSMCA methods reveal a significant energy loss in both
the CT and MR images (resulting in an intensity and
contrast decrease in the fused images), especially for the bone
and lesion regions in the Figures 6a3–c3,a7–c7. The fusion
results of the NSCT-PC-LLE, LP-CNN, NSST-PAPCNN, and
the proposed methods have better information preservation
for the CT and MR modalities. However, the NSCT-PC-
LLE, LP-CNN, and NSST-PAPCNN methods cannot extract
the detailed information well in the MR image, which
can be seen in the Figures 6a4–c4,a5–c5,a6–c6 and the
corresponding highlighted close-ups. Furthermore, the ASR
method fails to extract the structural and edge details
from the CT modality (see Figures 6a4–c4). The NSCT-
PC-LLE and NSST-PAPCNN methods outperform the ASR
method, even though some structural details cannot be
extracted (see the Figures 6a3–c3,a4–c4,a6–c6). The proposed
frameworks and LP-CNN method can effectively extract the
structure and edge details from both CT and MR modalities
(see Figures 6a8–a10,b8–b10,c8–c10,a5–c5, respectively). The
proposed methods perform well on the preservation of detailed
and structural information for all three examples.

Figure 7 gives three fusion examples of MR-T1 and
MR-T2 images. The ASR and CSMCA methods suffer
from low intensity and contrast caused by the loss of
energy (see the Figures 7a3–c3,a7–c7 with the close-up).
In addition, the NSCT-PC-LLE, LP-CNN, and NSST-PAPCNN
methods cannot preserve the detailed information (see the
close-ups in Figures 7a4–c4,a5–c5,a6–c6, respectively).
Furthermore, the ASR and NSCT-PC-LLE methods exhibit
lower ability in structure and edge detail extraction
within the MR-T1 modality, explained by the close-up
in Figures 7a4–c4,a5–c5. Finally, compared to the other
tested methods, our proposed LatLRR-FCN-based methods
achieve the best performance, as shown with the close-ups in
Figures 7a8–c8,a9–c9,a10–c10, respectively.

Figure 8 shows the three fusion examples of MR and PET
images. The ASR and CSMCA methods lose a significant
amount of energy in both the MR and PET modalities, as
viewed in the Figures 8a3–c3,a7–c7 and the corresponding
close-ups. Note that the NSCT-PC-LLE and LP-CNN methods
are subjected to a severe color distortion (see the close-ups
in Figures 8a4–c4,a5–c5). Furthermore, the color distortion
existed more or less in the fusion results of the NSST-
PAPCNN method (see Figures 8a7–c7 and the close-ups).
Overall, the color preservation of our proposed algorithms (see
Figures 8a8–c8,a9–c9,a10–c10 together with their close-ups) are
also significantly higher than the other methods.

The fusion examples of three sets of MR and SPECT
images are shown in Figure 9. The ASR and CSMCA methods
still lose much energy in both the MR and PET modalities
(see Figures 9a3–c3,a7–c7). Moreover, color distortion exists
in the NSCT-PC-LLE and LP-CNN methods (see the close-
up in Figures 9a4–c4,a5–c5). Furthermore, in the results of
the NSST-PAPCNN method, color distortion also exists (in
Figures 9a6–c6, especially the close-up). The visual quality
of color preservation of our proposed methods significantly
outperforms the others.

4.2. Quantitative Assessment
Here, five common quantitative metrics as described in section
3.6 are employed to appraise the fusion performance. The average
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FIGURE 6 | Three fusion examples of CT and MR images. One close-up is provided in each set for better comparison. The original images: (a1–c1) CT and (a2–c2)

MR. The fusion results (a3–c3) ASR, (a4–c4) NSCT-PC-LLE, (a5–c5) LP-CNN, (a6–c6) NSST-PAPCNN, (a7–c7) CSMCA, (a8–c8) LatLRR-FCN-32s, (a9–c9)

LatLRR-FCN-16s, and (a10–c10) LatLRR-FCN-8s.
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FIGURE 7 | Three fusion examples of MR-T1 and MR-T2 images. One close-up is provided in each set for better comparison. The original images: (a1–c1) MR-T1

and (a2–c2) MR-T2. The fusion results are as follows: (a3–c3) ASR, (a4–c4) NSCT-PC-LLE, (a5–c5) LP-CNN, (a6–c6) NSST-PAPCNN, (a7–c7) CSMCA, (A8–C8)

LatLRR-FCN-32s, (a9–c9) LatLRR-FCN-16s, and (a10–c10) LatLRR-FCN-8s.
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FIGURE 8 | Three fusion examples of MR and PET images. One close-up is provided in each set for better comparison. The original images: (a1–c1) MR and (a2–c2)

PET. The fusion results: (a3–c3) ASR, (a4–c4) NSCT-PC-LLE, (a5–c5) LP-CNN, (a6–c6) NSST-PAPCNN, (a7–c7) CSMCA, (a8–c8) LatLRR-FCN-32s, (a9–c9)

LatLRR-FCN-16s, and (a10–c10) LatLRR-FCN-8s.
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FIGURE 9 | Three fusion examples of MR and SPECT images. One close-up is provided in each set for better comparison. The original images: (a1–c1) MR and

(a2–c2) SPECT. The fusion results: (a3–c3) ASR, (a4–c4) NSCT-PC-LLE, (a5–c5) LP-CNN, (a6–c6) NSST-PAPCNN, (a7–c7) CSMCA, (a8–c8) LatLRR-FCN-32s,

(a9–c9) LatLRR-FCN-16s, and (a10–c10) LatLRR-FCN-8s.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2021 | Volume 14 | Article 615435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. LatLRR-FCNs

TABLE 2 | Five metrics of different methods for the four medical image fusion

problems (a higher value for each metric indicates a better performance).

CT and MR EN QMI QAB/F SCD VIFF

ASR 4.7319 1.1068 0.5378 1.5400 0.3588

NSCT-PC-LLE 5.1619 1.1930 0.5206 1.5786 0.4570

LP-CNN 4.9503 1.1674 0.56881 1.5715 0.4476

NSST-PAPCNN 5.2323 1.1687 0.5383 1.6259 0.4703

CSMCA 4.8532 1.1120 0.55353 1.5462 0.4135

LatLRR-FCN-32s 5.39153 1.20721 0.55412 1.69463 0.49983

LatLRR-FCN-16s 5.40372 1.20652 0.5531 1.69862 0.50032

LatLRR-FCN-8s 5.45311 1.20433 0.5517 1.70341 0.50071

MR-T1 and MR-T2 EN QMI QAB/F SCD VIFF

ASR 4.0307 0.9965 0.5916 1.4834 0.4553

NSCT-PC-LLE 4.5478 1.15001 0.64323 1.4883 0.5934

LP-CNN 4.6327 1.12943 0.66701 1.5333 0.6006

NSST-PAPCNN 4.6654 1.13052 0.6035 1.5694 0.6053

CSMCA 4.1134 1.0401 0.66062 1.4677 0.5421

LatLRR-FCN-32s 5.02593 1.0940 0.6380 1.74831 0.63353

LatLRR-FCN-16s 5.05242 1.0953 0.6384 1.74752 0.63462

LatLRR-FCN-8s 5.09491 1.0974 0.6388 1.74573 0.63581

PET and MR EN QMI QAB/F SCD VIFF

ASR 3.9649 0.9899 0.6153 1.6446 0.4206

NSCT-PC-LLE 4.4502 1.0739 0.6547 1.7013 0.5789

LP-CNN 4.5261 1.0523 0.6540 1.7121 0.5828

NSST-PAPCNN 4.4790 1.09461 0.6486 1.7398 0.5997

CSMCA 4.0233 1.0078 0.6573 1.6725 0.5015

LatLRR-FCN-32s 4.56481 1.0808 0.65881 1.88611 0.66991

LatLRR-FCN-16s 4.55563 1.08163 0.65872 1.88512 0.66932

LatLRR-FCN-8s 4.55732 1.08192 0.65843 1.88343 0.66893

SPECT and MR EN QMI QAB/F SCD VIFF

ASR 4.5089 1.1563 0.5548 1.3995 0.4692

NSCT-PC-LLE 4.9146 1.37032 0.64052 1.3839 0.5629

LP-CNN 5.4404 1.31463 0.64961 1.4958 0.6024

NSST-PAPCNN 4.9242 1.39121 0.63553 1.5119 0.5814

CSMCA 4.6187 1.1977 0.6233 1.4073 0.5339

LatLRR-FCN-32s 5.63611 1.2880 0.6205 1.82243 0.70753

LatLRR-FCN-16s 5.62703 1.2899 0.6207 1.82442 0.70782

LatLRR-FCN-8s 5.63412 1.2916 0.6210 1.82651 0.70811

score of each method in each fusion problem is reported in
Table 2. The top three values of all the fusion methods are
shown in bold, and their rank is indicated by a superscript.
For CT and MRI fusion, the proposed methods achieve the
best performance in terms of EN (i.e., the values of EN for
LatLRR-FCN-8s, LatLRR-FCN-16s, and LatLRR-FCN-32s are
equal to 5.45311, 5.40372 and 5.39153, respectively), QMI (the
value of QMI for LatLRR-FCN-32s, 1.20721, higher than that
of LatLRR-FCN-16s, 1.20652, and LatLRR-FCN-8s, 1.20433),
SCD, and VIFF metrics. Note that in the context of the QAB/F

metric, our proposed LatLRR-FCN-32s (QAB/F = 0.55412) is
slightly lower than the LP-CNN method (QAB/F = 0.56881) but
slightly superior to the CSMCA method (QAB/F = 0.55353). In

the case of MR-T1 and MR-T2 fusion, the proposed methods
show the best values in three of the five metrics with EN,
SCD and VIFF. Among them, an increase improvement in the
proposed LatLRR-FCN-32s for SCD about 10.23% [(1.7483 −
1.5694)/1.7483 = 0.1023] is reported in Table 2, compared
to the best performance among the other five methods, i.e.,
NSST-PAPCNN algorithm. For MRI and PET fusion, overall, the
proposed LatRR-FCNs obtain the best results in all five objective
metrics except that the NSST-PAPCNN method achieves the
rank first in the metric QAB/F (i.e., QAB/F = 1.09461)
with a slight improvement 1.16% (e.g., 0.0116 = (1.0946 −
1.0819)/1.0946) compared with our proposed LatLRR-FCN-
8s. Finally, our proposed LatRR-FCNs outperform the other
fusion methods in the aspect of EN, SCD, and VIFF metrics
for MRI and SPECT fusion, especially for the SCD metric
of LatRR-FCN-8s with a significant improvement in 17.22%
(0.1722 = (1.8265 − 1.5119)/1.8265) compared to that of the
NSST-PAPCNN approach.

As also shown in Table 2, for different metrics, it can be
concluded as follows. (1) For the EN metric, our proposed
techniques have the optimal energy preservation in four medical
image fusion problems. (2) The QMI metric shows that our
proposed LatLRR-FCN-8s and LatLRR-FCN-16s architectures
obtain the best performance in detail information extraction
than others in the context of CT and MR image fusion
and PET and MR image fusion problems. (3) In terms of
the QAB/F metric, our proposed frameworks are also close
to the other comparison algorithms in edge and direction
retention. (4) For the SCD metric, our proposed methods have
a higher cross-correlation between the fused image and the
input image than the others in all four medical image fusion
problems. (5) For the VIFF metric, compared to the other
methods, our proposed approaches are more consistent with
the visual mechanism of human eyes in four medical image
fusion problems.

Moreover, Figure 10 shows the objective performance
of different methods in each fusion problem. The ten
scores of each method in each fusion problem are
connected for each metric. Obviously, the proposed
three methods show the optimal performance among
them. More specifically, the proposed LatLRR-FCNs are
the best three ranks on the metrics of EN, SCD, and
VIFF for all four problems, which is also concluded in
Table 2.

4.3. Computational Cost Assessment
The average computational costs of different methods are
shown in Table 3, including gray-level and color images.
Although the performances of LP-CNN, NSCT-PC-LLE, and
NSST-PAPCNN are better than the proposed methods, the
proposed methods achieve a better performance in terms of
both visual perception and objective assessment. However,
the processing cost of ASR and CSMCA is 6 times and
10 times higher than our proposed methods. In total, the
experimental results show that the proposed methods can
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FIGURE 10 | Objective performance of different fusion methods in each fusion problem. (A) CT and MR, (B) MR-T1 and MR-T2, (C) PET and MR, and (D) SPECT

and MR.

achieve competitive performance in terms of computational costs
in practice.

5. CONCLUSION

In this paper, three LatRR-FCNs have been proposed to
improve energy conservation and detail extraction during
medical image fusion. Based on LatLRR, the LatRR-FCNs
decompose the medical image into low-rank and saliency
components, which can enhance the extraction of detail in

the SR-based methods. Then, three different fully convolutional
networks (FCN-32s, FCN-16s, and FCN-8s), ZCA, l1-norm,
WLE, and WSEML operations together with a pyramid-based

fusion method are applied to fuse the low-rank components,

which can simultaneously enhance the energy preservation and

detail extraction. We sum the saliency components to obtain
the fused saliency components. Finally, the fused image is

obtained by combining the fused low-rank components and
fused saliency components. The proposed frameworks were
evaluated in the context of four kinds of medical image
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TABLE 3 | Computation cost of different methods.

Methods Gray-level image

fusion time (s)

Color image fusion

time (s)

ASR 128.2032 163.4961

NSCT-PC-LLE 2.1638 4.2115

LP-CNN 11.7130 11.9583

NSST-PAPCNN 4.2226 4.8991

CSMCA 233.4387 252.1574

LatLRR-FCN-32s 21.5983 19.5076

LatLRR-FCN-16s 21.7452 19.7250

LatLRR-FCN-8s 20.2011 18.7253

fusion problems, including CT and MR, MR-T1 and MR-
T2, PET and MR, and SPECT and MR. The results of
our experiments demonstrated that the proposed frameworks
can achieve optimal performance in both visual quality and
objective assessment.
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