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In this paper, an artificial intelligence segmented dynamic video image based on the
process of intensive cardiovascular and cerebrovascular disease monitoring is deeply
investigated, and a sparse automatic coding deep neural network with a four layers
stack structure is designed to automatically extract the deep features of the segmented
dynamic video image shot, and six categories of normal, atrial premature, ventricular
premature, right bundle branch block, left bundle branch block, and pacing are achieved
through hierarchical training and optimization. Accurate recognition of heartbeats with
an average accuracy of 99.5%. It provides technical assistance for the intelligent
prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent
prediction algorithm for sudden cardiac death based on the echolocation network was
proposed. By designing an echolocation network with a multilayer serial structure,
an intelligent distinction between sudden cardiac death signal and non-sudden death
signal was realized, and the signal was predicted 5 min before sudden death occurred,
with an average prediction accuracy of 94.32%. Using the self-learning capability of
stack sparse auto-coding network, a large amount of label-free data is designed to
train the stack sparse auto-coding deep neural network to automatically extract deep
representations of plaque features. A small amount of labeled data then introduced
to micro-train the entire network. Through the automatic analysis of the fiber cap
thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable
plaques was achieved, and the average overlap of vulnerable regions reached 87%. The
overall time for the automatic plaque and vulnerable plaque recognition algorithm was
0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis
of high-risk cardiovascular diseases.

Keywords: artificial intelligence, segmented dynamic, video imaging, detection of severe cardiovascular disease,
continuity analysis

INTRODUCTION

Chronic non-communicable diseases (NCDs) have become a major public health problem affecting
the country’s economic and social development, with mortality accounting for 86.6% of the entire
spectrum of diseases, and the burden of the disease accounting for more than 70% (Luo et al., 2018).
Among the hazards of chronic diseases, cerebrovascular, and cardiovascular diseases (CCVD)
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have been occupying the first place in the whole spectrum of
diseases in terms of morbidity and mortality, and the prevalence
rate is on the rise (Bechar et al., 2018). Electrocardiogram
(ECG) and medical imaging are the main tools for clinical
diagnosis of cardiovascular disease. ECG includes a short-time
electrocardiogram (EKG) collected at rest and a long-time
dynamic electrocardiogram (Holter) collected under moving
conditions (Sonkusare et al., 2019). The main advantages of
ECG are that it is easy, inexpensive, and portable to collect
electrical signals from outside the body and that it responds to
the electrophysiological activity of the heart (Nascimento and
Carneiro, 2017). Compared with electrocardiogram, it can reveal
the internal activity of the heart. Its disadvantages are the fixed
collection position, long collection time, high price, immobility,
and the inability to realize real-time collection (Latha et al., 2020).
Cardiovascular disease has both covert and sudden features. The
covert nature of the disease determines that ECG cannot be
observed only, and more accurate medical images are needed
to discover hidden diseases and symptoms, to carry out timely
intervention and treatment; the sudden nature of the disease also
determines that medical images cannot be used only, and ECG
needs to be portable to monitor the condition of the heart in real-
time and provide timely warning of possible dangers (Randive
et al., 2020). Only when ECG and medical imaging cooperate,
can the mortality rate of cardiovascular disease be effectively
reduced (Musial et al., 2020). However, the existing dynamic ECG
equipment still adopts offline storage mode, which cannot realize
timely signal analysis and early warning; medical image analysis
is limited by the professional level of doctors themselves, and
at the same time is easily interfered by other factors, which can
easily produce inconsistent results among different doctors, and
cannot achieve the purpose of accurate diagnosis and treatment
(Aminikhanghahi and Cook, 2017). Therefore, the research on
automatic analysis algorithms of ECG and medical images based
on artificial intelligence plays a crucial role in the prevention and
treatment of cardiovascular diseases (Darwish et al., 2020).

In arrhythmia analysis, Costa et al. (2019) proposed to
extract arrhythmia-related features from the double-tree complex
wavelet transform coefficients and classify them by multilayer
neural network, which has higher sensitivity than discrete wavelet
transform coefficients. Shinbane and Saxon (2018) proposed to
extract RR interval features, higher-order statistical features, and
Gaussian mixed model parameters from ECG signals, which
is more sensitive than discrete wavelet transform coefficients.
Characteristics to classify arrhythmias, and by training the
decision tree model, arrhythmias were identified with an accuracy
of 99.7%. In the diagnosis of premature ventricular beats, Xiao
et al. (2019) proposed a fractional linear prediction method for
the detection of premature ventricular beats and demonstrated
that it has higher accuracy than linear prediction and a higher
sensitivity to premature ventricular beats than other beats.
Ventricular premature heartbeat, establish monitoring statistical
model by discrete wavelet decomposition, and set the upper
limit value of the model, when the monitoring statistical model
parameters exceed the upper limit value, to alarm (Haider et al.,
2019). When the parameters of the monitoring statistical model
exceed the upper limit, the alarm will be raised (Fan et al., 2019).

The accuracy of premature ventricular beats detection is 97.9%
as verified by MIT-BIH arrhythmia database data (Deldari et al.,
2020). In the aspect of myocardial infarction prediction, Yang
et al. (2020) proposed a convolutional neural network method
to identify myocardial infarction heartbeat and normal heartbeat
in the ECG signal, and the recognition accuracy reached 93.53
and 95.22% through the noise-free environment and noise-free
environment tests, respectively. Saggi and Jain (2018) also applied
the convolutional neural network to automatically identify
calcification in the coronary artery in coronary CT images. With
a plaque recognition accuracy of 85% for images with cardiac
motion disturbances (Saggi and Jain, 2018). However, due to the
limitations of CT image acquisition and its resolution, it is not
able to accurately analyze the intracoronary plaque composition,
hence the emergence of endovascular medical images such as
VIES and OCT (Hong et al., 2018). In contrast, Craye et al. (2016)
extracted 54 sets of features from VIES images to describe fibrotic
lipids, calcifications, necrotic cores, and fibrotic plaques in blood
vessels and performed feature screening by PCA algorithm to
achieve accurate classification of intravascular plaques. Different
migratory learning methods used to establish different forms
of image expressions, and eventually, the accurate detection of
plaque tissue was achieved by fusing multiple representations,
with a model detection accuracy of 91.7% (Craye et al., 2016).
Pasterkamp also extracted a series of plaque-related geometric
and non-geometric features by taking advantage of the high-
resolution characteristics of coronary OCT images, and then
applied the SVM classifier to classify the relevant features to
achieve accurate identification of fibrotic, lipid, and calcified
plaques, with an average identification accuracy of 94.0, 97.2, and
99.2%, respectively (Pasterkamp, 2018).

The main task of video image behavior recognition is to
analyze a video image and then classify the human behaviors
contained in it. The difficulty in video image behavior recognition
comes from two aspects: first, the time variability, there may
be gaps between the actions that have nothing to do with
the behavior, the time point of the behavioral actions is
uncertain, and the continuous interval between the actions is
also different. Therefore, given a video image to be able to
identify the start and end time of the behavior, for the video
image frames that have nothing to do with the behavior, weaken
its role or discard. Second, the spatial complexity, different
perspectives, illumination, and background will cause different
scenes, different scenes of the same behavior action will produce
certain differences. Even in fixed scenes, behavioral actions can
vary depending on the perspective of the person, individual
differences, and shading. These can have an impact on accuracy.
Current algorithms are dedicated to solving the problem of how
to extract better features that describe the judgments made in
video images and better temporal information in video images.
Mainstream methods are using partial continuous frames of
video images and long duration video image information, which
results in a lot of missing information and there is a lot of
redundant information in video images, and randomly selecting
video image frames may miss a lot of important information. So,
in this paper, the attention mechanism is used to empower the
video image frames to weaken the redundant information and
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increase the useful video image frames to influence the result. In
medical imaging, the coronary vascular morphology assessment
and plaque identification algorithms closely related to high-
risk cardiovascular diseases were investigated. The automatic
endovascular contour extraction algorithm in coronary OCT
images was investigated to achieve accurate extraction and
3D modeling of coronary vessels, and the adaptiveness of the
coronary endovascular extraction algorithm to different feature
images was realized through the grayscale distribution analysis
of OCT images, which supported the accurate assessment of
coronary vessel morphology.

ARTIFICIAL INTELLIGENCE
SEGMENTED DYNAMIC VIDEO IMAGES
IN CONTINUITY ANALYSIS DESIGN

Artificial Intelligence Modeling
In terms of the composition of the entire autoencoder network,
the implicit layer can be viewed as a representation of features
extracted from the input layer, and then the input is reproduced
from these features by way of reverse coding (Banerjee et al.,
2019). Therefore, the dimensionality of the implicit layer is
usually smaller than the dimensionality of the input layer. The
process of training the network is the process of continually
reducing the error between the input and output, so the loss
function of the network can be defined as:

K(W, b) =
1

2p

p∑
i=1
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2 +
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The first term is the mean-variance of the input and output
data, and the second term is the attenuation term of the encoding
and decoding network weight parameters, which is mainly used
to reduce the update rate of the weights and prevent the data
training from converging to the local optimum, n is the number
of input samples, and mm is the attenuation coefficient of the
weights (Diehn et al., 2016).

Different tasks have different feature complexity, so different
numbers of implicit layer nodes are often required when applying
autoencoder networks to solve practical problems (Eldib et al.,
2018). The characteristic of the autoencoder implicit layer
dimension is lower than the input data dimension can sometimes
limit its application. To solve this problem, sparse rules are added
to the autoencoder network. Sparsity is the selective activation
of a small number of nodes in the implicit layer nodes, leaving
most nodes in a suppressed state (Ali et al., 2018). This allows
the number of implicit layer nodes in the network to be greater
than the number of input layer nodes, and depending on the
complexity of the task, different levels of sparsity can be set to
meet the practical requirements, as shown in Figure 1.

Thus, an average activation function is introduced into the
auto-coding network (Salekin et al., 2018), defined as:

pj =
1
p

p∑
i=1

Hi(Xj) (2)

To ensure that the activation of the implicit layer nodes is
small, a relative entropy function is introduced into the model,
which is expressed as follows:

PL(p
∣∣∣∣pj.) = p log

p
pj
+ (1− p) log

1− p
1− pj

(3)

The network training process is the process of progressively
updating the network weight parameters, propagating to the
implicit layer to get tr, X through the formula (3) propagates back
to the data layer to get w, w again passed to the implicit layer to get
T, then the formula for updating the network weight parameters
can be expressed as.

tr(wTXLNXTw) = tr(wTXLXTw) (4)

After completing the training of one layer of autoencoder, the
feature representation in the implicit layer is obtained, and the
feature representation obtained in this layer is used as the data
input for the next layer, and the next layer of the network is
trained to obtain the features of the next implicit layer, and so on
to complete the training of the entire stack sparse autoencoder
network layer by layer (Horton et al., 2020).

In this paper, a stack sparse autoencoder network with four
layers is constructed, and the corresponding nodes from the
first to the fourth layer are 120, 60, 30, and 15, respectively.
The sparse autoencoder of the first layer is trained by the
input heartbeat, and the feature output of the first layer is
obtained. Then, the sparse autoencoder of the second layer is
trained with the output of the first layer to obtain the second
layer’s features. Finally, the four layers of sparse autoencoders
are trained, and the depth feature of the cardioid signal is
obtained. The depth features of the cardioid signal are extracted
automatically during the network training, which solves the
problem of incomplete features or redundancy between features
when they are selected manually.

The error proportion from the feature implicit layer to the data
output layer first calculated, which is expressed as:

σ2
i =

 S∑
j=1

W(2)
ij σ

(3)
j

+ β(−p/pj + (1− p)/(1− pj)

 (5)

A direct transfer function corresponds to the physiological
system of viewing aortic blood pressure as input and radial
blood pressure as output, and to be able to reconstruct central
arterial pressure from the radial arterial sphygmomanometer
signal, an inverse transfer function would be derived from the
above equation.

P(t − 1) =
−b2P(t − 2)

b1
− ...
−bnbP(t − nb)

b1
(6)

Fisher vector is an encoding method that enables the
normalization of unequal feature matrices. Existing classification
methods fall into two main categories: generative methods,
such as GMM (Lee et al., 2019), which reflect the similarity
between similar data, and discriminative methods, such as SVM,
which reflect the differences between dissimilar data. The two
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FIGURE 1 | Artificial intelligence model architecture.

advantages that work better will be used to generate models for
use in the discriminant classifier.

γt(i) = p(i |λt, λ) =
wi.pi(λt |λ )∑M
i=1 wi.pi(λt |λ )

(7)

A first bias derivation of the parameters yields (Ren et al.,
2019):
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The optical flow field is used to obtain the trajectory
information in the video sequence: to sample the feature points
densely at multiple scales of the picture, respectively, a partition
grid is used to filter out the points with few transformations;
to obtain the motion velocity of the feature points, the median
optical flow in the neighborhood of the feature points is
computed, and then the key points are tracked; a total of four
types of HOG, HOF, trajectory, and MBH are extracted along
with the trajectory information. The HOG feature is based on the
grayscale image calculation, and several other features are based
on the dense optical flow field calculation. The HOG feature

is the gradient amplitude of a pixel counted according to its
gradient direction after blocking. The HOF feature is obtained
by calculating the grayscale transformation matrix and gradient
matrix of the optical flow adjacent to the current frame at a time,
and then weighting the optical flow direction.

The most important improvement is the use of camera motion
estimation to remove trajectories and optical flows present in
the background. In the DT algorithm, as the camera moves,
it generates many trajectories on the background, and this
motion information can greatly affect the trajectory of the human
body. This trajectory information is noisy and has a weak
relationship with the identified behavior. So, there is a need
to eliminate this type of noise. The motion of the trajectory
is calculated by computing the optical flow information, so to
eliminate the background the optical flow can be estimated by
estimating the camera movement. Since the variation between
two adjacent frames is small, the algorithm assumes that
a projection transformation matrix is used to describe the
relationship between two adjacent images, i.e., the latter frame
is transformed by the projection of the previous frame. Thus, the
estimation of camera motion becomes a matter of computing the
transformation projection matrix from the images of the previous
and previous frames.

Segmented Moving Video Images in
Continuity Analysis Design
The classical dual-stream network model is divided into a
temporal network, where the input to the temporal network is
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a stack of optical frames, and a spatial network, where the input
to the spatial network is a single RGB image (Humphreys and
Wang, 2018). This approach can only use a limited number of
video frames in the video, but not the entire video information,
besides, the spatial network input is a single random RGB image,
which can only capture the appearance of a frame, there are
some frames in the video that has nothing to do with the
action, so it is a big mistake to extract appearance information
from a random frame. The time correlation between successive
frames is extracted by superimposed optical flow frames. For the
convolutional network, if the number of convolutional kernels
is much smaller than the number of superimposed optical flow
frames, the information between frames is lost. The overall block
diagram of the network is shown in Figure 2.

The input of the whole network is a long duration
image sequence containing a motion, which is divided into
several overlapping segments by video pre-processing. For each
overlapping segment, it includes the RGB frame segment and
optical stream frame segment, respectively, and the RGB frame
segment is used as input to the spatial network; while the optical
stream frame is a single channel, to keep the three-channel input
of each sub-network consistent, the optical stream u, optical
stream v and the mean value between them are used to form a
three-channel picture, and the continuous optical stream frame
is used as input to the temporal network (Mariakakis et al., 2017).
The whole network is divided into several branches, and the layer
number and hyper-parameter settings of each sub-network are
the same before feature fusion, which can facilitate the training

of the network, and also ensure that the features are consistent in
dimension when fusing different stream features, which provides
convenience for the fusion of different network features. The
design idea of the network structure proposed in this paper is
divided into five modules, the first module is the video pre-
processing module, the second module is the convolutional
neural network plus LSTM extraction of spatiotemporal features
module, the third module is the attention mechanism module, the
fourth module is the long duration information fusion module,
and the fifth module is the classification module. The second and
third module is called attentional mechanism feature extraction
network, video frame by frame through the convolutional
network to extract spatial features, through the LSTM decoding,
adding attention mechanism in the decoding process to learn the
weight of the impact of each frame on the results, and finally
through the SoftMax layer output prediction results.

Video pre-processing module, the main function of this
module is to process the original video and divide the input
video into several clips. One-third of the length of each clip
overlaps each other to maintain the continuity of the information.
The input of the network is divided into RGB raw frame and
optical stream frame, and the video is transformed into the
corresponding picture to be saved by the coding and decoding
method and optical stream algorithm in OpenCV.

Video pre-processing consists of two parts: segmentation and
optical stream extraction. To extract the temporal and spatial
features of the long-term video, we divide the input video into Sn
fragments. One-third of the length of each fragment overlaps each

FIGURE 2 | ALSTFF overall flow chart.
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other to maintain the continuity of the information. The input of
the whole network is divided into two major pieces, RGB video
frames, and optical stream frames (Jeannot, 2019). RGB frames
can be read directly from the video in OpenCV and each frame
of the video is saved as a picture. The optical stream frame is
calculated by an algorithm that extracts the optical stream. In
this paper, the TV-L1 algorithm is selected as the optical stream
extraction algorithm.

Due to the relatively small amount of data in the two datasets,
using a small sample of data to train the network can easily lead
to overfitting of the network. The current state-of-the-art neural
networks require 1,000 of images to train the network to perform
well (Eriksson and Eriksson, 2019). If there is not a lot of data,
data augmentation is one of the ways to increase the amount of
data, we do not have to look for novel images to add to the data
set, because in neural network training, the recognition of images
is not so intelligent, and inadequately trained neural network
will think that the same object at different positions and angles
belong to different objects, while in the eyes of humans, the object
is only by displacement and change the angle. So, to get more
data, just make small changes to the existing dataset, like rotation,
displacement, flipping, etc. Our network will treat these images
as different. Video belongs to a sequence problem which includes
both spatial and temporal sequences, to solve such a problem we
need to use RNN, the structure of RNN is shown schematically
in Figure 3.

Video behavior recognition currently exists in algorithms,
both manual feature-based, and deep learning-based methods, to
extract spatial and temporal information from the video, spatial
information contains information about the appearance of the
video, and temporal information contains information about the
temporal continuity between frames of the video. The spatial
information is usually extracted using a convolutional neural
network, and the temporal information is usually extracted using

a cyclic neural network, which uses different filters to get different
picture features. Different convolutional kernels correspond to
different picture effects. The convolutional neural network can
learn the features of the image in a supervised way, that is, it
can learn the values inside the convolutional kernel, and through
the backpropagation mechanism, the error is transmitted back,
and the values in the convolutional kernel are updated at each
layer by automatic derivation, which is the so-called gradient, and
finally the error is minimized. At the same time, after each layer
of convolution, all need to go through a non-linear activation
function, adding non-linear factors in the neural network, so that
the network can learn more complex functional characteristics, if
you do not use non-linear activation function, then the output of
the model is just a linear combination of the input, even if there
are multiple hidden layers, if you use a linear activation function
or no activation function, then the network has always done is
linear. So, it is equivalent to having no hidden layer, the neural
network just linearly combines the inputs and then outputs. The
pooling operation is performed after the convolutional layer,
which on the one hand reduces the dimensionality of the data,
and at the same time reduces the redundant features in the image.
Thus, theoretically the deeper the network, the richer the features
that can be learned and the better the results.

ANALYSIS OF THE PROCESS OF VIDEO
IMAGE SURVEILLANCE DETECTION OF
SEVERE CARDIOVASCULAR DISEASE

Design of Video Imaging Tests for
Critical Cardiovascular Disease
Central arterial pressure measured by an invasive/minimally
invasive device is used as the gold standard reference, and

FIGURE 3 | RNN structure diagram.
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peripheral blood pressure measured by a non-invasive finger
sphygmomanometer is reconstructed by an algorithm to evaluate
the accuracy of the algorithm by comparing the central
arterial pressure with its analysis error. The number of stable
patients requiring interventional intubation (the head of the
interventional guidewire is placed at 8 cm from the heart valve, or
close to it) is more than or equal to 10. Experimental preparation
phase: the operator prepares the experiment, including putting
on clothing, gloves, and mask, placing the device in the
appropriate position, and connecting the interface cable; the
subject lies still on the experimental bed for 5 min; the
subject wears the sensor component on the left finger; the
continuous blood pressure measurement device is started until
the finger blood pressure data can be read correctly, and The
interventionalist inserts a micro-manometer catheter equipped
with a special blood pressure measuring device into the aortic
root by puncturing the femoral/radial/brachial artery and places
the head of the catheter about 8 cm away from the heart valve,
and the external sensor is collected by a data acquisition card
and transferred to the computer for adjusting the blood pressure
waveform at the central artery. After the waveform readings are
stable and the absolute values are accurate, record the waveform
data for 1 min; withdraw the probe and remove the peripheral
blood pressure measurement equipment to complete the data
acquisition for one patient, and repeat the above experimental
steps for the other patients, as shown in Figure 4.

TABLE 1 | Statistics of experimental results.

Patient number RMSE (mmHg) PTT (ms)

1 3.4 34

2 4.1 24

3 4.7 75

4 5.7 77

5 5.9 83

6 5.5 42

7 3.5 72

Average value 2.9 71

Variance 5.8 60

A total of seven minimally invasive surgery patients were
collected, and their basic conditions are shown in Table 1. The
time delay PTT of the blood pressure wave from the finger
to the heart was obtained using the estimation method. This
study was approved by the ethics committee and the patients
provided consent forms.

The procedure consisted of each subject has his or her head
slightly elevated and breathing steadily in a supine position
for approximately 5 min before the start of the experiment.
Continuous finger blood pressure was then monitored by a non-
invasive blood pressure device at the same level as the heart for
5 min or more to ensure that the smooth muscle of the fingers

FIGURE 4 | Video imaging test steps for severe cardiovascular and cerebrovascular disease.
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adapted to the pressure of the finger cuff. A small homemade cuff
is wrapped around the middle phalanx of the finger, as shown
in Figure 4. Continuous finger blood pressure is recorded for 15
cardiac cycles before the inflation of the cuff. The cuff is then
rapidly inflated to 200 mmHg to close the finger vessels, and
finger blood pressure signals are recorded for an additional 15
cardiac cycles as the pressure wave reaches a steady state after
inflation. The ipsilateral brachial blood pressure then measured
using a sociometric blood pressure device as a reference to upper
arm blood pressure. An analogy band-pass filter with cut off
frequencies of 1 and 35 Hz was also used to obtain the ECG
signal. The ECG signal also obtained from the ECG module.
Finally, a data acquisition system was used to simultaneously
acquire the finger blood pressure and ECG signals at a sampling
rate of 1,000 Hz.

The acquired data were processed offline, and if the mean
arterial pressure difference (MAP) between the reference BAP
and the continuous FAP was less than 4 mmHg, the BAP was
reconstructed using Eqs (8) or (9) and the recorded data, where
parameter A in Eq. (10) takes the mean value from the literature.
The data processing is divided into three parts: pre-processing,
calculation of PTT, and reconstruction of upper arm blood
pressure, as shown in Figure 4. In the pre-processing section, the
collected waveform is processed by 20 Hz, 5-step Barth low-pass
filtering, and then the time markers are used to identify the valid
data segments, i.e., 15 cycles before and after artery closure. In
the PTT calculation section, the apex of the ECG R-wave and the
start of the finger blood pressure wave before arterial closure are
identified, then the Pulse Arrival Time (PAT) value of a single
cycle is calculated and averaged over 15 cycles, then the Pre-
Ejection Period (PEP) value is subtracted to obtain the total PTT
from the finger to the heart. Finally, the PTT value from the finger
to the upper arm is calculated proportionally. To reconstruct
the upper arm blood pressure, we first adopt the method that
the blood pressure wave measured at the time of artery closure
is equal to two times of the advance wave to get the advance
wave of blood pressure; then we subtract the advance wave from
the finger blood pressure wave measured before artery closure
to get the reflection wave and reflection coefficient of blood
pressure; then we find the true reflection coefficient according to
the relationship between the reflection coefficient before artery
closure and the true reflection coefficient; then we can use the true
blood pressure to obtain the reflection coefficient. The forward
wave and reflection coefficient are used to derive the true blood
pressure reflection wave, and finally, by adding the measured PTT
parameters, we can reconstruct the true upper arm blood pressure
waveform. In this section, two methods are used to reconstruct
upper arm blood pressure: Method 1 uses the corrected reflection
coefficient of the model in this section to reconstruct upper arm
blood pressure, and Method 2 uses the uncorrected reflection
coefficient to reconstruct upper arm blood pressure.

The model was divided into three levels, with the first level
being the decision level, the second level being the guideline level,
and the third level being the protocol level. The investigation
carried out in a stepwise manner according to this model
hierarchy from top to bottom. That is, the contents of the decision
layer were first used as the basis for selecting the guideline layer

evaluation score by making judgments by two-two comparisons,
and then the contents of each guideline layer were used as the
basis for selecting the protocol layer evaluation score, again by
making judgments by two-two comparisons, respectively.

Collect clinical and imaging data including age, sex, and
other risk factors for cerebrovascular disease and secondary
prevention medications, and evaluate the patient’s cranial
magnetic resonance images including the specific location of the
new infarct in the brainstem, whether it is located in the pars
median penetrating artery supply area, whether it is located in
multiple groups of brainstem penetrating artery supply areas, the
size and volume of the new infarct, the SSS-TOAST classification,
the severity of cerebral white matter loss, and the number of
asymptomatic old luminal infarcts.

Analysis of Evaluation Indicators
The data extraction design to produce a uniform data extraction
excel sheet required two researchers to independently read the
literature, conduct an initial review and evaluation of the title
and abstract of each randomized control study, and then read the
full text for data extraction. Data extraction included: title of the
literature, time of publication, experimental and control group
information (total number, number of people, mean age, gender
matching, jaded score, outcome measures). The review includes:
inclusion and exclusion criteria of the literature, the setting of
the control group, if there are disagreements can be discussed
and resolved by the two researchers or assisted by other experts
or researchers in the subject group, and the two researchers
exchange checks after the work is completed. The methodological
quality of the study is evaluated by two researchers alone for
all included literature, generated from random sequences by
applying the Jaded scale; concealment of random assignment
scheme, specifically, both the trial implementer and the subjects
before grouping The literature quality and methodological
quality of the included literature was assessed in four areas: the
specific allocation scheme of the subjects could not be known
in advance; whether blinding was being used in the study; and
whether withdrawal and withdrawal were being used in the study.

The video coding rate distortion algorithm, as a very
important part of video coding, has become the subject of many
researchers who have come up with many excellent ideas for
improving the algorithm, with the ultimate goal of obtaining the
best coding mode in which the bit rate R and coding distortion
D make the coding cost J minimal. Under the H264 standard
is each mode used for the current coding block. The resulting
cost calculated for rate-distortion, and then comparative analysis
of each mode is performed to pick the least costly class of
coding modes, and the selected coding modes are defined as
macroblocks to be coded. In H264, the RDO cost function shows
that the substitution value is determined by three factors: motion
search, reference frame selection, and mode decision, while
the standard H264 only uses the traversal calculation method
to optimize the rate-distortion, without fully considering the
influence of other factors.

To solve this problem, this paper proposes its improvement
ideas on how to confirm the inter-frame macroblock coding
mode selection algorithm in the original rate-distortion
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optimization. There are various ways to divide the inter-frame
macroblock, according to the degree of motion we can make
different divisions, the large division is suitable for absolute
still or relatively still small amplitude motion, a small division
is suitable for large changes in position and detail part of the
more intense motion. The program finally adopts the 8∗8
division of the block to be coded, divides the block into four
8∗8 patterns, and analyses the corresponding motion vector
direction for the four sub-modules obtained from the 8∗8 pattern
division. The set of possible coding patterns used in that coding
block is then created together to create the coding pattern set
and rate-distortion optimization is computed to get the best
pattern needed, and tests show that the improved rate-distortion
algorithm has improved the coding efficiency, as shown in
Figure 5.

As the most accurate search algorithm, FS searches all the
search points to get the best match, which is not suitable for
transmission in the real-time video due to high computational
complexity and can only be used as a standard for comparison
with other algorithms. The three-step method is a simplification
of the full search method, the fastest case only needs to search 25
search points to get the best match, although the complexity of the
calculation is much reduced, and the matching accuracy is also
reduced, the three-step method is only suitable for the application
of a large range of motion of the frame image, and small-
amplitude motion of the frame image, this algorithm is easy to fall
into the state of the local optimal solution, which leads to large
matching errors. The new three-step method is a supplement

to the original three-step method, which makes use of the
center bias feature to enhance the matching computation of the
central region position, improve the search performance, and has
good performance for video sequences with smaller motion. The
hexagonal search method and the diamond search method, as the
classical block-matching motion estimation algorithms, adopt the
same idea and use two different search templates to avoid the
defects of local optimization. The algorithm can be regarded as
an improvement based on the hexagonal search method and the
diamond search method, the hybrid search pattern with multiple
templates combined with an early termination strategy can
accurately predict the starting search point, which is recognized
as the ideal motion estimation algorithm in H264.

ANALYSIS OF RESULTS

Analysis of Experimental Results
The matching matrix for the six classes of heartbeat classification
is shown in Figure 6, where the rows represent the classification
results of the six classes of heartbeats obtained by the algorithm,
the columns represent the actual heartbeat classification results,
and the data on the diagonal is the number of correctly detected
heartbeats in each class of heartbeats. From the data in the table,
there are more misidentifications between N beats and AP beats,
N beats are easily recognized as AP beats and AP beats are easily
recognized as N beats. The main reason is that N and AP beats
are similar in morphology, the significant difference lies in the

FIGURE 5 | Video image continuity evaluation.
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FIGURE 6 | Matching matrix for beat classification.

morphological changes of P-wave, which is a wave with a small
amplitude, and the changes of P-wave amplitude are relatively
large in different individuals, so it is easy to confuse N and AP
beats. RBB beats also have some similarities with PVC beats in
terms of morphology, which can also lead to misidentification,
while P beats have good morphological consistency and are quite
different from other types of beats, so P beats have the highest
recognition rate.

Before the onset of SCD, the ECG signal pattern changes
accordingly. Figure 7 gives several groups of ECG signal
morphology before the occurrence of SCD, the upper subgraph in
each figure is the pre-processing signal, and the lower subgraph
is the post-processing signal. As can be seen from the figure,
although the signal morphology has some changes compared
with the normal ECG signal, the morphological changes are
not uniform, and the morphological changes are also different
in different leads, and even the morphology is not consistent
when SCD occurs in different people with the same lead data. In
addition to the diversity of SCD evoked and the complexity of the
noise contained in the ECG signal, accurate identification of SCD
becomes difficult.

As the main parameters of the ESN network, the reserve pool
connection radius, input scaling, and leakage rate have a great
influence on the SCD identification results. It can be seen from
the data in Figure 8, as the reserve pool connection spectrum
radius decreases, its sensitivity, and prediction have increased,
and the change is more obvious when it is reduced from 0.1 to
0.01, while when the reserve pool connection spectrum radius is
further reduced, S and P no longer improve, instead, there is a
significant decrease, so the final setting is 0.001. The input scaling
controls the scaling of the input weight matrix. The scaling is
too large to significantly reduce the recognition capability of the
network, while too small will significantly reduce the recognition
sensitivity, and finally 0.1. The leakage rate is the one in folium
(4), which controls the rate of dynamic reserve pool update, and
with the increasing value of m, the accuracy of SCD recognition
is gradually improved until its value is close to 1.

FIGURE 7 | Video image of ECG signal.

The images were divided into five groups according to the
characteristics of the algorithm: normal, border blur, stent,
thrombus, and plaque groups. In the normal group, the images
had an obvious layered structure with continuous highlighted
areas outside the endothelial border; in the fuzzy border
group, the images mainly contained those with an obscure
layered structure, the similar grayscale value between layers,
and extremely fuzzy border or border near the image edge;
in the stent group, the images contained stent structure; in
the thrombus group, the images contained obvious thrombus
or residual blood in the intravascular lumen; and in the
plaque group, the images contained various types of the plaque
outside the intima-vascular membrane. In each group, 20 sets
of images selected for analysis. Figure 9 shows the endothelial
extraction results of five groups of typical images, from top to
bottom: normal, border blurred, stent, thrombus, and plaque.
From left to right, the original images, the gold standard
images, and the auto-extraction images of this algorithm are
shown respectively. For five groups of typical images, this
algorithm can accurately locate the endothelial border position
and has a good agreement with the endothelium in the
gold standard image.

To evaluate the effect of endomembrane extraction more
accurately, we statistically analyzed the average sieve coefficient
(D), Jaccard coefficient (J), Harsdorf distance (H), accuracy (P),
and recall (R), and the corresponding mean squared deviation
for each group of 20 images. At the same time, the change
curves of D, J, P, and R for different images in the five sets
of images are given, which are shown in Figure 9, where the
red line is D, the blue line is J, the green line is P, and the
black line is R. We can see the effect of the algorithm on the
average sieve coefficient (D), Jaccard coefficient (J), Harsdorf
distance (H), accuracy (P), and recall (R), and the corresponding
mean squared deviation. We can see that the algorithm in this
paper has the best effect on the endosomal extraction of normal
images, and several evaluation indexes have good stability for
different images. The main reason is that the normal group of
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FIGURE 8 | Reserve pool connected spectral radius on the SCD recognition image.

FIGURE 9 | Evaluation index value change curve.

images is relatively simple, and the images have high similarity,
so it has high precision and stability. For other groups of
images, due to the complexity of the image situation, the image

itself is quite different, which makes the D, J, P, and R curves
change a lot, and the average accuracy is also slightly lower than
the normal group.
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FIGURE 10 | Comparison of the three assessment methods with prognostic
logistic regression analysis.

Artificial Intelligence Segmentation
Dynamic Results Analysis
Logistic regression analysis was performed on aEEG classification
and prognosis, and the χ2-test was performed on the fitness
of the regression equation model, p = 0.003, indicating that
the model fit was good and the regression equation was
significant. Logistic regression analysis showed that the accuracy
of aEEG classification for survival prognosis was 100%, and
the accuracy of the prognosis for death was 42.9%, and the
accuracy of the judgment of the comprehensive prognosis
was 88.6%. The results of logistic regression analysis showed
that the accuracy of the EEG Young classification for survival

prognosis was 96.4%, and the accuracy of the regression
equation for death prognosis was 88.6%. The accuracy of the
prognostic judgment was 57.1 and 88.6% for the combined
prognostic judgment. The logistic regression analysis of the
GCS score and prognosis showed that the accuracy of the
GCS score for survival prognosis was 96.4% and the accuracy
of the regression equation for death prognosis was 88.6%.
14.3% and the accuracy of the combined prognostic judgment
was 80%, as shown in Figure 10. The results showed that
aEEG score and EEG Young score were more accurate
than the GCS score for prognostic judgment; and aEEG
score combined with EEG Young score could improve the
accuracy of prediction.

To illustrate more clearly the improvement of the effect
brought by the method in this paper, this subsection gives a
detailed data justification through experiments in terms of the
training method, the parameters of the attention mechanism
module, the number of fragments and sampling frames, and the
effect brought by the fusion method, respectively, and makes a
comparison with existing algorithms to analyze the advantages
and disadvantages of the model. The training model of a neural
network usually has three cases, one is to train from scratch,
two is to use ImageNet pre-trained weights and fix the weights
before the last layer so that they do not update the parameters,
but only the parameters of the network behind, and three is
to also use ImageNet pre-trained weights, but the weights are
not fixed, but the parameters on the data set to be trained of
fine-tuning. The three training methods are all based on the
framework, and since the network does not have a pre-trained
model, it is not pre-trained to train the spatial and temporal
networks separately, and the experimental results are shown in
Figure 11. As can be seen in Figure 11, the third training method

FIGURE 11 | Experimental accuracy on the dataset with different pre-training premises.
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has the highest accuracy, training from zero has the worst effect,
and fixing the previous parameters has the second-worst effect
because training from zero is more difficult in the first place,
it will take longer to converge when the gradient is updated,
and it can converge to a satisfactory effect when the amount
of data is sufficient, but the sample size of the dataset is small,
only close to 10,000 training samples, so pre-training weights are
needed, because ImageNet is a very large image dataset, on top
of this training network weights for small datasets will speed up
convergence, and improve accuracy, fixed pre-training weights,
only update the network behind, but also compared to training
from scratch has good results. So there are three ways to classify
different scenarios and strengths, the first way to use the data set
is relatively large, and no pre-training framework, this method
of training convergence is slower, requiring a long time to see
iterations to achieve better results for small data sets, this way
the results are poor; the second way for small data sets, because
the network parameters are large, small data sets cannot be on
the network parameters are trained completely, in which case
fixing the weights trained by ImageNet and updating only the
last classification layer tends to achieve better results; the third
way applies to cases such as data sets, which can be fine-tuned
on the data set to be trained to achieve better accuracy and
to speed up the convergence of the network. Given the above
considerations, the third pre-training approach is chosen for all
subsequent experiments.

The choice of the parameter time step of the attention
mechanism module and its corresponding LSTM in the approach

presented in this paper has a significant impact on the
performance of the attention mechanism. The experiments in
this section evaluate the accuracy of the action recognition
obtained by the method at different TS values from 1 to 20,
and the results on the databases are shown in Figure 12. When
TS = 1, the distribution of attentional weights in 30 frames can
be learned in only one iteration while fitting the distribution of
importance in only 30 frames is not sufficient. As the TS value
increases, the recognition accuracy gradually improves. When
TS = 10, the proposed method achieves the highest recognition
accuracy of 94.4 and 71.5% on the databases, respectively. As
the value of TS continues to increase, the accuracy of action
recognition decreases rapidly after remaining stable for some
time. This is because as the TS value continues to increase, the
size of the trainable parameters of the expanded LSTM increases
rapidly, which leads to overfitting. Therefore, the time step TS
of the attentional mechanism is determined to be 10 in this
paper’s approach.

To reduce the interference of catheter rings, residual blood
in the vessel, or thrombus during A-line modeling, we use the
endovascular boundary obtained by the algorithm in the previous
chapter to expand the OCT image along the endovascular
boundary. The specific implementation steps are to scan each
column of the OCT image, detect the endothelial border points,
and select the next point as the starting point of the column, and
then take the points downward, a total of 100 pixels so that the
OCT image is expanded along the endothelial border, as shown
in Figure 13.

FIGURE 12 | Image recognition accuracy of the method in this paper for different TS values.
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FIGURE 13 | Unfolded image and extract A-line.

FIGURE 14 | Perishable and non-perishable A-line.

In the unfolded OCT image, each column element constitutes
an A-line, which has different morphological characteristics of F
due to the light absorption property of the plaque itself and the
position relation with the intima. Figure 14 shows four typical
A-line morphologies, in which the red line is F, the green line
is F-C, the blue line is F-L, and the pink line is GS. Due to
the clear border of calcified plaques, the A-line of F-C plaques
will have a more drastic change in slope; due to the blurred
border of F-L plaques, the A-line of F-L plaques will usually
be relatively flat, and there will be a staggered distribution of
high and low values; while the A-line of GS plaques is close
to the zero line, and there may be small fluctuations at the
starting position.

In this paper, we focus on intelligent analysis methods
for high-risk cardiovascular diseases, making full use of the
portable and long acquisition time features of dynamic ECG
to study the intelligent prediction algorithm for arrhythmias
and SCD at the level of ECG signal. A sparse auto-coding
deep neural network with a four layer stack structure was

constructed to automatically extract the depth features of
arrhythmia beats, the automatic recognition of six classes of
beats was achieved by SoftMax classifier, the training process
of the network was optimized by a parsimonious Newtonian
optimization algorithm so that the extracted depth features
could more accurately describe the input signal, and the key
parameters of the network were discussed and analyzed. By
taking full advantage of the recognition ability of the echo
state network on the time domain signal, the ESN network
with a multilayer tandem structure was designed to achieve
accurate recognition of the sudden cardiac death signal. The
accurate predictions were 93.04, 95.36, 94.20, 94.20, and 94.78%,
respectively, when tested using the signal 5 min before the onset
of sudden death.

CONCLUSION

In this paper, the continuity of segmented dynamic video images
in the detection of severe cardiovascular and cerebrovascular
diseases is investigated and analyzed by artificial intelligence,
taking full advantage of the high precision and high resolution
of medical images. Based on the characteristics of different OCT
images containing different tissue information with different gray
level distribution, and automatic gray level label value selection
method based on image gray level distribution characteristics
developed to ensure the stability of the algorithm in the
extraction of endosomes from different OCT images. The
effect of the algorithm on the endomembrane extraction under
different disturbances is also verified. Fully utilizing the self-
learning ability of stack sparse automatic coding network for
label-free data, the deep modeling analysis of A-line in OCT
images was performed to achieve accurate identification of
fibro genic, fibro genic-calcified, and fibro genic-lipid A-line,
and the automatic extraction of plaque regions based on
the automatic plaque region generation algorithm. On this
basis, the automatic identification of thin fibrous cap-like
vulnerable plaques was achieved by analyzing the fibrous cap
thickness. In this paper, the algorithm achieved simultaneous
automatic recognition of plaque and vulnerable plaque by
modeling and analysis of A-line in OCT images, with recognition
accuracy, recall rate, and area overlap of 84.29, 84.29, and
87.33%, respectively.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://epileptologie-bonn.de/cms/upload/
workgroup/lehnertz/eegdata.html.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

Frontiers in Neuroscience | www.frontiersin.org 14 February 2021 | Volume 14 | Article 618481

http://epileptologie-bonn.de/cms/upload/workgroup/lehnertz/eegdata.html
http://epileptologie-bonn.de/cms/upload/workgroup/lehnertz/eegdata.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-618481 February 4, 2021 Time: 15:12 # 15

Zhu et al. Detection of Cardiovascular Disease

REFERENCES
Ali, S., Ismail, Y., and Badawi, A. (2018). Adaptive multi-connection DASH

scalable video coding for wireless area networks. Int. J. Comput. Digital Syst.
7, 175–188. doi: 10.12785/ijcds/070401

Aminikhanghahi, S., and Cook, D. J. (2017). A survey of methods for time series
change point detection. Knowl. Inform. Syst. 51, 339–367. doi: 10.1007/s10115-
016-0987-z

Banerjee, D., Islam, K., Xue, K., Mei, G., Xiao, L., Zhang, G., et al. (2019). A
deep transfer learning approach for improved post-traumatic stress disorder
diagnosis. Knowl. Inform. Syst. 60, 1693–1724. doi: 10.1007/s10115-019-01
337-2

Bechar, M. E. A., Settouti, N., Barra, V., and Chikh, M. A. (2018). Semi-supervised
superpixel classification for medical images segmentation: application to
detection of glaucoma disease. Multidimensional Syst. Signal Process. 29, 979–
998. doi: 10.1007/s11045-017-0483-y

Costa, A. C., Ahamed, T., and Stephens, G. J. (2019). Adaptive, locally linear
models of complex dynamics. Proc. Natl. Acad. Sci. U.S.A. 116, 1501–1510.
doi: 10.1073/pnas.1813476116

Craye, C., Rashwan, A., Kamel, M. S., and Karray, F. (2016). A multi-modal driver
fatigue and distraction assessment system. Int. J. Intellig. Transport. Syst. Res.
14, 173–194. doi: 10.1007/s13177-015-0112-9

Darwish, A., Hassanien, A. E., and Das, S. (2020). A survey of swarm and
evolutionary computing approaches for deep learning. Artif. Intellig. Rev. 53,
1767–1812. doi: 10.1007/s10462-019-09719-2

Deldari, S., Smith, D. V., Sadri, A., and Salim, F. (2020). ESPRESSO: entropy and
ShaPe awaRe timE-Series SegmentatiOn for processing heterogeneous sensor
data. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 4, 1–24. doi:
10.1145/3411832

Diehn, F. E., Maus, T. P., Morris, J. M., Carr, C. M., Kotsenas, A. L., Luetmer,
P. H., et al. (2016). Uncommon manifestations of intervertebral disk pathologic
conditions. Radiographics 36, 801–823. doi: 10.1148/rg.2016150223

Eldib, M., Deboeverie, F., Philips, W., and Aghajan, H. (2018). Discovering activity
patterns in office environment using a network of low-resolution visual sensors.
J. Ambient Intellig. Hum. Comput. 9, 381–411. doi: 10.1007/s12652-017-0511-7

Eriksson, P. E., and Eriksson, Y. (2019). Live-action communication design: a
technical how-to video case study. Techn. Commun. Q. 28, 69–91. doi: 10.1080/
10572252.2018.1528388

Fan, C. L., Lo, W. C., Pai, Y. T., and Hsu, C. H. (2019). A survey on 360 video
streaming: acquisition, transmission, and display. ACMComput. Surv. 52, 1–36.
doi: 10.1145/3329119

Haider, F., De La Fuente, S., and Luz, S. (2019). An assessment of paralinguistic
acoustic features for detection of Alzheimer’s dementia in spontaneous speech.
IEEE J. Select. Top. Signal Process. 14, 272–281. doi: 10.1109/jstsp.2019.29
55022

Hong, L., Luo, M., Wang, R., Lu, P., Lu, W., and Lu, L. (2018). Big data in
health care: applications and challenges. Data Inform. Manag. 2, 175–197. doi:
10.2478/dim-2018-0014

Horton, M. B., Brady, C. J., Cavallerano, J., Abramoff, M., Barker, G., Chiang, M. F.,
et al. (2020). Practice guidelines for ocular telehealth-diabetic retinopathy.
Telemed. e-Health 26, 495–543. doi: 10.1089/tmj.2020.0006

Humphreys, A., and Wang, R. J. H. (2018). Automated text analysis for consumer
research. J. Consum. Res. 44, 1274–1306. doi: 10.1093/jcr/ucx104

Jeannot, G. (2019). Smart city projects in the continuity of the urban socio-
technical regime: the french case. Inform. Polity 24, 325–343. doi: 10.3233/ip-
190128

Latha, S., Samiappan, D., and Kumar, R. (2020). Carotid artery ultrasound image
analysis: a review of the literature. Proc. Instit. Mech. Eng. H J. Eng. Med. 234,
417–443.

Lee, J. H., Yoon, S. H., Kim, Y. T., Kang, C. H., Park, I. K., Park, S., et al. (2019).
Sleeve lobectomy for non–small cell lung cancers: predictive CT features for

resectability and outcome analysis. AJR 213, 807–816. doi: 10.2214/ajr.19.
21258

Luo, Y., Yang, B., Xu, L., Hao, L., Liu, J., Yao, Y., et al. (2018). Segmentation of
the left ventricle in cardiac MRI using a hierarchical extreme learning machine
model. Int. J. Mach. Learn. Cybernet. 9, 1741–1751. doi: 10.1007/s13042-017-
0678-4

Mariakakis, A., Baudin, J., Whitmire, E., Mehta, V., Banks, M. A., Law, A., et al.
(2017). PupilScreen: using smartphones to assess traumatic brain injury. Proc.
ACM Interact., Mobile Wearable Ubiquitous Technol. 1, 1–27. doi: 10.1145/
3131896

Musial, G., Queener, H. M., Adhikari, S., Mirhajianmoghadam, H., Schill, A. W.,
Patel, N. B., et al. (2020). Automatic segmentation of retinal capillaries in
adaptive optics scanning laser ophthalmoscope perfusion images using a
convolutional neural network. Transl. Vis. Sci. Technol. 9:43. doi: 10.1167/tvst.
9.2.43

Nascimento, J. C., and Carneiro, G. (2017). Deep learning on sparse manifolds
for faster object segmentation. IEEE Trans. Image Process. 26, 4978–4990. doi:
10.1109/tip.2017.2725582

Pasterkamp, H. (2018). The highs and lows of wheezing: a review of the most
popular adventitious lung sound. Pediatr. Pulmonol. 53, 243–254. doi: 10.1002/
ppul.23930

Randive, S. N., Senapati, R. K., and Rahulkar, A. D. (2020). Intelligent model for
diabetic retinopathy diagnosis: a hybridised approach. Int. J. Bioinform. Res.
Appl. 16, 120–150. doi: 10.1504/ijbra.2020.10030363

Ren, S., Sun, K., Liu, D., and Dong, F. (2019). A statistical shape-constrained
reconstruction framework for electrical impedance tomography. IEEE Trans.
Med. Imaging 38, 2400–2410. doi: 10.1109/tmi.2019.2900031

Saggi, M. K., and Jain, S. (2018). A survey towards an integration of big data
analytics to big insights for value-creation. Inform. Process. Manag. 54, 758–790.
doi: 10.1016/j.ipm.2018.01.010

Salekin, A., Eberle, J. W., Glenn, J. J., Teachman, B. A., and Stankovic, J. A.
(2018). A weakly supervised learning framework for detecting social anxiety
and depression. Proc. ACM interact. Mobile Wearable Ubiquitous Technol. 2,
1–26. doi: 10.1145/3214284

Shinbane, J. S., and Saxon, L. A. (2018). Virtual medicine: utilization of
the advanced cardiac imaging patient avatar for procedural planning and
facilitation. J. Cardiovasc. Comput. Tomogr. 12, 16–27. doi: 10.1016/j.jcct.2017.
11.004

Sonkusare, S., Breakspear, M., and Guo, C. (2019). Naturalistic stimuli in
neuroscience: critically acclaimed. Trends Cogn. Sci. 23, 699–714. doi: 10.1016/
j.tics.2019.05.004

Xiao, D., Bhuiyan, A., Frost, S., Vignarajan, J., Tay-Kearney, M. L., and
Kanagasingam, Y. (2019). Major automatic diabetic retinopathy screening
systems and related core algorithms: a review. Mach. Vis. Appl. 30, 423–446.
doi: 10.1007/s00138-018-00998-3

Yang, S., Li, B., Cao, Y. P., Fu, H., Lai, Y. K., Kobbelt, L., et al. (2020). Noise-
resilient reconstruction of panoramas and 3D scenes using robot-mounted
unsynchronized commodity RGB-D cameras. IEEE Trans. Visualization
Comput. Graph. 26, 2485–2498.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2021 | Volume 14 | Article 618481

https://doi.org/10.12785/ijcds/070401
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-019-01337-2
https://doi.org/10.1007/s10115-019-01337-2
https://doi.org/10.1007/s11045-017-0483-y
https://doi.org/10.1073/pnas.1813476116
https://doi.org/10.1007/s13177-015-0112-9
https://doi.org/10.1007/s10462-019-09719-2
https://doi.org/10.1145/3411832
https://doi.org/10.1145/3411832
https://doi.org/10.1148/rg.2016150223
https://doi.org/10.1007/s12652-017-0511-7
https://doi.org/10.1080/10572252.2018.1528388
https://doi.org/10.1080/10572252.2018.1528388
https://doi.org/10.1145/3329119
https://doi.org/10.1109/jstsp.2019.2955022
https://doi.org/10.1109/jstsp.2019.2955022
https://doi.org/10.2478/dim-2018-0014
https://doi.org/10.2478/dim-2018-0014
https://doi.org/10.1089/tmj.2020.0006
https://doi.org/10.1093/jcr/ucx104
https://doi.org/10.3233/ip-190128
https://doi.org/10.3233/ip-190128
https://doi.org/10.2214/ajr.19.21258
https://doi.org/10.2214/ajr.19.21258
https://doi.org/10.1007/s13042-017-0678-4
https://doi.org/10.1007/s13042-017-0678-4
https://doi.org/10.1145/3131896
https://doi.org/10.1145/3131896
https://doi.org/10.1167/tvst.9.2.43
https://doi.org/10.1167/tvst.9.2.43
https://doi.org/10.1109/tip.2017.2725582
https://doi.org/10.1109/tip.2017.2725582
https://doi.org/10.1002/ppul.23930
https://doi.org/10.1002/ppul.23930
https://doi.org/10.1504/ijbra.2020.10030363
https://doi.org/10.1109/tmi.2019.2900031
https://doi.org/10.1016/j.ipm.2018.01.010
https://doi.org/10.1145/3214284
https://doi.org/10.1016/j.jcct.2017.11.004
https://doi.org/10.1016/j.jcct.2017.11.004
https://doi.org/10.1016/j.tics.2019.05.004
https://doi.org/10.1016/j.tics.2019.05.004
https://doi.org/10.1007/s00138-018-00998-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
	Introduction
	Artificial Intelligence Segmented Dynamic Video Images in Continuity Analysis Design
	Artificial Intelligence Modeling
	Segmented Moving Video Images in Continuity Analysis Design

	Analysis of the Process of Video Image Surveillance Detection of Severe Cardiovascular Disease
	Design of Video Imaging Tests for Critical Cardiovascular Disease
	Analysis of Evaluation Indicators

	Analysis of Results
	Analysis of Experimental Results
	Artificial Intelligence Segmentation Dynamic Results Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	References


