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Deformable image registration is of essential important for clinical diagnosis, treatment

planning, and surgical navigation. However, most existing registration solutions require

separate rigid alignment before deformable registration, and may not well handle the

large deformation circumstances.We propose a novel edge-aware pyramidal deformable

network (referred as EPReg) for unsupervised volumetric registration. Specifically, we

propose to fully exploit the useful complementary information from the multi-level feature

pyramids to predict multi-scale displacement fields. Such coarse-to-fine estimation

facilitates the progressive refinement of the predicted registration field, which enables

our network to handle large deformations between volumetric data. In addition, we

integrate edge information with the original images as dual-inputs, which enhances the

texture structures of image content, to impel the proposed network pay extra attention

to the edge-aware information for structure alignment. The efficacy of our EPReg was

extensively evaluated on three public brain MRI datasets including Mindboggle101,

LPBA40, and IXI30. Experiments demonstrate our EPReg consistently outperformed

several cutting-edge methods with respect to the metrics of Dice index (DSC), Hausdorff

distance (HD), and average symmetric surface distance (ASSD). The proposed EPReg is

a general solution for the problem of deformable volumetric registration.

Keywords: deformable image registration, convolutional neural networks, brain MR image, affine registration, 3D

registration

1. INTRODUCTION

Deformable image registration is to perform spatial transformation between a pair of images
and establish a non-linear point-wise correspondence to achieve spatial consistency (Sotiras
et al., 2013). By doing so, mono-/multi-modality information can be fused into the same
coordinate system. It plays a very important role in various medical imaging studies to provide
complementary diagnostic information and investigate changes of anatomical structures. Although
many algorithms have been proposed over the past few decades (Sotiras et al., 2013; Shen et al.,
2017; Haskins et al., 2020), registration is still a challenging task. Traditional registration methods
may be computationally expensive and time-consuming due to their iterative optimization during
deformation estimation procedure. Moreover, most existing deformable registration solutions
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require separate rigid alignment before non-rigid registration,
and may not well handle the large deformation circumstances.
Therefore, efficient and accurate deformable registration scheme
is still greatly expected to compensate for complicated non-
rigid deformations.

As illustrated in Figure 1, the goal of registration
is to match all corresponding anatomical structures in
two images to the same spatial system through plausible
deformable transformation. To calculate the desired
deformable transformation, several non-linear deformation
algorithms (Klein et al., 2009) have been proposed, such as large
diffeomorphic distance metric mapping (LDDMM) (Beg
et al., 2005; Auzias et al., 2011), standard symmetric
normalization (Avants et al., 2008), and Demons (Vercauteren
et al., 2009). These methods treat deformable registration as a
procedure of iterative optimization for maximizing the similarity
[such as mean square error (MSE) (Wolberg and Zokai, 2000),
normalized mutual information (NMI) (Knops et al., 2006),
and normalized cross-correlation (NCC) (Rao et al., 2014), etc.]
between fixed and warped moving images. However, the iterative
optimization strategy may take a relatively long time to deal with
complicated volumetric deformations.

To address aforementioned issue, deep neural networks have
been widely investigated for the registration task in recent
years (Haskins et al., 2020). The registration networks are
beneficial to aggregate abundant features from paired images
to effectively predict the deformation field. Eppenhof et al.
(2018) employed synthetic random transformations to train a
registration framework based on a convolutional neural network
(CNN). Fan et al. (2019) also applied a supervised CNN for
image registration by using obtained ground-truth deformation
fields as the supervision information. Uzunova et al. (2017)
synthesized a large amount of realistic ground-truth data using
model-based strategy to train a registration network. Yang
et al. (2017) proposed a patch-wise deformation prediction
model, which is a deep encoder-decoder network devised to
estimate the momentum-parameterization of LDDMM model.
The major limitation of supervised registration networks (Cao
et al., 2017; Sokooti et al., 2017; Uzunova et al., 2017; Yang
et al., 2017; Eppenhof et al., 2018; Fan et al., 2019) is
the prerequisite of the ground-truth registration fields, which
would highly affect the network performance. However, unlike
segmentation or detection tasks, it is always difficult to obtain
registration ground-truth.

In contrast, some studies have focused on unsupervised deep
learning algorithms which achieved great success in various
registration tasks (Sheikhjafari et al., 2018; Kuang and Schmah,
2019). The mechanism of unsupervised registration networks
is to build model to obtain the deformation fields based on
maximizing the similarity between two images, thus is without
the need of ground-truth deformations. Li and Fan (2018)
proposed to predict deformation parameters using a fully
convolutional network, but this is a 2D approach that tends to
ignore the volumetric information. Rohé et al. (2017) utilized
U-net (Ronneberger et al., 2015) to estimate the deformation
field of 3D cardiac MR images and employed the sum of
squared differences (SSD) as the similarity loss. Balakrishnan

et al. (2018) proposed an end-to-end network with cross-
correlation as its loss function and spatial transformer networks
(STN) (Jaderberg et al., 2015) as warping module. However, the
prerequisite of this network was another rigid alignment. In
addition to unsupervised learning, weakly supervised registration
methods usually pay extra attention on the correspondences
between structural information of two images, such as the
extracted corresponding anatomical landmarks in prostate
MR and ultrasound images (Hu et al., 2018). The weakly
supervised network with structural similarity could provide
more reliable registration but still requires a small amount of
manual annotations.

One major challenge facing existing registration neural

networks is the effective solution for large deformation
compensation. To tackle this issue, Hu et al. (2019) proposed
a registration network based on (Balakrishnan et al., 2018),
which warps the multi-resolution feature maps to obtain the
deformation field. However, in such a way, the low-resolution

deformation field cannot be accurately acted on subsequent
high-resolution features, thus may degrade the registration

accuracy. At the same time, many other cascade/recursive

networks (de Vos et al., 2019; Zhao et al., 2019a,b) have been
proposed. The general idea of these networks is to progressively

estimate the complicated transformation relationship between
moving and fixed images, which is similar to the iterative

optimization idea of traditional algorithms. For example, deep
learning image registration (DLIR) (de Vos et al., 2019)

combined affine and non-linear networks to calculate both

affine alignment and non-linear registration. Volume tweening
network (VTN) (Zhao et al., 2019b) cascaded several registration
sub-networks, which deforms the moving images by multiple
times according to the deformation estimation. The recursive

cascade network (Zhao et al., 2019a) expanded the number of
cascaded networks, and only calculated the similarity of the last
cascade for training. In general, the cascade/recursive networks
simplify the challenge of large deformation based on progressive
deformation estimation. But the performance of these networks
would be affected by the training strategies and the cumulative
errors caused by the cascaded propagation.

In this study, we devise a novel edge-aware pyramidal
deformable network (EPReg) for unsupervised volumetric
registration. The proposed EPReg is a dual-stream pyramid
framework, which utilizes original images and corresponding
edge-aware maps to compose dual inputs, and generates multi-
scale paired feature maps for recursively transforming the
information between images into more representative features
to predict more accurate deformation field. Finally, the trained
EPReg can perform deformable registration in one forward pass.
Extensive experiments on three 3D brain magnetic resonance
imaging (MRI) datasets demonstrate that our proposed network
achieves satisfactory registration performance.

The main contributions of our work are 2-fold.

1. We propose to fully exploit the useful complementary
information from the multi-level feature pyramids to predict
multi-scale deformation fields. Such coarse-to-fine estimation
facilitates the progressive refinement of the predicted
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FIGURE 1 | Illustration of image registration. Given a fixed image (A) and a moving image (B), a deformation field (C) is calculated to warp the moving image so that

the warped image (D) is registered to the fixed image.

registration field, which enables our network to handle large
deformations between volumetric images.

2. We integrate edge information with the original images as
dual-inputs, which enhances the texture structures of image
content, to impel the proposed network pay extra attention to
the edge-aware information for structure alignment.

The remainder of this paper is organized as follows. Section 2
presents the details of the edge-aware pyramidal deformable
network. Section 3 shows the experimental results of the
proposed EPReg for the application of brain MRI registration.
Section 4 elaborates the discussion of the proposed network, and
the conclusion of this study is given in section 5.

2. EDGE-AWARE PYRAMIDAL
DEFORMABLE NETWORK

The proposed registration network is illustrated in Figure 2 (A)
with its affine alignment block (B) and deformable registration
block (C). We denote the input volumetric image pair as a fixed
volume (If ) and a moving volume (Im). Their edge maps are
denoted as Ef and Em, respectively. The EPReg network leverages
deformable pyramid to progressively transform the information
between If -Im and Ef -Em into more representative features to
predict more accurate deformation field (φ4 ∼ φ1). The trained
EPReg can attain deformable registration in one forward pass.

The following subsections first give a brief introduction
on the deformable registration and then present the details
of our scheme and elaborate the novel edge-aware pyramidal
deformable architecture.

2.1. Preliminaries
Volumetric registration is to establish the voxel-wise
correspondences between different volumes (i.e., fixed volume
If ∈ R

3 and moving volume Im ∈ R
3). The goal is to predict the

optimal deformation field φ, so that the warped moving volume
Im ◦ φ ∈ R

3 can be matched with If . The optimization problem
can be defined as:

φ = argmin
φ

Lsim(If , Im ◦ φ)+ λLsmooth(φ), (1)

where Im ◦ φ denotes Im warped by φ. Lsim defines similarity
criterion and Lsmooth regularizes the deformation φ to match
any specific properties in the solution, and λ is a regularization
parameter. There are several conventional formulations for Lsim

and Lsmooth, respectively. Common similarity measures include
MSE, NMI, NCC, and structural similarity index (SSIM) (Wang
et al., 2004). Lsmooth is often formulated as a regularizer on the
spatial gradients of the displacement field.

2.2. Pyramidal Deformable Network
The proposed EPReg is build on the dual-stream pyramid
architecture as shown in Figure 2A. The dual-stream encoder
part is with shared parameters. As shown in Figure 3, the encoder
part consists of four down-sampling convolutional blocks. Each
convolutional block contains a 3D strided convolutionwith stride
of 2, to reduce the spatial dimension in half. For the second and
third convolutional blocks, residual connections (He et al., 2016)
are employed. Specifically, two residual blocks are successively
employed, each of which consists of two convolutional layers
with a residual connection. For the last convolutional block, a
3D atrous spatial pyramid pooling (ASPP) (Wang et al., 2019)
module is used to resample features at different scales for the
capture of more representative multi-scale information. Batch
normalization and rectified linear unit (ReLU) operations are
applied in each convolutional block.

The convolutional blocks capture hierarchical paired features
(i.e., F1 ∼ F4 and corresponding M1 ∼ M4) of the input
volumetric pair, which are then used to progressively predict
multi-scale deformation field (φ4 ∼ φ1). Such coarse-to-
fine estimation based on paired feature pyramids enhances the
capability for handing large-scale deformation estimation.

We first perform rigid alignment on the feature maps F4
and M4 with high-level semantic information. Specifically, we
devise an affine block to achieve global alignment. As shown in
Figure 2B, the affine block consists of an affine convolutional
layer (a residual block and a 1 × 1 × 1 convolution operation)
and a global average pooling (GAP) layer. It takes paired feature
maps F4-M4 as input, and outputs the affine deformation field φ4,
which contains 12 degrees of freedom:

φ4 = fa(F4,M4; θa), (2)
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FIGURE 2 | The proposed edge-aware pyramidal deformable network for volumetric image registration. The schematic illustration of the proposed (A) dual-stream

multi-level registration architecture, (B) affine alignment block, and (C) deformable registration block. The EPReg utilizes original images (fixed image If and moving

image Im) and their corresponding edge maps (Ef and Em) to compose dual inputs, and generates multi-scale paired feature maps (F1 ∼ F4 and M1 ∼ M4) for

transforming the information between images into more representative features to predict more accurate deformation field (φ4 ∼ φ1).

where θa represents the parameter learned by affine block fa.
According to the estimated φ4, the 3D affine grid G4 can be
generated and then warp the moving volume to rigidly align with
the fixed volume.

Based on paired feature pyramids, we then progressively carry
out the non-rigid registration via the devised deformable block
(see Figure 2C). The deformable block contains a deformable
convolutional layer, which consists of two residual blocks and a
1× 1× 1 convolution operation. To estimate φi, the input of the
deformable block includes three components, i.e., Fi, warped Mi

using previously estimated φi+1, and the fused previous feature
maps (Fi+1 and warpedMi+1 using φi+1):

φi = fdi (Fi,Mi, Fi+1,Mi+1,φi+1; θdi ), (3)

where θdi represents the parameter learned by the i-th deformable
block fdi , and i = 1, 2, 3. In such a way, based on previous
deformation estimation (i.e., φi+1) and paired feature pyramids,
each deformable block further estimates extra deformation φi,
which can integrates with φi+1 to attain more accurate non-rigid
registration. For the i-th deformable block, the 3D deformable
grid Gi is the combination of Gi+1 (with 2×upsampling) and
φi (see Figure 2C). Figure 4 illustrates one example of the
progressive deformation estimation and registration. It can
be observed that the progressive deformation estimation can
gradually refine the whole deformation field. The low-resolution
deformation field φ3 contains coarse and global deformation
information, while the high-resolution deformation field φ1

captures more detailed local displacements. Thus, the whole
deformation field can attain accurate registration.
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FIGURE 3 | The schematic illustration of the encoder architecture.

FIGURE 4 | One example to illustrate the multi-scale deformable registration

fields and the procedure of progressive registration. It can be observed that

the progressive deformation estimation can gradually generate more explicit

local displacements, thus provide more and more accurate registration even

for the large deformation case.

In summary, we utilize multi-level feature pyramids generated
from paired volumes to estimate the multi-scale deformation
fields. Our network generates the multi-scale deformation
fields in a coarse-to-fine manner, which aggregates both
high-level context information and low-level details. High-
level context information is applied to the coarse and rigid
alignment, while low-level details are devoted to the non-
rigid registration.

2.3. Edge-Aware Dual Inputs
We integrate edge information with the original image as dual-
inputs for each encoding stream (see Figure 5), which enhances
the texture structures of image content, to impel the proposed
network pay extra attention to the edge-aware information for
structure alignment.

Considering the effectiveness and easy implementation of the
Sobel edge detector, 3D Sobel operator is designed to extract the
edges of original volume. The 3D Sobel operator contains three
filtering kernels as Sx, Sy, and Sz . Each kernel is a 3 × 3 × 3
tensor, and is responsible for the calculation of image gradient
along x-/y-/z-axis. The kernel Sz is shown as an example:

Sz (:, :,−1) =





+1 +2 +1
+2 +4 +2
+1 +2 +1



 , Sz (:, :, 0) =





0 0 0
0 0 0
0 0 0



 ,

Sz (:, :,+1) =





−1 −2 −1
−2 −4 −2
−1 −2 −1



 .

(4)

Kernels Sx and Sy are with the same kernel weights as Sz , but
along different directions. Sx, Sy, and Sz are applied to convolve a
volumetric image I, and further generate its corresponding edge
map E as follows:

E =

√

(Sx ∗ I)2 + (Sy ∗ I)2 + (Sz ∗ I)2, (5)

where ∗ denotes the convolution operation. The generated edge
map is beneficial to impel the network leverage edge-aware
information for structure alignment.

2.4. Training Loss
We adopt the patch-based cross-correlation (Rao et al., 2014) as
the similarity function:

Lsim(If , Im) =

−
∑

p∈�

(

∑

pn
(If (pn)− Īf (p))(Im(pn)− ¯Im(p))

)2

∑

pn

(

If (pn)− Īf (p)
)
∑

pn

(

Im(pn)− ¯Im(p)
) ,

(6)
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FIGURE 5 | A brain MRI image (A) and its corresponding edge map (B) generated using 3D Sobel operator. The edge map can more explicitly represent the structural

information.

where Īf and ¯Im denote volumes with local mean intensities
subtracted. p ∈ � denotes each voxel in volumetric image, where
� is the whole image domain. Voxel pn is the local neighborhood
in v3 (v = 9 in our implementation) volumetric patch at the
center of voxel p.

To avoid obtaining an unpractical or discontinuous
deformation field, we also add a diffusion regularizer Lsmooth to
impose smooth constraint on the spatial gradients of the overall
deformation field φ:

Lsmooth(φ) =
∑

p∈�

∥

∥∇φ
(

p
)
∥

∥

2
, (7)

where φ =
∑4

i=1 upsample2i(φi) is the aggregation of multi-scale
deformation fields.

As the deformation is estimated progressively, we consider
similarity loss for each scale of the registration pyramid.
Therefore, the total loss is defined as:

L =

4
∑

i=1

Lsim(down2
i(If ), down2

i(Im) ◦ Gi)+ λLsmooth(φ), (8)

where down2i denotes a down-sample operation with a factor
of 2i. Gi is the 3D deformation grid generated to warp the
moving volume.

3. EXPERIMENTS AND RESULTS

3.1. Materials
The study protocol was reviewed and approved by the
Institution’s Ethical Review Board. Experiments were carried on
three public brain MRI datasets with manually labeled region of
interests (ROIs), including Mindboggle101 (Klein and Tourville,
2012), LPBA40 (Shattuck et al., 2008), and IXI30 (Serag et al.,
2012).

• Mindboggle101 (101 T1-weighted MRI volumes): 62 volumes
were involved to conduct experiments as described in Kuang
and Schmah (2019). Specifically, 42 volumes (i.e., 1, 722 pairs)
from subsets of NKI-RS-22 and NKI-TRT-20 were used for
training, and 20 volumes (i.e., 380 pairs) from OASIS-TRT-20
were involved for testing.

• LPBA40 (40 T1-weighted MRI volumes): 30 volumes were
randomly selected for training and the remaining 10 volumes
were used for testing.

• IXI30 (30 T1-weighted MRI volumes): all 30 volumes were
used for testing. In order to investigate the generalization
ability of the network, we employed the model trained on
LPBA40 to register images from IXI30 dataset.

All volumes were pre-processed by histogram and intensity
normalization, and skull-stripping using FreeSurfer (Fischl,
2012).

3.2. Implementation Details
In our experiments, each input volumetric image was resized
into the dimension of 192 × 192 × 192. The network was
trained on a GPU of NVIDIA Tesla V100. The value of the
regularization parameter λ was set empirically as 1000. For the
whole registration network, the number of epochs was set to
300. The network was implemented using Pytorch and Adam
optimization (Kingma and Ba, 2014), and the learning rate was
initially set to 2e-4, with 0.5 weight decay after every 10 epoch.

3.3. Evaluation Metrics
To quantitatively evaluate the registration performance,
Dice index (DSC) (Dice, 1945), Hausdorff distance
(HD) (Huttenlocher et al., 1993), and average symmetric
surface distance (ASSD) (Taha and Hanbury, 2015) were
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calculated. The DSC is defined as:

DSC =
2|RIf ∩ RIm |

|RIf | + |RIm |
, (9)

where RIf and RIm are the segmented ROIs of If and Im,
respectively. The HD measures the longest distance over the
shortest distances between the segmented ROIs of If and Im. The
ASSD is defined as:

ASSD =
1

|BIf | + |BIm |







∑

x∈BIf

d(x,BIm )+
∑

y∈BIm

d(y,BIf )







(10)
where BIf and BIm are the segmented surfaces of If and
Im, respectively. The operator d(, ) is the shortest Euclidean
distance operator.

All evaluation metrics were calculated in 3D. A better
registration shall have larger DSC, and smaller HD and ASSD.

3.4. Registration Accuracy
We compared our EPReg network with four cutting-edge
brain MRI registration schemes: SyN (Avants et al., 2008),
VoxelMorph (Balakrishnan et al., 2018), FAIM (Kuang and
Schmah, 2019), and MSNet (Duan et al., 2019). For a fair
comparison, we obtained their results either by directly taking
the results from their papers or by generating the results from the
public codes provided by the authors using the recommended
parameter setting. In addition, we also compared the network
without edge-aware input, which is denoted as PReg.

Figure 6 shows the visual comparisons from different
registration methods on Mindboggle101 dataset. Our network
can generate more accurate registered images, and the internal
structures can be preserved consistently by using our network.
Table 1 further reports the numerical results on five regions of the
images from dataset Mindboggle101. It can be observed that our
EPReg consistently achieved best registration performance with
respect to DSC and HDmetrics. Regarding the ASSD evaluation,
our network obtained the best ASSD values on occipital and
temporal regions; and the second best ASSD on the frontal,
parietal and cingulate regions. It is worth noting that both
our EPReg and PReg networks outperformed other cutting-
edge methods by a large margin in terms of DSC values, which
demonstrates the proposed deformable pyramid contributed to
the improvement of registrations.

For the LPBA40 dataset, the visualization and quantitative
results (including seven regions) are shown in Figure 7 and
Table 2, respectively. It can be observed that our network
achieved overall satisfactory registration performance on
LPBA40 dataset. We further calculated DSC, HD, ASSD values of
54 corresponding sub-regions from warped and fixed volumes.
The comparison results are illustrated in Figure 8. For the 54
sub-regions, the proposed EPReg achieved the best DSC, HD,
and ASSD values on 41, 32, 38 sub-regions, respectively.

The numerical results on IXI30 are illustrated in Figure 9.
IXI30 dataset has 95 subregions but 30 of them are extremely
small regions. Thus we calculated DSC, HD, and ASSD values

of the remaining 65 subregions. It can be observed that the
proposed EPReg achieved the best DSC, HD, and ASSD values
on 49, 35, 49 sub-regions, respectively, which shows that
our network has satisfactory generalization ability. Figure 10
visualizes registered images from differentmethods. Our network
again attained overall satisfactory registration performance on
this dataset.

3.5. Statistical Analyses
To investigate the statistical significance of the proposed network
over other compared registration methods, a student test was
conducted. Specifically, the two-sample, two-tailed t-test was
employed to pairwisely compare the registration performance
between our method and the other five methods on three
different datasets (see Table 3). It can be observed that the null
hypotheses for the five comparing pairs on the metric of DSC
were not accepted at the 0.05 level. As a result, our method can
be regarded as significantly better than the other five compared
methods on DSC metric. In addition, the null hypotheses for the
pairs of SyN-EPReg, VM-EPReg, and FAIM-EPReg on all three
metrics were not accepted at the 0.05 level, which demonstrates
our method was significantly better than these three methods
on all three metrics. The p-values of PReg-EPReg on metrics of
HD and ASSD from dataset Mindboggle101 were beyond the
0.05 level, which indicates that our method and PReg achieved
similar performance with regard to the HD and ASSD evaluation
on dataset Mindboggle101. The pair of MSNet-EPReg held the
similar results on metrics of HD and ASSD from dataset IXI.
In general, the statistical analyses prove that our method had
an overall better registration performance than other compared
cutting-edge methods.

3.6. Comparison of Time Efficiency
We further compared the time efficiency. Table 4 lists the
inference time for registering a pair of images using different
methods. It can be observed that for the affine alignment,
the time spent by our affine component (less than 0.3 s) was
much less than that of the traditional affine alignment method
(i.e., ANTS, Avants et al., 2008) using iterative optimization.
Considering the overall registration time, our end-to-end
registration network was much faster than other registration
networks which require extra affine alignment (i.e., alignment
using ANTS, Avants et al., 2008) before deformable registration.

4. DISCUSSION

Deformable registration is an important task of medical image
computing and has various clinical applications. It is to search
for the inhomogeneous point-wise displacements to match
homologous locations from the moving domain to the fixed
domain. Due to the large search space for the complicated non-
rigid deformation, most existing registration schemes require
separate rigid alignment before deformable registration to
reduce the search space, or iteratively optimize the estimated
deformation field. Even so, they may not well handle the large
deformation cases. We have attempted to tackle this issue
by devising a dual-stream deformable pyramid architecture.
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FIGURE 6 | Visualized registration results from different methods on Mindboggle101 dataset. Green and orange boxes highlight our accurate performance.

TABLE 1 | The DSC (%), Hausdorff distance (HD), and average symmetric surface distance (ASSD) results (mean ± SD) from SyN (Avants et al., 2008), VM (Balakrishnan

et al., 2018), FAIM (Kuang and Schmah, 2019), MSNet (Duan et al., 2019), and our network on MindBoggle101 dataset.

Methods Frontal Parietal Occipital Temporal Cingulate

DSC (%) SyN 54.4± 4.5 46.8± 6.8 49.8± 5.0 48.1± 6.2 49.2± 9.0

VM 53.4± 8.1 52.7± 6.2 51.0± 7.3 43.3± 7.6 48.3± 9.2

FAIM 57.2± 6.8 55.1± 7.1 53.7± 6.5 46.9± 6.9 50.8± 9.5

MSNet 58.3± 7.1 50.4± 7.3 55.4± 6.9 47.7± 7.9 54.3± 8.9

PReg 65.6± 9.3 60.5± 8.1 59.9± 7.5 67.5± 7.0 62.4± 11.2

EPReg 67.1± 9.067.1± 9.067.1± 9.0 61.5± 7.561.5± 7.561.5± 7.5 60.6± 7.060.6± 7.060.6± 7.0 67.9± 7.267.9± 7.267.9± 7.2 64.9± 9.564.9± 9.564.9± 9.5

HD SyN 13.2± 2.2 14.0± 1.9 14.8± 3.8 6.8± 2.36.8± 2.36.8± 2.3 7.9± 2.0

VM 13.2± 3.6 13.6± 1.8 13.5± 4.6 8.6± 3.0 7.9± 1.9

FAIM 12.9± 2.7 13.3± 1.7 13.3± 4.4 8.7± 2.3 7.8± 2.1

MSNet 12.6± 2.9 13.2± 2.0 13.7± 4.4 8.0± 2.4 8.0± 2.2

PReg 12.7± 3.2 13.5± 2.8 13.1± 3.7 7.4± 2.5 8.4± 2.1

EPReg 12.3± 3.112.3± 3.112.3± 3.1 13.2± 2.513.2± 2.513.2± 2.5 12.9± 3.612.9± 3.612.9± 3.6 7.9± 2.3 7.8± 2.07.8± 2.07.8± 2.0

ASSD SyN 1.32± 0.53 1.45± 0.32 1.48± 0.35 1.11± 0.27 1.37± 0.66

VM 1.51± 0.33 1.32± 0.33 1.36± 0.32 1.32± 0.72 1.43± 0.43

FAIM 1.42± 0.32 1.29± 0.28 1.44± 0.66 1.12± 0.46 1.20± 0.58

MSNet 1.34± 0.28 1.29± 0.23 1.39± 0.53 1.06± 0.53 1.20± 0.63

PReg 0.42± 0.130.42± 0.130.42± 0.13 0.73± 0.220.73± 0.220.73± 0.22 0.96± 0.32 0.62± 0.21 1.00± 0.371.00± 0.371.00± 0.37

EPReg 0.43± 0.14 0.75± 0.26 0.93± 0.300.93± 0.300.93± 0.30 0.61± 0.210.61± 0.210.61± 0.21 1.03± 0.39

Best results are highlighted in bold.

The proposed deformable pyramid leverages multi-scale paired
features to progressively estimate residual deformation field
with a reduced search space rather than a large one, which
facilitates the estimation of large/complicated deformation field.
In addition, the affine alignment is also integrated within
the deformable pyramid in a seamless manner, thus enables

the trained network performing non-rigid registration in one
forward pass.

Most unsupervised registration networks optimize
deformation fields based on the maximization of the intensity-
based image similarity. Considering the boundary/shape
information is commonly used to constrain the registration,
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FIGURE 7 | Visualized registration results from different methods on LPBA40 dataset. Green and orange boxes highlight our accurate performance.

TABLE 2 | The DSC (%), Hausdorff distance (HD), and average symmetric surface distance (ASSD) results (mean ± SD) from SyN (Avants et al., 2008), VM (Balakrishnan

et al., 2018), FAIM (Kuang and Schmah, 2019), MSNet (Duan et al., 2019), and our network on LPBA40 dataset.

Methods Frontal Parietal Occipital Temporal Cingulate Putamen Hippocampus

DSC (%) SyN 68.1± 4.0 57.1± 5.8 50.7± 6.8 58.2± 4.9 58.9± 6.2 64.2± 7.3 65.2± 7.0

VM 71.2± 3.1 57.4± 7.0 58.8± 6.0 61.7± 4.4 54.9± 6.2 66.1± 9.4 60.9± 9.0

FAIM 73.1± 3.1 59.4± 7.3 60.6± 6.1 65.1± 4.2 61.2± 5.8 70.8± 10.0 68.0± 6.4

MSNet 73.4± 3.3 60.0± 7.0 61.0± 6.1 65.9± 4.0 62.1± 5.5 72.7± 8.5 68.8± 5.7

PReg 76.8± 2.7 66.6± 6.2 66.7± 4.8 71.6± 3.4 65.9± 6.6 78.6± 2.6 75.2± 2.7

EPReg 77.0± 2.677.0± 2.677.0± 2.6 68.3± 4.568.3± 4.568.3± 4.5 68.7± 3.768.7± 3.768.7± 3.7 72.7± 2.772.7± 2.772.7± 2.7 66.7± 5.466.7± 5.466.7± 5.4 79.1± 2.579.1± 2.579.1± 2.5 75.3± 2.875.3± 2.875.3± 2.8

HD SyN 13.2± 1.8 15.8± 2.515.8± 2.515.8± 2.5 16.2± 2.9 16.9± 3.0 13.0± 3.1 10.9± 9.9 7.1± 1.4

VM 13.6± 1.9 19.2± 5.0 15.1± 2.9 16.8± 3.4 13.6± 2.8 8.9± 2.7 8.5± 2.0

FAIM 13.5± 2.0 19.1± 4.8 15.1± 3.0 16.5± 3.4 13.2± 2.6 8.4± 2.9 7.9± 1.9

MSNet 13.5± 1.9 19.0± 4.8 15.0± 2.9 16.4± 3.4 13.1± 2.7 8.2± 3.1 7.6± 1.8

PReg 12.3± 1.5 18.1± 4.8 14.6± 2.9 15.8± 3.4 13.2± 2.7 7.6± 3.1 6.4± 1.8

EPReg 12.3± 1.412.3± 1.412.3± 1.4 17.5± 4.0 14.1± 2.314.1± 2.314.1± 2.3 15.0± 2.715.0± 2.715.0± 2.7 12.5± 2.112.5± 2.112.5± 2.1 7.4± 3.27.4± 3.27.4± 3.2 6.2± 1.36.2± 1.36.2± 1.3

ASSD SyN 2.44± 0.44 2.71± 0.40 3.18± 0.58 2.55± 0.40 2.22± 0.31 1.70± 0.63 1.56± 0.33

VM 1.41± 0.27 2.11± 0.41 1.87± 0.30 1.49± 0.19 2.02± 0.31 1.28± 0.32 1.41± 0.32

FAIM 1.35± 0.27 2.06± 0.41 1.86± 0.32 1.38± 0.18 1.87± 0.29 1.12± 0.32 1.22± 0.23

MSNet 1.31± 0.26 2.04± 0.41 1.86± 0.31 1.35± 0.18 1.82± 0.27 1.05± 0.28 1.18± 0.21

PReg 1.11± 0.23 1.72± 0.37 1.60± 0.21 1.16± 0.15 1.68± 0.31 0.85± 0.17 0.98± 0.11

EPReg 1.08± 0.191.08± 0.191.08± 0.19 1.62± 0.261.62± 0.261.62± 0.26 1.54± 0.181.54± 0.181.54± 0.18 1.11± 0.111.11± 0.111.11± 0.11 1.65± 0.251.65± 0.251.65± 0.25 0.85± 0.160.85± 0.160.85± 0.16 0.96± 0.110.96± 0.110.96± 0.11

weakly supervised registration networks pay extra attention
on leveraging the correspondences between structural
information. However, obtaining such corresponding
structures requires manual annotations. Instead of utilizing
the structural information to form an explicit loss function,
we simply apply the Sobel edge map as an extra input
of the network. The purpose is to enhance the texture

structures of image content, thus to pay attention for the
edge-aware alignment. The comparison results listed in
Tables 1, 2 (evaluations on some relatively larger regions)
show that the network with edge-aware input (i.e., EPReg)
achieved overall better registration performance than PReg.
The comparisons on lots of small sub-regions shown
in Figures 8, 9 demonstrate that EPReg attained more
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FIGURE 8 | Comparisons of DSC (%), HD, and ASSD results by different methods on LPBA40 dataset. The results were evaluated across the 54 corresponding ROIs

in LPBA40 dataset, “*” indicates that the proposed EPReg outperformed other methods.
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FIGURE 9 | Comparisons of DSC (%), HD, and ASSD results by different methods on IXI30 dataset. The results were evaluated across the 65 corresponding ROIs in

IXI30 dataset, “*” indicates that the proposed EPReg outperformed other methods.
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FIGURE 10 | Visualized registration results from different methods on IXI30 dataset. Green and orange boxes highlight our accurate performance.

TABLE 3 | P-values of student tests between different methods on different metrics.

Method
Mindboggle101 LPBA40 IXI

DSC HD ASSD DSC HD ASSD DSC HD ASSD

SyN-EPReg 8.35e-13 4.01e-02 9.02e-06 3.84e-05 2.13e-07 4.79e-03 1.30e-03 3.15e-02 7.60e-03

VM-EPReg 1.47e-14 2.45e-03 9.80e-09 6.93e-16 7.16e-16 7.88e-09 1.11e-04 2.16e-02 1.17e-04

FAIM-EPReg 9.70e-17 1.72e-03 5.32e-08 1.22e-14 5.73e-16 2.50e-08 6.09e-05 4.54e-02 6.72e-03

MSNet-EPReg 5.93e-12 2.08e-03 6.91e-08 3.56e-10 2.07e-16 1.58e-10 1.56e-03 0.91 0.71

PReg-EPReg 1.84e-06 0.63 0.65 2.00e-05 3.74e-05 2.40e-05 4.50e-03 6.89e-03 2.49e-02

TABLE 4 | Inference time (second) for registering a pair of images using different methods.

Methods Mindboggle101 LPBA40 IXI

ANTS (affine alignment) 8.19± 0.30 7.73± 0.27 9.13± 0.29

SyN 39.24± 2.07 33.32± 1.46 40.10± 2.01

VM 0.66± 0.01 0.11± 0.01 0.73± 0.01

FAIM 1.17± 0.01 0.49± 0.01 1.26± 0.01

MSNet 1.34± 0.01 0.45± 0.01 1.41± 0.01

EPReg (affine only) 0.09± 0.01 0.09± 0.01 0.23± 0.01

EPReg 0.25± 0.01 0.23± 0.01 0.61± 0.01

accurate registration than PReg, due to the usage of the
edge-aware information.

We evaluated the proposed edge-aware pyramidal deformable
network on three different brain MR datasets and compared
with four cutting-edge registration methods. The DSC, HD,
and ASSD were employed to evaluate all methods. Specifically,

HD and ASSD were employed to provide evaluation on
the differences in boundary shape between two volumes.
The numerical results and statistical analyses show that
our method had an overall better registration accuracy
than other compared cutting-edge methods. Furthermore, our
registration network provided very efficient inference procedure,
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which achieved accurate volumetric registration within 1
s. From the experimental results, it can be demonstrated
that the proposed progressive deformation estimation scheme
contributed to the improvement of registration accuracy
and efficiency.

The proposed registration method focuses on the large
deformation estimation by progressively predicting the residual
deformation. It is beneficial for the estimation of large-scale
deformation. Further validations on other body parts (e.g., chest
or abdominal CT images) will be our future work.

The problem of registration validation in clinical settings
is still an open issue. Most of recent research articles
focusing on developing new registration approaches employ
DSC as a primary metric to evaluate the registration
accuracy (Balakrishnan et al., 2018; Cao et al., 2018; Loi
et al., 2018, 2020; Fan et al., 2019; Huang et al., 2021). For
a fair comparison, we also applied DSC to evaluate the
registration performance. However, the DSC may suffer of
the limitation to be dependent on the volume of structures.
Thus we further employed HD and ASSD to evaluate boundary
differences between two volumetric regions. Although there
is no guaranteed thresholds w.r.t. DSC, HD, ASSD for quality
assessment of registration on brain MR images, the comparison
results on a series of sub-regions (over 50 sub-regions)
show the proposed network consistently outperformed other
cutting-edge registration methods with respect to metrics
of DSC, HD, and ASSD. In addition, the visual results
in Figures 6, 7, 10 illustrate the satisfactory registration
performance obtained by our method. In our future work,
the phantom study which could generate the ground truth
deformation fields for straightforward registration validation
would be conducted.

5. CONCLUSION

In this paper, we have presented an edge-aware pyramidal
deformable network for unsupervised volumetric registration.
The proposed network focuses on the large deformation
estimation by progressively predicting the residual deformation.
Our key idea is to fully exploit the useful complementary

multi-level information from paired features to predict multi-
scale deformation fields. We achieve this by developing a
deformable pyramid architecture, which can generate multi-scale
paired feature maps for progressively transforming the paired
information into more representative features to predict more
accurate deformation field. In addition, we leverage extra edge
information to impel the network pay attention to the edge-
aware alignment. Extensive experiments on several 3D MRI
datasets demonstrate that our edge-aware pyramidal deformable
network achieves satisfactory registration performance. The
coarse-to-fine progressive registration procedure is beneficial to
compensate for the large-scale deformation, and can be regarded
as a general solution for deformable volumetric registration.
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